首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In previous works we demonstrated that 2-methyl-1,4-naphthoquinone (menadione) causes a marked increase in the force of contraction of guinea pig and rat isolated atria. This inotropic effect was significantly higher in the guinea pig than in the rat and was strictly related to the amount of superoxide anion (O(2)(*-)), generated as a consequence of cardiac menadione metabolism through mitochondrial NADH-ubiquinone oxidoreductase. The present study was designed to further elucidate the basis of these quantitatively different positive inotropic responses. To this purpose, we measured O(2)(*-) and hydrogen peroxide (H(2)O(2)) produced by mitochondria isolated from guinea pig and rat hearts in the presence of 20 microM menadione. Moreover, we evaluated the menadione detoxification activity (DT-diaphorase) and the antioxidant defences of guinea pig and rat hearts, namely their GSH/GSSG content, Cu/Zn- and Mn-dependent superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (Gpx) activities. Our results indicate that DT-diaphorase activity and glutathione levels were similar in both animal species. By contrast, guinea pig mitochondria produced greater amounts of O(2)(*-) and H(2)O(2) than those of rat heart. This is probably due to both the higher Mn-SOD activity (2.93 +/- 0.02 vs. 1.95 +/- 0.06 units/mg protein; P < 0.05) and to the lower Gpx activity (10.09 +/- 0.30 vs. 32.67 +/- 1.02 units/mg protein; P < 0.001) of guinea pig mitochondria. A lower CAT activity was also observed in guinea pig mitochondria (2.40 +/- 0.80 vs. 6.13 +/- 0.20 units/mg protein; P < 0.01). Taken together, these data provide a rational explanation for the greater susceptibility of guinea pig heart to the toxic effect of menadione: because of the greater amount of O(2)(*-) generated by the quinone and the higher mitochondrial Mn-SOD activity, guinea pig heart is exposed to more elevated concentrations of H(2)O(2) that is less efficiently detoxified, because of lower Gpx and CAT levels of mitochondria.  相似文献   

2.
The present investigation focused, firstly, on the effects of oral administration of thymoquinone (TQ) on antioxidant enzyme activities, lipid peroxidation and DT-diaphorase activity in hepatic, cardiac and kidney tissues of normal mice. Superoxide dismutase (SOD; E.C:1.15.1.1), catalase (CAT; E.C:1.11.1.6), glutathione peroxidase (GSH-Px; E.C:1.11.1.9), glutathione-S-transferase (GST; E.C:2.5.1.18), and DT-diaphorase (E.C:1.6.99.2) enzyme activities in each tissue type were determined. Treatment of mice with the different doses of TQ (25, 50 and 100 mg kg(-1) day(-1) orally) for 5 successive days, produced significant reductions in hepatic SOD, CAT and GSH-Px activities. In addition cardiac SOD activity was markedly inhibited with the higher doses of TQ, (namely 50 and 100 mg kg(-1)). Moreover, TQ (100 mg kg(-1)) significantly reduced hepatic and cardiac lipid peroxidation as compared with the respective control group. Conversely, TQ (50,100 mg kg(-1)) and TQ (100 mg kg(-1)) enhanced cardiac and renal DT-diaphorase activity respectively. However, the selected doses of TQ neither produced any change in GST activity nor influenced reduced glutathione content in all tissues studied. TQ was tested, secondly, as a substrate for hepatic, cardiac and renal DT-diaphorase of normal mice in the presence of NADPH. Kinetic parameters for the reduction of TQ to dihydrothymoquinone (DHTQ) indicated that DT-diaphorase of different tissues can efficiently reduce TQ to DHTQ. K(m) and V(max) values revealed that hepatic DT-diaphorase exhibited the higher values, while the lower values were associated with renal DT-diaphorase. TQ and DHTQ were tested, thirdly, as specific scavengers for superoxide anion (generated biochemically) or as general scavengers for free radicals (generated photochemically). The results revealed that TQ and DHTQ acted not only as superoxide anion scavengers but also as general free radical scavengers. The IC(50) for TQ and DHTQ in biochemical and photochemical assays were in the nanomolar and micromolar range respectively. Our data may explain at least partly the reported beneficial in vivo protective effects of TQ through the combined antioxidant properties of TQ and its metabolite DHTQ.  相似文献   

