首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The effect of regucalcin, a regulatory protein in intracellular signaling pathway, on cell death was investigated by using the cloned rat hepatoma H4-II-E cells overexpressing regucalcin. The hepatoma cells (wild-type) and stable regucalcin (RC)/pCXN2 transfectants were cultured for 72 h in medium containing 10% fetal bovine serum (FBS) to obtain subconfluent monolayers. After culture for 72 h, cells were further cultured for 12-72 h in medium without FBS containing either vehicle or lipopolysaccharide (LPS; 0.1 or 1.0 microg/ml). The number of wild-type cells was significantly decreased by culture for 24 or 48 h in the presence of LPS (0.1 or 1.0 microg/ml). The effect of LPS (0.1 or 1.0 microg/ml) in decreasing the number of hepatoma cells was significantly prevented in transfectants overexpressing regucalcin. However, the culture with LPS (0.1 or 1.0 microg/ml) for 72 h caused a significant decrease in cell number of transfectants. Ca(2+)/calmodulin-dependent nitric oxide (NO) synthase activity was significantly decreased by culture with LPS (1.0 microg/ml) for 24-72 h of wild-type cells. This decrease was significantly prevented in transfectants. LPS (0.1 or 1.0 microg/ml)-induced decrease in the number of wild-type cells was significantly prevented by culture with caspase-3 inhibitor (10(-8) M). Moreover, the number of wild-type cells was significantly decreased by culture with PD 98059 (10(-6) M), dibucaine (10(-6) M), or staurosporine (10(-6) M), which is an inhibitor of various protein kinases. The effect of PD 98059 or dibucaine on the number of wild-type cells was not observed in transfectants, although the effect of staurosporine was seen in transfectants. Culture with Bay K 8644 (2.5 x 10(-6) M), an agonist of Ca(2+) entry in cells, caused a significant decrease in the number of wild-type cells. Such an effect was not seen in transfectants. The presence of LPS did not significantly decrease the number of wild-type cells in the presence of Bay K 8644. Agarose gel electrophoresis showed the presence of low-molecular-weight deoxyribonucleic acid (DNA) fragments of adherent wild-type cells cultured with Bay K 8644, and this DNA fragmentation was significantly prevented in transfectants. This study demonstrates that overexpression of regucalcin has a suppressive effect on cell death induced by LPS or various intracellular signaling-related factors.  相似文献   

2.
The role of regucalcin, which is a regulatory protein in intracellular signaling pathway, in the regulation of cell death was investigated by using the cloned rat hepatoma H4-II-E cells overexpressing regucalcin. The hepatoma cells (wild-type) and stable regucalcin (RC)/pCXN2 transfectants were cultured for 72 h in medium containing 10% fetal bovine serum (FBS) to obtain subconfluent monolayers. The proliferation of the cells was significantly suppressed in transfectants cultured for 72 h, as shown previously (Tsurusaki and Yamaguchi [2003]: J Cell Biochem 90:619-626). After culture for 72 h, cells were further cultured for 24-72 h in medium without FBS containing either vehicle, tumor necrosis factor-alpha (TNF-alpha; 0.1, 1, or 10 ng/ml) or thapsigargin (10(-7)-10(-5) M). The number of wild-type cells was significantly decreased by culture for 42 or 72 h in the presence of TNF-alpha (0.1, 1, or 10 ng/ml) or thapsigargin (10(-7)-10(-5) M). The effect of TNF-alpha (0.1 or 1 ng/ml) or thapsigargin (10(-7) or 10(-6) M) in decreasing the number of hepatoma cells was significantly prevented in transfectants overexpressing regucalcin. The presence of TNF-alpha (10 ng/ml) or thapsigargin (10(-5) M) caused a significant decrease in cell number of transfectants. Ca(2+)/calmodulin-dependent nitric oxide (NO) synthase activity in wild-type cells was significantly increased by culture with TNF-alpha (10 ng/ml) for 48 or 72 h. This increase was significantly prevented in transfectants. Culture with thapsigargin (10(-5) M) caused a significant increase in Ca(2+)/calmodulin-dependent NO synthase activity in wild-type cells or transfectants. TNF-alpha-induced decrease in the number of wild-type cells was significantly prevented by culture with N omega-nitro-L-arginine (10(-4) M), an inhibitor of caspase. Agarose gel electrophoresis showed the presence of low-molecular-weight deoxyribonucleic acid (DNA) fragments of adherent wild-type cells cultured with thapsigargin (10(-6) M), and this DNA fragmentation was not suppressed by culture with caspase inhibitor. Thapsigargin-induced DNA fragmentation was significantly suppressed in transfectants cultured with or without caspase inhibitor. This study demonstrates that overexpression of regucalcin has a suppressive effect on cell death induced by TNF-alpha or thapsigargin.  相似文献   

