首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Antibody-dependent cell-mediated cytotoxicity (ADCC) specific for human immunodeficiency virus (HIV) has been described for HIV-infected individuals. To determine the antigenic specificity of this immune response and to define its relationship to the disease state, an ADCC assay was developed using Epstein-Barr virus-transformed lymphoblastoid cell line targets infected with vaccinia virus vectors expressing HIV proteins. The vaccinia virus vectors induced appropriate HIV proteins (envelope glycoproteins gp160, gp120, and gp41 or gag proteins p55, p40, p24, and p17) in infected lymphoblastoid cell lines as demonstrated by radioimmunoprecipitation and syncytia formation with c8166 cells. Killer cell-mediated, HIV-specific ADCC was found in sera from HIV-seropositive but not HIV-seronegative hemophiliacs. This HIV-specific response was directed against envelope glycoprotein but was completely absent against target cells expressing the HIV gag proteins. The ADCC directed against gp160 was present at serum dilutions up to 1/316,000. There was no correlation between serum ADCC titer and the stage of HIV-related illness as determined by T-helper-cell numbers. These experiments clearly implicated gp160 as the target antigen of HIV-specific ADCC activity following natural infection. Vaccines which stimulate antibodies directed against gp160, which are capable of mediating ADCC against infected cells, could be important for protection against infection by cell-associated virus.  相似文献   

2.
Infectious HIV-1 assembles in late endosomes in primary macrophages   总被引:27,自引:0,他引:27  
Although human immunodeficiency virus type 1 (HIV-1) is generally thought to assemble at the plasma membrane of infected cells, virions have been observed in intracellular compartments in macrophages. Here, we investigated virus assembly in HIV-1-infected primary human monocyte-derived macrophages (MDM). Electron microscopy of cryosections showed virus particles, identified by their morphology and positive labeling with antibodies to the viral p17, p24, and envelope proteins, in intracellular vacuoles. Immunolabeling demonstrated that these compartments contained the late endosomal marker CD63, which was enriched on vesicles within these structures and incorporated into the envelope of budding virions. The virus-containing vacuoles were also labeled with antibodies against LAMP-1, CD81, and CD82, which were also incorporated into the viral envelope. To assess the cellular source of infectious viruses derived from MDM, virus-containing media from infected cells were precipitated with specific antibodies. Only antibodies against antigens found in late endosomes precipitated infectious virus, whereas antibodies against proteins located primarily on the cell surface did not. Our data indicate that most of the infectious HIV produced by primary macrophages is assembled on late endocytic membranes and acquires antigens characteristic of this compartment. This notion has significant implications for understanding the biology of HIV and its cell-cell transmission.  相似文献   

3.
Wright A  Lamm ME  Huang YT 《Journal of virology》2008,82(23):11526-11535
Human immunodeficiency virus (HIV) is transmitted primarily sexually across mucosal surfaces. After infection, HIV propagates initially in the lamina propria below the polarized epithelium and causes extensive destruction of mucosal T cells. Immunoglobulin A (IgA) antibodies, produced in the lamina propria and then transcytosed across the mucosal epithelium into the lumen, can be the first line of immune defense against HIV. Here, we used IgA monoclonal antibodies against HIV envelope proteins to investigate the abilities of polarized primate and human epithelial cells to excrete HIV virions from the basolateral to the apical surface via polymeric Ig receptor (pIgR)-mediated binding and the internalization of HIV-IgA immune complexes. African green monkey kidney cells expressing pIgR demonstrated HIV excretion that was dependent on the IgA concentration and the exposure time. Matched IgG antibodies with the same variable regions as the IgA antibodies and IgA antibodies to non-HIV antigens had no HIV excretory function. A mixture of two IgA anti-bodies against gp120 and gp41 showed a synergistic increase in the level of HIV excreted. The capacity for HIV excretion correlated with the ability of IgA antibodies to bind HIV and of the resulting immune complexes to bind pIgR. Consistent with the epithelial transcytosis of HIV-IgA immune complexes, the colocalization of HIV proteins and HIV-specific IgA was detected intracellularly by confocal microscopy. Our results suggest the potential of IgA antibodies to excrete HIV from mucosal lamina propria, thereby decreasing the viral burden, access to susceptible cells, and the chronic activation of the immune system.  相似文献   