3.
Heart failure (HF) is characterized by contractile dysfunction associated with altered energy metabolism. This study was aimed at determining whether resveratrol, a polyphenol known to activate energy metabolism, could be beneficial as a metabolic therapy of HF. Survival, ventricular and vascular function as well as cardiac and skeletal muscle energy metabolism were assessed in a hypertensive model of HF, the Dahl salt-sensitive rat fed with a high-salt diet (HS-NT). Resveratrol (18 mg/kg/day; HS-RSV) was given for 8 weeks after hypertension and cardiac hypertrophy were established (which occurred 3 weeks after salt addition). Resveratrol treatment improved survival (64% in HS-RSV versus 15% in HS-NT, p<0.001), and prevented the 25% reduction in body weight in HS-NT (P<0.001). Moreover, RSV counteracted the development of cardiac dysfunction (fractional shortening -34% in HS-NT) as evaluated by echocardiography, which occurred without regression of hypertension or hypertrophy. Moreover, aortic endothelial dysfunction present in HS-NT was prevented in resveratrol-treated rats. Resveratrol treatment tended to preserve mitochondrial mass and biogenesis and completely protected mitochondrial fatty acid oxidation and PPARα (peroxisome proliferator-activated receptor α) expression. We conclude that resveratrol treatment exerts beneficial protective effects on survival, endothelium-dependent smooth muscle relaxation and cardiac contractile and mitochondrial function, suggesting that resveratrol or metabolic activators could be a relevant therapy in hypertension-induced HF.  相似文献   

4.
Excretions of the lipid peroxidation products, formaldehyde (FA), acetaldehyde (ACT), malondialdehyde (MDA), and acetone (ACON), were simultaneously identified and quantitated in the urine of female Sprague-Dawley rats by gas chromatography-mass spectroscopy (GC-MS) and high pressure liquid chromatography (HPLC) following the acute administration of carbon tetra-chloride, a model alkylating agent that does not induce glutathione depletion, and the redox cycling compounds paraquat and menadione. All three xenobiotics are well-known inducers of oxidative stress. Oxidative stress was induced by oral administration of single doses of 2.5 mL of carbon tetrachloride/kg, 60 mg menadione/kg, and 75 mg paraquat/kg. These doses are approximately 50% of the LD50's for the three xenobiotics. Urinary excretion of FA, ACT, MDA, and ACON increased relative to control animals following treatment with all xenobiotics. Over the 48 hours of the study, the greatest increases in the excretion of MDA, FA, ACT, and ACON occurred after paraquat administration, with increases of approximately 2.7-, 2.6-, 4.3-, and 11.0-fold, respectively. This technique may have wide-spread applicability as an effective biomarker for investigating altered lipid metabolism in disease states and exposure to environmental pollutants/xenobiotics.  相似文献   

5.
Reactive oxygen species (ROS) generated by ischemic and pharmacological preconditioning are known to act as triggers of cardiac protection; however, the involvement of ROS in ischemic and pharmacological postconditioning (PostC) in vivo and in vitro is unknown. We tested the hypothesis that ROS are involved in PostC in the mouse heart in vivo and in the isolated adult cardiac myocyte (ACM). Mice were subjected to 30 min coronary artery occlusion followed by 2 h of reperfusion with or without ischemic or pharmacologic PostC (three cycles of 20 s reperfusion/ischemia; 1.4% isoflurane; 10 mg/kg SNC-121). Additional groups were treated with 2-mercaptopropionyl glycine (MPG), a ROS scavenger, 10 min before or after the PostC stimuli. Ischemia-, isoflurane-, and SNC-121- induced PostC reduced infarct size (24.1+/-3.2, 15.7+/-2.6, 24.9+/-2.6%, p<0.05, respectively) compared to the control group (43.4+/-3.3%). These cardiac protective effects were abolished by MPG when administered before (40.0+/-3.6, 39.3+/-3.1, 38.5+/-1.6%, respectively), but not after the PostC stimuli (26.6+/-2.3, 17.0+/-2.2, 23.9+/-1.7%, respectively). Additionally, ACM were subjected to a simulated ischemia/reperfusion protocol with isoflurane and SNC PostC. Isoflurane- and SNC-induced PostC in vitro were abolished by prior treatment with MPG. These data indicate that ROS signaling is an essential trigger of ischemic and pharmacological PostC and this is occurring at the level of the cardiac myocyte.  相似文献   

