首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The ability of aminoglycoside antibiotics to promote read-through of nonsense mutations has attracted interest in these drugs as potential therapeutic agents in genetic diseases. However, the toxicity of aminoglycoside antibiotics may result in severe side effects during long-term treatment. In this paper, we report that negamycin, a dipeptide antibiotic, also restores dystrophin expression in skeletal and cardiac muscles of the mdx mouse, an animal model of Duchenne muscular dystrophy (DMD) with a nonsense mutation in the dystrophin gene, and in cultured mdx myotubes. Dystrophin expression was confirmed by immunohistochemistry and immunoblotting. We also compared the toxicity of negamycin and gentamicin, and found negamycin to be less toxic. Furthermore, we demonstrate that negamycin binds to a partial sequence of the eukaryotic rRNA-decoding A-site. We conclude that negamycin is a promising new therapeutic candidate for DMD and other genetic diseases caused by nonsense mutations.  相似文献   

2.
Summary We examined the expression of dystrophin by immunohistochemical and immunoblot analyses in the skeletal and cardiac muscles of Xmdx/X+ heterozygous mice, which were obtained by mating male mdx mice (Xmdx/Y) with female wild type mice (X+/X+). Dystrophin was expressed on the surface membrane in both muscles, but the mode of expression was different between the two muscles. In cardiac muscle, dystrophin positive and negative cells were present in roughly equal numbers intermingled in a mosaic pattern; this was considered to reflect the random inactivation of X-chromosomes in early development. In skeletal muscle, most of the surface membrane was dystrophin positive. There were little signs of fiber necrosis or regeneration, and serum creatine kinase levels were normal. We are at present of opinion that the predominance of dystrophin-positive area in skeletal muscle is due to intracellular diffusion of dystrophin. On leave from The Department of Pediatrics, Tokyo Women's Medical College  相似文献   

3.
H Tanaka  K Ikeya  E Ozawa 《Histochemistry》1990,93(5):447-452
We examined the expression of dystrophin by immunohistochemical and immunoblot analyses in the skeletal and cardiac muscles of Xmdx/X+ heterozygous mice, which were obtained by mating male mdx mice (Xmdx/Y) with female wild type mice (X+/X+). Dystrophin was expressed on the surface membrane in both muscles, but the mode of expression was different between the two muscles. In cardiac muscle, dystrophin positive and negative cells were present in roughly equal numbers intermingled in a mosaic pattern; this was considered to reflect the random inactivation of X-chromosomes in early development. In skeletal muscle, most of the surface membrane was dystrophin positive. There were little signs of fiber necrosis or regeneration, and serum creatine kinase levels were normal. We are at present of opinion that the predominance of dystrophin-positive area in skeletal muscle is due to intracellular diffusion of dystrophin.  相似文献   

4.
《FEBS letters》1993,320(3):276-280
Duchenne muscular dystrophy (DMD) patients and mdx mice are characterized by the absence of dystrophin, a membrane cytoskeletal protein. Dystrophin is associated with a large oligomeric complex of sarcolemmal glycoproteins, including dystroglycan which provides a linkage to the extarcellular matrix component, laminin. The finding that all of the dystrophin-associated proteins (DAPs) are drastically reduced in DMD and mdx skeletal muscle supports the primary function of dystrophin as an anchor of the sarcolemmal glycoprotein complex to the subsarcolemmal cytoskeleton. These findings indicate that the efficacy of dystrophin gene therapy will depend not only on replacing dystrophin but also on restoring all of the DAPs in the sarcolemma. Here we have investigated the status of the DAPs in the skeletal muscle of mdx mice transgenic for the dystrophin gene. Our results demonstrate that transfer of dystrophin gene restores all of the DAPs together with dystrophin, suggesting that dystrophin gene therapy should be effective in restoring the entire dystrophin-glycoprotein complex.  相似文献   

5.
6.
The amino acid sequence of the polyclonal antibodies we developed against the carboxyl terminus of the dystrophin-related protein, the putative gene product of B3 cDNA, had no homologous sequence to the dystrophin molecule except for two amino acids located at its ends for immunization. By immunohistochemical examination in C57B1/10ScSn and C57B1/10ScSn-mdx mice we found that the DRP was expressed on the surface membrane of fetal muscle fibers, was assembled at the neuromuscular junctions of the mature muscle fibers, and reappeared on the surface membrane of muscle fibers after denervation. Its localization was similar to that of the acetylcholine receptor, suggesting that DRP is one of the cytoskeletons which organize and stabilize the cytoplasmic domain of the acetylcholine receptor.  相似文献   