4.
There are limited data describing the functional characteristics of HIV-1 specific antibodies in breast milk (BM) and their role in breastfeeding transmission. The ability of BM antibodies to bind HIV-1 envelope, neutralize heterologous and autologous viruses and direct antibody-dependent cell cytotoxicity (ADCC) were analyzed in BM and plasma obtained soon after delivery from 10 non-transmitting and 9 transmitting women with high systemic viral loads and plasma neutralizing antibodies (NAbs). Because subtype A is the dominant subtype in this cohort, a subtype A envelope variant that was sensitive to plasma NAbs was used to assess the different antibody activities. We found that NAbs against the subtype A heterologous virus and/or the woman''s autologous viruses were rare in IgG and IgA purified from breast milk supernatant (BMS) – only 4 of 19 women had any detectable NAb activity against either virus. Detected NAbs were of low potency (median IC50 value of 10 versus 647 for the corresponding plasma) and were not associated with infant infection (p = 0.58). The low NAb activity in BMS versus plasma was reflected in binding antibody levels: HIV-1 envelope specific IgG titers were 2.2 log10 lower (compared to 0.59 log10 lower for IgA) in BMS versus plasma. In contrast, antibodies capable of ADCC were common and could be detected in the BMS from all 19 women. BMS envelope-specific IgG titers were associated with both detection of IgG NAbs (p = 0.0001)and BMS ADCC activity (p = 0.014). Importantly, BMS ADCC capacity was inversely associated with infant infection risk (p = 0.039). Our findings indicate that BMS has low levels of envelope specific IgG and IgA with limited neutralizing activity. However, this small study of women with high plasma viral loads suggests that breastmilk ADCC activity is a correlate of transmission that may impact infant infection risk.  相似文献   

5.
The Flavivirus genus of the Flaviviridae family includes 70 enveloped single-stranded-RNA positive-sense viruses transmitted by arthropods. Among these viruses, there are a relevant number of human pathogens including the mosquito-borne dengue virus (DENV), yellow fever virus (YFV), Japanese encephalitis virus (JEV) and West Nile virus (WNV), as well as tick-borne viruses such as tick-borne encephalitis virus (TBEV), Langat virus (LGTV) and Omsk hemorrhagic fever (OHFV). The flavivirus envelope (E) protein is a dominant antigen inducing immunologic responses in infected hosts and eliciting virus-neutralizing antibodies. The domain III (DIII) of E protein contains a panel of important epitopes that are recognized by virus-neutralizing monoclonal antibodies. Peptides of the DIII have been used with promising results as antigens for flavivirus serologic diagnosis and as targets for immunization against these viruses. We review here some important aspects of the molecular structure of the DIII as well as its use as antigens for serologic diagnosis and immunization in animal models.  相似文献   

6.
Human immunodeficiency virus type 1 (HIV-1) subtype C infections are on the rise in Sub-Saharan Africa and Asia. Therefore, there is a need to develop an HIV vaccine capable of eliciting broadly reactive immune responses against members of this subtype. We show here that modified HIV envelope (env) DNA vaccines derived from the South African subtype C TV1 strain are able to prime for humoral responses in rabbits and rhesus macaques. Priming rabbits with DNA plasmids encoding V2-deleted TV1 gp140 (gp140TV1DeltaV2), followed by boosting with oligomeric protein (o-gp140TV1DeltaV2) in MF59 adjuvant, elicited higher titers of env-binding and autologous neutralizing antibodies than priming with DNA vaccines encoding the full-length TV1 env (gp160) or the intact TV1 gp140. Immunization with V2-deleted subtype B SF162 env and V2-deleted TV1 env together using a multivalent vaccine approach induced high titers of oligomeric env-binding antibodies and autologous neutralizing antibodies against both the subtypes B and C vaccine strains, HIV-1 SF162 and TV1, respectively. Low-level neutralizing activity against the heterologous South African subtype C TV2 strain, as well as a small subset of viruses in a panel of 13 heterologous primary isolates, was observed in some rabbits immunized with the V2-deleted vaccines. Immunization of rhesus macaques with the V2-deleted TV1 DNA prime/protein boost also elicited high titers of env-binding antibodies and moderate titers of autologous TV1 neutralizing antibodies. The pilot-scale production of the various TV1 DNA vaccine constructs and env proteins described here should provide an initial platform upon which to improve the immunogenicity of these subtype C HIV envelope vaccines.  相似文献   