6.
Cardiotoxicity ranks among the most serious adverse effects of some cytostatics. The cardiac effects of repeated i.v. administration of a new antineoplastic agent, dimethoxybenfluron (once a week, 10 administrations), were investigated in rabbits with respect to cardiac function and the release of cardiac troponin T (cTnT). Different doses of dimethoxybenfluron were administered to two groups of animals (12 mg/kg; n = 7 and 24 mg/kg; n = 6) and compared with either a control group (saline 1 ml/kg; n = 6) or a group with experimentally induced cardiomyopathy (daunorubicin 50 mg/m2; n = 13). In daunorubicin-induced cardiomyopathy, cTnT levels in animals with premature deaths were significantly higher (0.31 +/-0.11 microg/l) in comparison with the surviving animals (0.04 +/- 0.03 microg/l). However, cardiac TnT levels after the administration of dimethoxybenfluron in both doses were within the physiological range (lower than 0.1 microg/l) during the whole experiment as it was in the control group. The lack of cardiotoxicity of this new antineoplastic drug was supported by the absence of alterations in PEP:LVET ratio, left ventricle dP/dtmax or histological heart examination as well as by the fact that no premature death of animals occurred following repeated administration of dimethoxybenfluron. It is possible to conclude that no signs of cardiotoxicity were observed following repeated i.v. administration of dimethoxybenfluron.  相似文献   

7.
Recent work indicates that free radicals mediate sepsis-induced diaphragmatic dysfunction. These previous experiments have not, however, established the source of the responsible free radical species. In theory, this phenomenon could be explained if one postulates that sepsis elicits an upregulation of contraction-related free radical formation in muscle. The purpose of the present study was to test this hypothesis by examination of the effect of sepsis on contraction-related free radical generation [i.e. , formation of reactive oxygen species (ROS)] by the diaphragm. Rats were killed 18 h after injection with either saline or endotoxin. In vitro hemidiaphragms were then prepared, and ROS generation during electrically induced contractions (20-Hz trains delivered for 10 min) was assessed by measurement of the conversion of hydroethidine to ethidium. ROS generation was negligible in noncontracting diaphragms from both saline- and endotoxin-treated groups (2.0 +/- 0. 6 and 2.8 +/- 1.0 ng ethidium/mg tissue, respectively), but it was marked in contracting diaphragms from saline-treated animals (19.0 +/- 2.8 ng/mg tissue) and even more pronounced (30.0 +/- 2.8 ng/mg tissue) in diaphragms from septic animals (P < 0.01). This enhanced free radical generation occurred despite the fact that the force-time integral (i.e., the area under the curve of force vs. time) for control diaphragms was higher than that for the septic group. In additional studies, in which we altered the stimulation paradigm in control muscles to achieve a force-time integral similar to that achieved in septic muscles, an even greater difference between control and septic muscle ROS formation was observed. These data indicate that ROS formation during contraction is markedly enhanced in diaphragms from endotoxin-treated septic animals. We speculate that ROS generated in this fashion plays a central role in producing sepsis-related skeletal muscle dysfunction.  相似文献   

8.
Stored cardiac pro-atrial natriuretic peptide (pro-ANP) is converted to ANP and released upon stretch from the atria into the circulation. Corin is a serin protease with pro-ANP-converting properties and may be the rate-limiting enzyme in ANP release. This study was aimed to clone and sequence corin in the rat and to analyze corin mRNA expression in heart failure when ANP release upon stretch is blunted. Full-length cDNA of rat corin was obtained from atrial RNA by RT-PCR and sequenced. Tissue distribution as well as regulation of corin mRNA expression in the atria were determined by RT-PCR and RNase protection assay. Heart failure was induced by an infrarenal aortocaval shunt. Stretch was applied to the left atrium in a working heart modus, and ANP was measured in the perfusates. The sequence of rat corin cDNA was found to be 93.6% homologous to mouse corin cDNA. Corin mRNA was expressed almost exclusively in the heart with highest concentrations in both atria. The aortocaval shunt led to cardiac hypertrophy and heart failure. Stretch-induced ANP release was blunted in shunt animals (control 1,195 +/- 197 fmol.min(-1).g(-1); shunt: 639 +/- 99 fmol.min(-1).g(-1), P < 0.05). Corin mRNA expression was decreased in both atria in shunt animals [right atrium: control 0.638 +/- 0.004 arbitrary units (AU), shunt 0.566 +/- 0.014 AU, P < 0.001; left atrium: control 0.564 +/- 0.009 AU, shunt 0.464 +/- 0.009 AU, P < 0.001]. Downregulation of atrial corin mRNA expression may be a novel mechanism for the blunted ANP release in heart failure.  相似文献   