7.
8.
The number of dystrophin-positive myofibers (DPM), that appeared in different skeletal muscles of mdx mice after a single injection of synthetic microspheres containing the full-length human dystrophin cDNA within the pHSADy expressing vector into femoral quadriceps muscle, was examined on cryostat sections. Injection of 25 micrograms cDNA resulted in the occurrence of 1, 2.4, 5.8 and 4.8% of DPM in the treated muscle in 1, 7, 21, and 60 days after the injection respectively. 7, 21, and 60 days after the treatment, these values comprised 2.1, 4.3 and 1% in the same muscle of the contralateral leg, and 5.5, 8.4, and 1% in the gluteal muscle. Expression of the full-length human dystrophin (427 kDa) in the muscle of the transfected mdx mice was observed. The presence of the transfected construction in skeletal muscles, heart, brain, lungs, and fetuses was demonstrated PCR. Utilization of the FISH technique with biotinilated pHSADy construct as a DNA probe showed that 7 days after the injection, the MF-2 microspheres were present in 70% of myoblast nuclei, in 64% of nuclei of gluteal muscles, and in 62% of the contralateral quadriceps nuclei. 21 days after the treatment, these values were 41, 29, and 45%, respectively. The MF-2 microsphere were detected in the nuclei of the blood, brain, heart, and lung cells, as well as in the placenta and tissues of 18-day-old fetuses. Our results demonstrated the high efficiency of microsphere-mediated transfer of gene constructs into cell nuclei, their long-term intranuclear persistence, and the ability to direct expression for at least 2 months after injection. The MF-2 microspheres attract special interest in respect to the targeted delivery of gene constructs into the nuclei.  相似文献   

9.
We describe two transfectable vectors designed to facilitate the functional analysis of eukaryotic promoter/enhancer sequences. The first, pJFCAT1, is an improved chloramphenicol acetyltransferase (CAT) reporter gene expression vector with two features that distinguish it from the majority of other CAT vectors currently in use: 1) it carries a trimer cassette of the simian virus 40 major late polyadenylation site to block plasmid-initiated read-through expression of CAT, and 2) it includes the phage f1 origin of replication, permitting generation of single-stranded copies to serve as templates for oligonucleotide-directed mutagenesis or single-strand DNA sequencing. The promoterless pJFCAT1 directs little if any CAT activity in transfected mouse L cells and, therefore, may be particularly useful for the analysis of weak promoters whose activity is otherwise masked by background CAT expression. The second vector, pTAG-1, uses human beta-globin as a reporter gene and was designed to facilitate the analysis of reporter gene expression at the RNA level. Like pJFCAT1, pTAG-1 also includes the simian virus 40 polyadenylation site trimer cassette located just upstream of the promoter insertion site. We have used each of these vectors to study functional elements in the human and mouse thymidine kinase promoters.  相似文献   

10.
Novel internal promoter/enhancer of HTLV-I for Tax expression.   总被引:1,自引:0,他引:1       下载免费PDF全文
  相似文献   

11.
12.
Although great strides have been made in understanding the genetics of Duchenne muscular dystrophy (DMD), uncertainty still remains as to the metabolic changes which are associated with the disease. We have used the recently discovered animal model of DMD, the mdx mouse, to study aspects of high energy phosphate metabolism and metabolic control indices in dystrophic muscle. This model of DMD has the dual advantage of having a genetic defect which is homologous to that in human DMD, and it lacks the fatty infiltration and necrosis which makes biochemical analysis of DMD so difficult. We have used nuclear magnetic resonance spectroscopy (NMR) to monitor developmental changes in high energy phosphates and pH. No differences were observed between young (less than 40-50 days old) control and mdx mice. The pH increase and alterations in phosphate ratios (i.e., a decline in PCr/ATP) observed in adult mdx vs. control mice are qualitatively similar to those observed in humans. Biochemical analysis showed a small decline in ATP and PCr content and a decline in some indices of energy status in adult mdx mice. As young mdx mice appeared to be normal, the lack of dystrophin does not correlate with metabolic changes. The changes which were observed were small enough that alterations in fibre composition could be the major contributory factor.  相似文献   