7.
The presence of antibodies mediating antibody-dependent cellular cytotoxicity (ADCC) against human immunodeficiency virus (HIV)-infected target cells was investigated with 170 sera from patients with varying severity of HIV infection. Approximately 40% of sera from individuals representing all stages of infection were ADCC-positive when tested against HTLV-IIIB infected 0937 clone 2 target cells. The positive sera had higher HIV antibody titers as measured by enzyme-linked immunosorbent assay compared with ADCC-negative sera. ADCC titers were lower in patients with acquired immune deficiency syndrome than in asymptomatic carriers. This decline in ADCC titer was not correlated with a general decrease of HIV antibodies. No correlation between the CD4:CD8 lymphocyte ratio and ADCC activity was found. The possible beneficial effect of ADCC-inducing antibodies early in infection is discussed in relation to the effect of ADCC-inducing antibodies in other retrovirus systems and to the nature of lentivirus infections.  相似文献   

8.
M G Windheuser  C Wood 《Gene》1988,64(1):107-119
We have identified several immunoreactive epitopes on the human immunodeficiency virus (HIV) type 1 transmembrane envelope protein by synthesizing various regions of the protein as fusions to the trpE gene in Escherichia coli. Ten fusion clones which expressed overlapping peptides were found to contain epitopes reactive with antibodies in sera of North American (NAm) and West African (WAf) patients with acquired immune deficiency syndrome (AIDS). An immunodominant epitope which reacted with all HIV-infected patients' sera was mapped to a 51-amino acid sequence in the N terminus of p41. A novel epitope was also identified in the C terminus of p41 which was reactive with 41% and 48% of the sera tested from NAm and WAf, respectively. In addition, several minor epitopes were identified. We observed that sera from WAf reacted more strongly to minor HIV-1 p41 epitopes than did sera from similarly infected individuals in NAm. We also report on the detection of antibodies from patients with HIV-2 infection in WAf which cross react with HIV-1 p41 recombinant envelope antigens.  相似文献   

9.
To examine the usefulness of protein disorder predictions as a tool for the comparative analysis of viral proteins, a relational database has been constructed. The database includes proteins from influenza A and HIV-related viruses. Annotations include viral protein sequence, disorder prediction, structure, and function. Location of each protein within a virion, if known, is also denoted. Our analysis reveals a clear relationship between proximity to the RNA core and the percentage of predicted disordered residues for a set of influenza A virus proteins. Neuraminidases (NA) and hemagglutinin (HA) of major influenza A pandemics tend to pair in such a way that both proteins tend to be either ordered-ordered or disordered-disordered by prediction. This may be the result of these proteins evolving from being lipid-associated. High abundance of intrinsic disorder in envelope and matrix proteins from HIV-related viruses likely represents a mechanism where HIV virions can escape immune response despite the availability of antibodies for the HIV-related proteins. This exercise provides an example showing how the combined use of intrinsic disorder predictions and relational databases provides an improved understanding of the functional and structural behaviour of viral proteins.  相似文献   

10.
The human immunodeficiency virus (HIV)-1 envelope glycoprotein is synthesized as a precursor (gp160) and subsequently cleaved to generate the external gp120 and transmembrane gp41 glycoproteins. Both gp120 and gp41 have been demonstrated to mediate critical functions of HIV, including viral attachment and fusion with the cell membrane. The antigenic variability of the HIV-1 envelope glycoprotein has presented a significant problem in the design of appropriate and successful vaccines and offers one explanation for the ability of HIV to evade immune surveillance. Therefore, the development and characterization of functional antibodies against conserved regions of the envelope glycoprotein is needed. Because of this need, we generated a panel of murine monoclonal antibodies (MuMabs) against the HIV-1 envelope glycoprotein. To accomplish this, we immunized Balb/C mice with a recombinant glycoprotein 160 (gp160) that was synthesized in a baculovirus expression system. From the growth-positive hybridomas, three MuMabs were generated that demonstrated significant reactivity with recombinant gp120 but failed to show reactivity against HIV-1 gp41, as determined by enzyme-linked immunosorbent assay (ELISA). Using vaccinia constructs that synthesize variant truncated subunits of gp160, we were able to map reactivity of all three of the Mabs (ID6, AC4, and AD3) to the first 204 residues of gp120 (i.e., the N terminus of gp120) via Western blot analysis. Elucidation of the epitopes for these Mabs may have important implications for inhibition of infection by HIV-1. Our initial attempts to map these Mabs with linear epitopes have not elucidated a specific antigenic determinant; however, several physical characteristics have been determined that suggest a continuous surface epitope. Although these antibodies failed to neutralize cell-free or cell-associated infection by HIV-1, they did mediate significant antibody-dependent cellular cytotoxicity (ADCC) activity, indicating potential therapeutic utility. In summary, these data suggest the identification of a potentially novel site in the first 200 aa of gp120 that mediates ADCC.  相似文献   

11.