9.
Aberrant energy metabolism is one characteristic of diabetes mellitus (DM). Two types of DM have been identified, type 1 and type 2. Most of type 2 DM patients eventually become insulin dependent because insulin secretion by the islets of Langerhans becomes exhausted. In the present study, we show that resveratrol (3,5,4'-trihydroxylstilbene) possesses hypoglycemic and hypolipidemic effects in streptozotocin-induced DM (STZ-DM) rats. In resveratrol-treated STZ-DM rats, the plasma glucose concentration on day 14 was reduced by 25.3 +/- 4.2%, and the triglyceride concentration was reduced by 50.2 +/- 3.2% compared with the vehicle-treated rats. In STZ-nicotinamide DM rats, the plasma glucose concentration on day 14 was reduced by 20.3 +/- 4.2%, and the triglyceride concentration was reduced by 33.3 +/- 2.2% compared with the vehicle-treated rats. Resveratrol administration ameliorates common DM symptoms, such as body weight loss, polyphagia, and polydipsia. In STZ-nicotinamide DM rats, resveratrol administration significantly decreased insulin secretion and delayed the onset of insulin resistance. Further studies showed that glucose uptake by hepatocytes, adipocytes, and skeletal muscle and hepatic glycogen synthesis were all stimulated by resveratrol treatment. Because the stimulation of glucose uptake was not attenuated in the presence of an optimal amount of insulin in insulin-responsive cells, the antihyperglycemic effect of resveratrol appeared to act through a mechanism(s) different from that of insulin.  相似文献   

10.
The purpose of this study was to investigate the effect of interleukin 1 (IL 1) on glucocorticoid-regulated hepatic metabolism. Steroid binding in liver cytosol, plasma glucose, plasma corticosterone, and phosphoenolpyruvate carboxykinase (PEPCK) activity were assayed in C3H/HeJ mice after IL 1 administration. Mice received 5 pyrogenic U (PU) of rabbit IL 1 i.p. and were sacrificed 4 hr later. In adrenal-intact mice, steroid binding and plasma glucose were significantly decreased (63 and 64% of control) and plasma corticosterone was significantly elevated threefold. In adrenalectomized mice, IL 1 (5 PU) treatment produced similar results in steroid binding (66% of control) and plasma glucose (71% of control). PEPCK was measured in intact mice fasted overnight and treated with 5 PU of IL 1. PEPCK was induced in fasted control animals (23.1 +/- 1.4 U/mg) vs fed control animals (15.9 +/- 0.7 U/mg). IL 1 treatment inhibited the induction of PEPCK in fasted animals (13.4 +/- 2.0 U/mg) and caused a significant decrease in steroid binding (78% of fasted control) and plasma glucose (82% of fasted control). No difference in plasma corticosterone was seen in IL 1-treated mice and fasted control mice. These data indicate that IL 1 decreases intracellular steroid receptors, resulting in decreased induction of PEPCK and subsequent reduced gluconeogenesis and plasma glucose. We propose that IL 1 plays a regulatory role in glucocorticoid-regulated hepatic metabolism.  相似文献   