13.
The absence of dystrophin and resultant disruption of the dystrophin glycoprotein complex renders skeletal muscles of dystrophic patients and dystrophic mdx mice susceptible to contraction-induced injury. Strategies to reduce contraction-induced injury are of critical importance, because this mode of damage contributes to the etiology of myofiber breakdown in the dystrophic pathology. Transgenic overexpression of insulin-like growth factor-I (IGF-I) causes myofiber hypertrophy, increases force production, and can improve the dystrophic pathology in mdx mice. In contrast, the predominant effect of continuous exogenous administration of IGF-I to mdx mice at a low dose (1.0-1.5 mg.kg(-1).day(-1)) is a shift in muscle phenotype from fast glycolytic toward a more oxidative, fatigue-resistant, slow muscle without alterations in myofiber cross-sectional area, muscle mass, or maximum force-producing capacity. We found that exogenous administration of IGF-I to mdx mice increased myofiber succinate dehydrogenase activity, shifted the overall myosin heavy chain isoform composition toward a slower phenotype, and, most importantly, reduced contraction-induced damage in tibialis anterior muscles. The deficit in force-producing capacity after two damaging lengthening contractions was reduced significantly in tibialis anterior muscles of IGF-I-treated (53 +/- 4%) compared with untreated mdx mice (70 +/- 5%, P < 0.05). The results provide further evidence that IGF-I administration can enhance the functional properties of dystrophic skeletal muscle and, compared with results in transgenic mice or virus-mediated overexpression, highlight the disparities in different models of endocrine factor delivery.  相似文献   

14.
The differentiation of both original muscle fibres and the regenerated muscle fibres following necrosis in mdx muscles was investigated using immunoblotting and immunocytochemical procedures. Before the onset of necrosis, postnatal skeletal muscles in mdx mouse differentiated well with only a slight delay in differentiation indicated by the level of developmental isoforms of troponin T. Prior to the onset of apparent myopathic change, both fast and slow skeletal muscle fibre types in mdx leg muscles also differentiated well when investigated by analysis of specific myosin heavy chain expression pattern. While the original muscle fibres in mdx leg muscles developed well, the differentiation of regenerated myotubes into both slow and distinct fast muscle fibre types, however, was markedly delayed or inhibited as indicated by several clusters of homogeneously staining fibres even at 14 weeks of age. The number of slow myosin heavy chain-positive myotubes amongst the regenerated muscle clusters was quite small even in soleus. This study thus established that while muscle fibres initially develop normally with only a slight delay in the differentiation process, the differentiation of regenerated myotubes in mdx muscles is markedly compromised and consequently delayed.  相似文献   

15.
Two groups of transgenic rainbow trout (Oncorhynchus mykiss, Walbaum) have been produced and compared. One group harbored the reporter gene of chloramphenicol acetyltransferase (CAT) associated with mouse immunoglobulin (Ig) promoter/enhancer (pUCL-CAT-E). The other group carried the same reporter gene under the control of the cytomegalovirus promoter/enhancer (pCMV-CAT). Slot blot analysis of DNA from blood cells and other tissues from pUCL-CAT-E fish showed variation of copy number between the major tissues but not between red and white blood cells. Southern blot analysis indicated that multiple copies organized in concatemers were incorporated into the genome. The pCMV-CAT fish had a pronounced expression of CAT in both white and red blood cells. In contrast, activity of CAT was found in the white blood cells of all pUCL-CAT-E fish but not in their red blood cells. Expression in white blood cells was found preferentially in sIg+ cells, indicating that B cells are the major expressors. High expression was also found in spleen and kidney, but the activity found in thymocytes was equal to the background level. Analysis of some major tissues showed high white blood cell expression associated with low tissue expression, except that liver (known to contain lymphoid tissue in fish) was higher. Thus the regulatory elements of the Ig gene from mouse induce a tissue-specific expression in fish.  相似文献   