Background

Previous clinical efficacy trials failed to support the continued development of recombinant gp120 (rgp120) as a candidate HIV vaccine. However, the recent RV144 HIV vaccine trial in Thailand showed that a prime/boost immunization strategy involving priming with canarypox vCP1521 followed by boosting with rgp120 could provide significant, although modest, protection from HIV infection. Based on these results, there is renewed interest in the development of rgp120 based antigens for follow up vaccine trials, where this immunization approach can be applied to other cohorts at high risk for HIV infection. Of particular interest are cohorts in Africa, India, and China that are infected with clade C viruses.

Methodology/Principal Findings

A panel of 10 clade C rgp120 envelope proteins was expressed in 293 cells, purified by immunoaffinity chromatography, and used to immunize guinea pigs. The resulting sera were collected and analyzed in checkerboard experiments for rgp120 binding, V3 peptide binding, and CD4 blocking activity. Virus neutralization studies were carried out with two different assays and two different panels of clade C viruses. A high degree of cross reactivity against clade C and clade B viruses and viral proteins was observed. Most, but not all of the immunogens tested elicited antibodies that neutralized tier 1 clade B viruses, and some sera neutralized multiple clade C viruses. Immunization with rgp120 from the CN97001 strain of HIV appeared to elicit higher cross neutralizing antibody titers than the other antigens tested.

Conclusions/Significance

While all of the clade C antigens tested were immunogenic, some were more effective than others in eliciting virus neutralizing antibodies. Neutralization titers did not correlate with rgp120 binding, V3 peptide binding, or CD4 blocking activity. CN97001 rgp120 elicited the highest level of neutralizing antibodies, and should be considered for further HIV vaccine development studies.  相似文献   

12.
Cytotoxic effector cells like cytotoxic T cells, NK cells, monocytes/macrophages, and neutrophils can lyse directly HIV-infected or HIV-coated cells in the absence or presence of anti-HIV antibodies. Therefore, these cytotoxic mechanisms can be invoked either in the control of HIV infection at early stages of the disease or in the generalized immunosuppression observed at later stages of the disease. The relationship between anti-HIV effector mechanisms and disease, however, remains elusive. The present study investigates in HIV+ seropositive asymptomatic patients peripheral blood monocytes (PBM)-mediated antibody dependent cellular cytotoxicity (ADCC) against HIV-coated target cells in the presence of heterologous or autologous anti-HIV serum. To test for specific ADCC against HIV Ag, a T4+ CEM.TR line resistant to TNF and macrophage-mediated cytotoxicity was selected in vitro. ADCC was performed in an 18-h 51Cr-release assay using CEM.TR cells coated with inactivated HIV. Unlike PBM from normal controls, significant ADCC was observed by PBM from HIV+ seropositive patients in the presence of pooled HIV+ antiserum. The ADCC activity was specific for HIV and was dependent on the E:T ratio and the antiserum dilution used. Upon activation of PBM with rIFN-gamma, both normal and HIV+ PBM-mediated ADCC against HIV-coated CEM.TR. Furthermore, ADCC activity by PBM from HIV+ seropositive patients in the presence of their autologous serum was examined. Significant ADCC activity was observed and was dependent on the E:T ratio and serum dilution used. The findings demonstrating anti-HIV ADCC activity by PBM from HIV+ seropositive individuals and their autologous sera support the notion that monocyte-mediated ADCC may be operative in vivo.  相似文献   

13.
For differentiation of Ilvin-Bykovsky virus (IBV) and monkey Meson-Pfeizer virus (M-PMV) the method of virus neutralization with antibodies against the envelope virus antigen was used. The viruses were cultivated in similar human embryo cells. The results of the virus neutralization were determined by presence or absence of the gs-antigen in the infected cells. The antiserum to M-PMV envelope antigens did not neutralize the IBV antigen. It has been concluded that IBV and M-PMV differ by their envelope antigens and should be regarded as different viruses.  相似文献   