11.
白藜芦醇抑制嗜水气单胞菌毒力作用研究   总被引:1,自引:0,他引:1  
为探索白藜芦醇(Resveratrol, Res)在水产动物细菌病防控中的应用价值, 实验以淡水养殖中重要的细菌病原嗜水气单胞菌(Aeromonas hydrophila)为研究对象, 通过设置药物浓度梯度, 检测其对嗜水气单胞菌生长、生物膜形成和溶血活性的抑制作用, 和对毒力及群感调控系统相关基因表达的影响; 同时通过人工感染异育银鲫(Carassius auratus gibelio)试验检测其对鱼体保护作用和对鱼体炎症相关因子基因表达的影响。结果显示: 白藜芦醇对嗜水气单胞菌的最小抑菌浓度(MIC)>1024 μg/mL; 浓度低于64 μg/mL时, 对菌株生长影响不显著; 浓度≥32 μg/mL时, 对病原菌株生物膜形成和溶血活性具有显著抑制作用(P<0.05), 且随剂量增加而增强。荧光定量RT-PCR结果分析发现白藜芦醇能引起嗜水气单胞菌群感调控系统中luxR和luxS基因分别显著上调和下调表达; 外膜蛋白基因omp表达显著下降。人工感染试验发现攻毒前两小时腹腔注射25、50和100 mg/kg白藜芦醇处理组的异育银鲫死亡率显著下降, 鱼体炎症相关的肿瘤坏死因子(TNF-α)和Ⅱ型干扰素(IFN-γ)的mRNA表达量也显著下降。研究表明药用植物大黄、虎杖等所含白藜芦醇成分能有效抑制嗜水气单胞菌毒力, 降低鱼体炎症反应的功效; 腹腔注射25—100 mg/kg白藜芦醇对感染病原菌的异育银鲫有一定保护作用。  相似文献   

12.
Peroxisome proliferator-activated receptor-alpha (PPARalpha) regulates the expression of fatty acid (FA) oxidation genes in liver and heart. Although PPARalpha ligands increased FA oxidation in cultured cardiomyocytes, the cardiac effects of chronic PPARalpha ligand administration in vivo have not been studied. Diabetic db/db mouse hearts exhibit characteristics of a diabetic cardiomyopathy, with altered metabolism and reduced contractile function. A testable hypothesis is that chronic administration of a PPARalpha agonist to db/db mice will normalize cardiac metabolism and improve contractile function. Therefore, a PPARalpha ligand (BM 17.0744) was administered orally to control and type 2 diabetic (db/db) mice (37.9 +/- 2.5 mg/(kg.d) for 8 weeks), and effects on cardiac metabolism and contractile function were assessed. BM 17.0744 reduced plasma glucose in db/db mice, but no change was observed in control mice. FA oxidation was significantly reduced in BM 17.0744 treated db/db hearts with a corresponding increase in glycolysis and glucose oxidation; glucose and FA oxidation in control hearts was unchanged by BM 17.0744. PPARalpha treatment did not alter expression of PPARalpha target genes in either control or diabetic hearts. Therefore, metabolic alterations in hearts from PPARalpha-treated diabetic mice most likely reflect indirect mechanisms related to improvement in diabetic status in vivo. Despite normalization of cardiac metabolism, PPARalpha treatment did not improve cardiac function in diabetic hearts.  相似文献   

13.
Rat liver microsomes incubated in the presence of NADPH catalyze the oxidation of menadione (2-methyl-1,4-naphthoquinone) by two pathways: NADPH-cytochrome P-450 reductase and DT-diaphorase. The former pathway gives rise to labile semiquinones which are readily autooxidized as revealed by a nonstoichiometric NADPH oxidation and a concomitant O2 consumption. The reduction of menadione catalyzed by DT-diaphorase on the other hand results in a relatively stable hydroquinone accompanied by a stoichiometric oxidation of NADPH and no O2 consumption. The total amount of NADPH oxidized by a given amount of menadione reflects the relative contributions of the two pathways which can be demonstrated by the addition of selective inhibitors of the two enzymes or by treatment of the rats with phenobarbital or 3-methylcholanthrene which preferentially induces NADPH-cytochrome P-450 reductase and DT-diaphorase, respectively. Addition of cytosol, which contains the bulk of cellular DT-diaphorase, minimizes the formation of semiquinones and the concomitant O2 consumption. Data relating to other quinones are also presented. The results support the earlier proposal that DT-diaphorase serves as a cellular control device against quinone toxicity.  相似文献   

14.
The conversion of testosterone to estradiol by aromatase and to dihydrotestosterone by 5 alpha-reductase was measured in the medial basal hypothalamus of starved and control male rats. Activities of both enzymes were significantly reduced in starved animals. Aromatase activity was 18.2 +/- 2.3 versus 29.8 +/- 5.7 fmol E2/mg protein/90 min (mean +/- SEM, P less than 0.02) and 5 alpha-reductase was 4.95 +/- 0.35 versus 5.96 +/- 0.30 pmol DHT/mg protein/90 min (P less than 0.02) for starved and control animals respectively. The results indicate that hypothalamic metabolism of testosterone is decreased during starvation. Therefore the increased sensitivity of the T-LH feedback described earlier in starved rats [4] cannot be explained by changes in central testosterone metabolism.  相似文献   