16.
17.
Li D  Yue Y  Duan D 《PloS one》2010,5(12):e15286
Inactivation of all utrophin isoforms in dystrophin-deficient mdx mice results in a strain of utrophin knockout mdx (uko/mdx) mice. Uko/mdx mice display severe clinical symptoms and die prematurely as in Duchenne muscular dystrophy (DMD) patients. Here we tested the hypothesis that marginal level dystrophin expression may improve the clinical outcome of uko/mdx mice. It is well established that mdx3cv (3cv) mice express a near-full length dystrophin protein at ~5% of the normal level. We crossed utrophin-null mutation to the 3cv background. The resulting uko/3cv mice expressed the same level of dystrophin as 3cv mice but utrophin expression was completely eliminated. Surprisingly, uko/3cv mice showed a much milder phenotype. Compared to uko/mdx mice, uko/3cv mice had significantly higher body weight and stronger specific muscle force. Most importantly, uko/3cv outlived uko/mdx mice by several folds. Our results suggest that a threshold level dystrophin expression may provide vital clinical support in a severely affected DMD mouse model. This finding may hold clinical implications in developing novel DMD therapies.  相似文献   

18.
The possibility of using bone marrow stem cells for treatment of Duchenne muscular dystrophy is intensely studied. Mdx mice are the most widely used laboratory model of Duchenne muscular dystrophy. One approach of cell therapy of muscular dystrophy is substitution of bone marrow in mdx mice after their X-ray irradiation. However, this method does not allow one to increase significantly dystrophin synthesis in muscular fibers of mdx mice. To improve the effect of transplanted cells on muscle regeneration, we additionally treated mdx mice subjected to transplantation of bone marrow cells with a weak combined magnetic field tuned to ion parametric resonance for Ca2+ (Ca2+-CMF). We found that, in irradiated chimeric 3 and 5 Gy mdx mice, additional treatment with Ca2+-CMF for 1 month resulted in significant increases in the portions of dystrophin-positive muscle fibers, by 15.8 and 18.3%, respectively, as compared to the control groups. Furthermore, the share of muscle fibers without centrally located nuclei also increased. We suggest that the magnetic field with these parameters may stimulate functioning of nuclei of donor cells, which were incorporated into muscle fibers.  相似文献   

19.
BACKGROUND: The helper-dependent adenovirus (HDAd) vector is less immunogenic and has a larger cloning capacity of up to 37 kb enough to carry the full-length dystrophin cDNA. However, high and long-term expression of dystrophin transduced to mature muscle still remains difficult. One of the main reasons for this is that the expression of the coxsackievirus and adenovirus receptor (CAR) is very low in mature muscle. METHODS: We have constructed two different HDAd vectors. One contains the LacZ and the murine full-length dystrophin expression cassette (HDAdLacZ-dys), and the other is a new, improved vector containing the CAR and the dystrophin expression cassette (HDAdCAR-dys). RESULTS: We initially demonstrated high dystrophin expression and prevention of the dystrophic pathology in mdx muscle injected during the neonatal phase with HDAdLacZ-dys. Furthermore, we demonstrated that repeated injections of HDAdCAR-dys into mature muscle led to approximately nine times greater dystrophin-positive fibers in number than a single injection, thereby recovering the expression of dystrophin-associated proteins. This data has also shown that HDAdCAR-dys enabled administration of adenovirus (Ad) vector to the host with pre-existing immunity to the same serotype of Ad. CONCLUSIONS: Repetitive injections of the HDAd vector containing the CAR and the dystrophin expression cassette could improve the efficiency of subsequent dystrophin gene transfer to mature mdx muscle. This result suggests that our new HDAd vector will provide a novel gene therapy strategy for Duchenne muscular dystrophy, raising the prospects for gene therapy of other hereditary myopathies.  相似文献   

20.
Several dystrophin isoforms are known. The full-length isoform is present in striated and smooth muscles and neurons and its lack causes Duchenne Muscular Dystrophy, a progressive myopathy accompanied by mild cognitive deficits and gastrointestinal dismotility. An ultrastructural study was undertaken in the colon of mice lacking full-length dystrophin and maintaining shorter isoforms (mdx mice) to ascertain whether myenteric neurons have an altered morphology. Results showed a significant increase in the size of synaptic vesicle and in the number of recycling vesicles. An enlargement of endoplasmic reticulum cisternae in a subpopulation of neurons was also seen. Immunohistochemistry confirmed that the shorter isoforms were expressed in mdx mice myenteric neurons. These findings indicate the presence of a neuropathy at the myenteric plexus which might justify the defective neuronal control of gastrointestinal motility reported for these animals and which might be correlated with full-length dystrophin loss, since the shorter isoforms are present.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号