14.
The resistance of human immunodeficiency virus type 1 (HIV-1) to antibody-mediated immunity often prevents the detection of antibodies that neutralize primary isolates of HIV-1. However, conventional assays for antibody functions other than neutralization are suboptimal. Current methods for measuring the killing of virus-infected cells by antibody-dependent cell-mediated cytotoxicity (ADCC) are limited by the number of natural killer (NK) cells obtainable from individual donors, donor-to-donor variation, and the use of nonphysiological targets. We therefore developed an ADCC assay based on NK cell lines that express human or macaque CD16 and a CD4+ T-cell line that expresses luciferase from a Tat-inducible promoter upon HIV-1 or simian immunodeficiency virus (SIV) infection. NK cells and virus-infected targets are mixed in the presence of serial plasma dilutions, and ADCC is measured as the dose-dependent loss of luciferase activity. Using this approach, ADCC titers were measured in plasma samples from HIV-infected human donors and SIV-infected macaques. For the same plasma samples paired with the same test viruses, this assay was approximately 2 orders of magnitude more sensitive than optimized assays for neutralizing antibodies—frequently allowing the measurement of ADCC in the absence of detectable neutralization. Although ADCC correlated with other measures of Env-specific antibodies, neutralizing and gp120 binding titers did not consistently predict ADCC activity. Hence, this assay affords a sensitive method for measuring antibodies capable of directing ADCC against HIV- or SIV-infected cells expressing native conformations of the viral envelope glycoprotein and reveals incomplete overlap of the antibodies that direct ADCC and those measured in neutralization and binding assays.  相似文献   

15.
Cell surface-associated viral glycoproteins are thought to play a major role as target antigens in cellular cytotoxicity and antiviral immunosurveillance. One such glycoprotein is the Epstein-Barr virus (EBV)-encoded glycoprotein 350 (gp350), which is expressed on both virion envelope and EBV producer cells and carries the virus attachment protein moiety. Although it is known that some antibodies to gp350 can neutralize the virus, the role of this glycoprotein in EBV-specific cellular cytotoxicity is not yet clear. We describe here a study in which we successfully used a new approach to demonstrate that gp350 is a target antigen for EBV-specific antibody-dependent cellular cytotoxicity (ADCC). Transfection of gp350-negative cells resistant to natural killer (NK) cell activity (i.e., Raji) with a recombinant vector (pZIP-MA) containing the gene encoding the EBV-gp350 and the neomycin resistance gene enabled us to isolate cell clones with a stable and strong expression of gp350 on their surface membranes. ADCC determined by using two clones clearly demonstrated that gp350 is the target of the EBV ADCC. Interestingly, this ADCC was comparable to that obtained against the EBV-superinfected (coated) Raji cell expressing the same percentage of gp350 positivity as the two clones. No cytotoxic activity was detected against either nontransfected (gp350-negative) Raji cells or cells transfected with the vector [pZIP-neo-SV(X)1] lacking the gp350 gene. In addition to demonstrating that gp350 is a target molecule for EBV-specific ADCC, our approach in using NK-resistant transfectants provides a lead for probing the role of cell surface-associated viral antigens in specific cellular killing and immunosurveillance.  相似文献   

16.
The structural flexibility found in human immunodeficiency virus (HIV) envelope glycoproteins creates a complex relationship between antigenicity and sensitivity to antiviral antibodies. The study of this issue in the context of viral particles is particularly problematic as conventional virus capture approaches can perturb antigenicity profiles. Here, we employed a unique analytical system based on fluorescence correlation spectroscopy (FCS), which measures antibody-virion binding with all reactants continuously in solution. Panels of nine anti-envelope monoclonal antibodies (MAbs) and five virus types were used to connect antibody binding profiles with neutralizing activities. Anti-gp120 MAbs against the 2G12 or b12 epitope, which marks functional envelope structures, neutralized viruses expressing CCR5-tropic envelopes and exhibited efficient virion binding in solution. MAbs against CD4-induced (CD4i) epitopes considered hidden on functional envelope structures poorly bound these viruses and were not neutralizing. Anti-gp41 MAb 2F5 was neutralizing despite limited virion binding. Similar antigenicity patterns occurred on CXCR4-tropic viruses, except that anti-CD4i MAbs 17b and 19e were neutralizing despite little or no virion binding. Notably, anti-gp120 MAb PG9 and anti-gp41 MAb F240 bound to both CCR5-tropic and CXCR4-tropic viruses without exerting neutralizing activity. Differences in the virus production system altered the binding efficiencies of some antibodies but did not enhance antigenicity of aberrant gp120 structures. Of all viruses tested, only JRFL pseudoviruses showed a direct relationship between MAb binding efficiency and neutralizing potency. Collectively, these data indicate that the antigenic profiles of free HIV particles generally favor the exposure of functional over aberrant gp120 structures. However, the efficiency of virion-antibody interactions in solution inconsistently predicts neutralizing activity in vitro.  相似文献   