15.
Although Ca2+ overloading has been observed in hepatocytes and in the isolated liver treated with 0.2 mM menadione, it has not been determined if menadione has similar effects on cardiac tissue and, if so, whether Ca2+ overloading leads to cardiac contracture, and if such an event results from plasma membrane peroxidation initiated by oxidative stress. The present study reveals that when the isolated heart is perfused with 0.2 mM menadione for 30 min, it shows Ca2+ overloading, which can not be reversed even after 30 min of drug-free perfusion. The time courses of glutathione, ethane, and LDH release from the hearts do not show a parallel pattern of abnormality between 30 and 60 min, indicating that contractile failure precedes the development of lipid peroxidation or plasma membrane disintegration. The evidence that the plasma membrane of menadione-treated rat cardiac tissue remains intact is supported by the observation that the resting membrane potential of the atrium remains virtually unchanged during the 30 min of drug exposure and then gradually falls (-67 +/- 3.1 vs. -76 +/- 2 mv) only during the last 10 min of the drug washout. Interestingly, even after the atria are treated with menadione for 30 min and followed by washout of 30 min, and have shown calcium overloading, as evidenced by contracture, they are still capable of generating action potentials in response to electrical field stimulation.  相似文献   

16.
The interaction of quinones (menadione and duroquinone) with DT-diaphorase and mitochondrial electron transport chain translocators at low (120 mosM) and high (400 mosM) values of the medium tonicity in the quinone concentration range of 6-90 microM was studied. It was shown that with a rise in menadione (K3) concentration the number of electron transport carriers interacting with it increase. At K3 concentration of 6 microM the latter is reduced by DT-diaphorase and fully oxidized via the Q-cycle. At K3 concentration of 15 microM the latter is also reduced by DT-diaphorase via the Q-cycle, but in this case the oxidation is incomplete (about 30% K3H2 is oxidized by the terminal part of the respiratory chain). At 90 microM K3 50% of quinone is reduced by DT-diaphorase and 50% by the respiratory chain NADH dehydrogenase complex enzymes; about 30% of K3H2 is oxidized via the Q-cycle, about 20%--by the terminal part of the respiratory chain and about 50%--by O2 without cytochrome oxidase. Unlike menadione, duroquinone (6-90 microM) is reduced only by DT-diaphorase and is oxidized in all cases by cytochrome oxidase. It was shown that the increase in the mitochondrial matrix volume in low tonicity media decreases the rate of the DT-diaphorase shunt operation.  相似文献   

17.
Moderate daily exercise is known to be beneficial to health, reducing risks of a number of age-related disorders. Molecular mechanisms that bring about these effects are not clear. In contrast, it has been claimed that some types of prolonged physical exertion are detrimental to health because active oxygen species are generated excessively by enhanced oxygen consumption. Using two age groups of rats, young (4 week) and middle aged (14 months), we investigated the effects of long-term swimming training on the oxidative status of phospholipids, proteins, and DNA. The concentration of thiobarbituric acid reactive substances and 4-hydroxynonenal protein adducts did not differ in the gastrocnemius muscle between exercised and nonexercised animals in the two age groups. The extent of carbonylation in a protein of molecular weight around 29 KDa and the amount of 8-hydroxydeoxyguanosine in nuclear DNA were smaller (p<.05) in the exercised rats than in the sedentary animals. Activities of DT-diaphorase (C1: 29.3+/-1.9; C2: 36.1+/-2.6; E1: 27.2+/-1.3; C2: 33.4+/-2.9 nmol/mg protein) and proteasome, a major proteolytic enzyme for oxidatively modified proteins were significantly higher in the exercised animals of both age groups (p<.05). The adaptive response against oxidative stress induced by moderate endurance exercise constitutes a beneficial effect of exercise.  相似文献   