3.
The regulatory role of regucalcin on cell responses for tumor necrosis factor-alpha (TNF-alpha) or transforming growth factor-beta1 (TGF-beta1) was investigated using the cloned normal rat kidney proximal tubular epithelial NRK52E cells overexpressing regucalcin. NRK52E cells (wild type) and stable regucalcin (RC)/pCXN2-transfected cells (transfectant) were cultured for 72 h in a medium containing 5% bovine serum (BS) to obtain subconfluent monolayers. After culture, cells were further cultured for 24-72 h in medium without BS containing either vehicle, TNF-alpha (0.1 or 1.0 ng/ml of medium), or TGF-beta1 (1.0 or 5.0 ng/ml). Culture with TNF-alpha or TGF-beta1 caused a significant decrease in the number of wild-type cells. This decrease was significantly prevented in transfectants overexpressing regucalcin. Agarose gel electrophoresis showed the presence of low-molecular-weight deoxyribonucleic acid (DNA) fragments of adherent wild-type cells cultured with TNF-alpha (1.0 ng/ml) or TGF-beta1 (5.0 ng/ml). This DNA fragmentation was significantly suppressed in transfectants. TNF-alpha- or TGF-beta1-induced cell death was significantly prevented in culture with caspase-3 inhibitor (10(-8) M). Nitric oxide (NO) synthase activity in wild-type cells was significantly increased by addition of calcium chloride (10 microM) and calmodulin (5 microg/ml) into the enzyme reaction mixture. This increase was significantly suppressed in transfectants. Culture with TNF-alpha caused a significant increase in NO synthase activity in wild-type cells. The effect of TNF-alpha was not seen in transfectants. Culture with TGF-beta1 did not cause a significant increase in NO synthase activity in wild-type cells and transfectants. Culture with TNF-alpha or TGF-beta1 caused a remarkable increase in alpha-smooth muscle actin in wild-type cells. This increase was significantly prevented in transfectants. The expression of Smad 2 or NF-kappaB mRNAs was significantly increased in transfectants as compared with that of wild-type cells. Smad 3 or glyceroaldehyde-3-phosphate dehydrogenase (G3PDH) mRNA expression was not significantly changed in transfectants. NF-kappaB mRNA expression in wild-type cells was significantly increased with culture of TNF-alpha. Smad 2 mRNA expression was significantly enhanced in wild-type cells cultured with TGF-beta1. These effects of TNF-alpha or TGF-beta1 were not significantly enhanced in transfectants. This study demonstrates that overexpression of regucalcin has suppressive effects on cell responses which are mediated through intracellular signaling pathways of TNF-alpha or TGF-beta1 in kidney NRK52E cells.  相似文献   