17.
Live recombinant vesicular stomatitis viruses (VSVs) expressing foreign antigens are highly effective vaccine vectors. However, these vectors induce high-titer neutralizing antibody directed at the single VSV glycoprotein (G), and this antibody alone can prevent reinfection and boosting with the same vector. To determine if efficient boosting could be achieved by changing the G protein of the vector, we have developed two new recombinant VSV vectors based on the VSV Indiana serotype but with the G protein gene replaced with G genes from two other VSV serotypes, New Jersey and Chandipura. These G protein exchange vectors grew to titers equivalent to wild-type VSV and induced similar neutralizing titers to themselves but no cross-neutralizing antibodies to the other two serotypes. The effectiveness of these recombinant VSV vectors was illustrated in experiments in which sequential boosting of mice with the three vectors, all encoding the same primary human immunodeficiency virus (HIV) envelope protein, gave a fourfold increase in antibody titer to an oligomeric HIV envelope compared with the response in animals receiving the same vector three times. In addition, only the animals boosted with the exchange vectors produced antibodies neutralizing the autologous HIV primary isolate. These VSV envelope exchange vectors have potential as vaccines in immunizations when boosting of immune responses may be essential.  相似文献   

18.
The largest cyanogen bromide fragment (GP-14,5; coordinates 78-176) of E protein belonging to the envelope of the tick-borne encephalitis (TBE) virus (Far Eastern subtype, strain Sofjin) interacted with five out of twelve E-specific monoclonal antibodies (MAbs). Having compared; efficiencies of some MAbs binding to the antigens of TBE viruses of Far Eastern and West European subtypes and primary structures of analogous peptides of these viruses, we suggested the epitopes of these MAbs to be located in the vicinity of 89 and/or 116-th amino acid residues of E protein. Effect of denaturing agents and reduction followed by carboxymethylation on the protein E antigenic properties was studied.  相似文献   

19.
The anchored and secreted forms of the human immunodeficiency virus type 1 (HIV-1) 89.6 envelope glycoprotein, either complete or after deletion of the V3 loop, were expressed in a cloned attenuated measles virus (MV) vector. The recombinant viruses grew as efficiently as the parental virus and expressed high levels of the HIV protein. Expression was stable during serial passages. The immunogenicity of these recombinant vectors was tested in mice susceptible to MV and in macaques. High titers of antibodies to both MV and HIV-Env were obtained after a single injection in susceptible mice. These antibodies neutralized homologous SHIV89.6p virus, as well as several heterologous HIV-1 primary isolates. A gp160 mutant in which the V3 loop was deleted induced antibodies that neutralized heterologous viruses more efficiently than antibodies induced by the native envelope protein. A high level of CD8+ and CD4+ cells specific for HIV gp120 was also detected in MV-susceptible mice. Furthermore, recombinant MV was able to raise immune responses against HIV in mice and macaques with a preexisting anti-MV immunity. Therefore, recombinant MV vaccines inducing anti-HIV neutralizing antibodies and specific T lymphocytes responses deserve to be tested as a candidate AIDS vaccine.  相似文献   

20.
A major challenge for the development of an effective HIV vaccine is to elicit neutralizing antibodies against a broad array of primary isolates. Monomeric gp120-based vaccine approaches have not been successful in inducing this type of response, prompting a number of approaches designed to recreate the native glycoprotein complex that exists on the viral membrane. Gag-Env pseudovirions are noninfectious viruslike particles that recreate the native envelope glycoprotein structure and have the potential to generate neutralizing antibody responses against primary isolates. In this study, an inducible cell line was created in order to generate Gag-Env pseudovirions for examination of neutralizing antibody responses in guinea pigs. Unadjuvanted pseudovirions generated relatively weak anti-gp120 responses, while the use of a block copolymer water-in-oil emulsion or aluminum hydroxide combined with CpG oligodeoxynucleotides resulted in high levels of antibodies that bind to gp120. Sera from immunized animals neutralized a panel of human immunodeficiency virus (HIV) type 1 primary isolate viruses at titers that were significantly higher than that of the corresponding monomeric gp120 protein. Interpretation of these results was complicated by the occurrence of neutralizing antibodies directed against cellular (non-envelope protein) components of the pseudovirion. However, a major component of the pseudovirion-elicited antibody response was directed specifically against the HIV envelope. These results provide support for the role of pseudovirion-based vaccines in generating neutralizing antibodies against primary isolates of HIV and highlight the potential confounding role of antibodies directed at non-envelope cell surface components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号