18.
Cardiac tissues express constitutively an NADPH oxidase, which generates reactive oxygen species (ROS) and is involved in redox signaling. Myocardial metabolism generates abundant adenosine, which binds to its receptors and plays important roles in cardiac function. The adenosine A2A receptor (A2AR) has been found to be expressed in cardiac myocytes and coronary endothelial cells. However, the role of the A2AR in the regulation of cardiac ROS production remains unknown. We found that knockout of A2AR significantly decreased (39+/-8%) NADPH-dependent O2- production in mouse hearts compared to age (10 weeks)-matched wild-type controls. This was accompanied by a significant decrease in Nox2 (a catalytic subunit of NADPH oxidase) protein expression, and down-regulation of ERK1/2, p38MAPK, and JNK phosphorylation (all P<0.05). In wild-type mice, intraperitoneal injection of the selective A2AR antagonist SCH58261 (3-10 mg/kg body weight for 90 min) inhibited phosphorylation of p47phox (a regulatory subunit of Nox2), which was accompanied by a down-regulated cardiac ROS production (48+/-8%), and decreased JNK and ERK1/2 activation by 54+/-28% (all P<0.05). In conclusion, A2AR through MAPK signaling regulates p47phox phosphorylation and cardiac ROS production by NADPH oxidase. Modulation of A2AR activity may have potential therapeutic applications in controlling ROS production by NADPH oxidase in the heart.  相似文献   

19.
Both regular physical exercise and low levels of H(2)O(2) administration result in increased resistance to oxidative stress. We measured the accumulation of reactive carbonyl derivatives and the activities of proteasome complex and DT-diaphorase in cardiac muscle of trained and untrained rats after chronic i.p. administration of 1 ml t-butyl H(2)O(2) (1 mmol/kg for 3 weeks every second day). Twenty-four rats were randomly assigned to a control group administered with saline, control administered with H(2)O(2), and exercised administered either saline or H(2)O(2). The activity of DT-diaphorase significantly increased in H(2)O(2) administered and exercised groups, indicating that an increase in H(2)O(2) levels stimulate the activity of this enzyme. The cardiac muscle of H(2)O(2) administered nonexercised animals accumulated significantly more carbonyl than control group (P < 0.05). The exercise and H(2)O(2) administration resulted in less oxidatively modified protein than found in nonexercised groups (P < 0.05). The peptide-like activity of proteasome complex was induced by the treatment of H(2)O(2) and exercise and exercise potentiate the effect of H(2)O(2). On the other hand, the chymotrypsin-like and trypsin-like activities were stimulated only by physical training and H(2)O(2) administration. The data suggest that chronic administration of H(2)O(2) after exercise training decreases the accumulation of carbonyl groups below the steady-state level and induces the activity of proteasome and DT-diaphorase. Hence, the stimulating effect of physical exercise on free radical generation is an important phenomenon of the exercise-induced adaptation process since it increases resistance to oxidative stress. Regular exercise training is a valuable physiological means of preconditioning the myocardium to prolonged oxidative stress.  相似文献   

20.
Previous studies from this laboratory have shown that rats with experimental cirrhosis of the liver induced by the combined administration of oral phenobarbital and inhaled carbon tetrachloride show an hyperdynamic status with enhanced cardiac output (CO), and decreased mean arterial pressure (MAP) and peripheral vascular resistance (PVR). Cirrhotic rats also showed an increased vascular permeability. All these phenomena are similar to some of the known effects of the systemic infusion of low doses of synthetic platelet-activating factor into the systemic circulation of normal rats. The measurement of the levels of platelet-activating factor in samples of blood demonstrated significantly higher levels in cirrhotic (2.65 +/- 0.39; n = 10) than in control rats (1.50 +/- 0.57 ng/ml; n = 10; p less than 0.05). The hemodynamic changes induced by the intravenous injection of the platelet-activating factor receptor antagonist BN 52021 (5 mg/kg body weight) have been measured in 10 control and 10 cirrhotic male Wistar rats, using a radioactive microsphere technique. BN 52021 induced no significant hemodynamic changes in control animals. However, in cirrhotic animals it induced a significant decrease in CO with increase in PVR. MAP increased slightly but not significantly. From these data it can be deduced that platelet-activating factor plays a role in the hemodynamic derangement shown by cirrhotic rats and that these derangement can be reversed by BN 52021, a highly selective antagonist of the platelet-activating factor receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号