4.
5.
A novel protein RGPR-p117 was discovered as regucalcin gene promoter region-related protein that binds to the TTGGC motif using a yeast one-hybrid system. RGPR-p117 is localized in the nucleus of kidney cells, and overexpression of RGPR-p117 can modulate regucalcin protein and its mRNA expression in the cloned normal rat kidney proximal tubular epithelial NRK52E cells. This study was undertaken to determine whether overexpression of RGPR-p117 enhances the regucalcin promoter activity using the -710/+18 LUC construct (wild-type) or -710/+18 LUC construct (mutant) with deletion of -523/-435 including TTGGC motif. NRK52E cells (wild-type) or stable HA-RGPR-p117/phCMV2-transfected cells (transfectant) were cultured in Dulbecco's minimum essential medium (DMEM) containing 5% bovine serum (BS). Wild-type cells or transfectants were transfected with the -710/+18 LUC construct vector or the -710/+18 LUC construct with deletion of -523/-435. Wild-type cells or transfectants with subconfluency were cultured for 48 h in a DMEM medium containing either vehicle, BS (5%), or parathyroid hormone (1-34) (PTH; 10(-7) M). Luciferase activity in wild-type cells was significantly increased with culture of BS or PTH. This increase was significantly blocked in the presence of various protein kinase inhibitors (staurosporine and PD 98059). Luciferase activity in transfectants was significantly increased as compared with that of wild-type cells in the absence of BS or PTH. The increase in luciferase activity in transfectants was completely decreased in mutant with deletion of -523/-435 sequence of regucalcin promoter. This was also seen using the -710/+18 LUC construct with deletion of -523/-503 sequence containing TTGGC motif. The increase in luciferase activity in transfectants was not significantly enhanced with culture of BS (5%), PTH (10(-7) M), Bay K 8644 (10(-6) M), phorbol 12-myristate 13-acetate (PMA; 10(-6) M), or N(6), 2'-dibutyryl cyclic adenosine 3', 5'-monophosphate (DcAMP; 10(-4) M). The increase in luciferase activity in transfectants was completely inhibited with culture of dibucaine (10(-6) M), staurosporine (10(-9) M), PD 98059 (10(-8) M), wortmannin (10(-8) M), genistein (10(-6) M), vanadate (10(-6) M), or okadaic acid (10(-6) M) which are inhibitors of various kinases and protein phosphatases. This study demonstrates that RGPR-p117 can enhance the regucalcin promoter activity which is related to the NF-1 consensus sequences including TTGGC motif, and that its enhancing effect is partly mediated through phosphorylation and dephosphorylation in NRK52E cells.  相似文献   

6.
The role of regucalcin, a regulatory protein in intracellular signaling pathway, in cell death was investigated by using the cloned rat hepatoma H4-II-E cells overexpressing regucalcin. The hepatoma cells (wild-type) and stable regucalcin/pCXN2 transfectants were cultured for 72 h in a medium containing 10% fetal bovine serum (FBS) to obtain subconfluent monolayers. After culture for 72 h, cells were further cultured for 24-72 h in a medium containing either vehicle, insulin (10(-8) or 10(-7) M) or insulin-like growth factor-I (IGF-I; 10(-9) or 10(-8) M) in the absence of FBS. The number of wild-type cells was significantly decreased by culture for 24, 48, or 72 h in the presence of insulin (10(-8) or 10(-7) M) or IGF-I (10(-9) or 10(-8) M). Agarose gel electrophoresis showed the presence of low-molecular-weight deoxyribonucleic acid (DNA) fragments of adherent wild-type cells cultured with insulin or IGF-I. The effect of insulin or IGF-I in stimulating cell death and DNA fragmentation in hepatoma cells (wild-type) was significantly prevented in transfectants overexpressing regucalcin. Meanwhile, epinephrine (10(-6) or 10(-5) M) or transforming growth factor-beta1 (10(-13) or 10(-12) M) did not cause cell death of hepatoma cells. Insulin-induced decrease in the number of wild-type cells was significantly prevented by culture with caspase-3 inhibitor (10(-8) M), although the effect of IGF-I was not inhibited. The effect of insulin or IGF-I in inducing the death of hepatoma cells (wild-type) was significantly prevented in the presence of N omega-nitro-L-arginine methylester (NAME), an inhibitor of nitric oxide synthase. Genistein (10(-6) M), an inhibitor of protein tyrosine kinase, or vanadate (10(-5) M), an inhibitor of protein tyrosine phosphatase, caused a significant decrease in the number of hepatoma cells (wild-type). The effect of insulin in inducing the death of wild-type cells was not seen in the presence of genistein or vanadate. The effect of IGF-I on the death of wild-type cells was observed in the presence of genistein or vanadate. The effect of genistein on cell death was significantly prevented in transfectants. Such effect was not seen with vanadate. This study demonstrates that insulin or IGF-I stimulates cell death and apoptosis in the hepatoma cells, and that overexpression of regucalcin has a suppressive effect on cell death induced by insulin or IGF-I that is mediated through different signaling pathway.  相似文献   

7.
The role of endogenous regucalcin in the regulation of deoxyribonuleic acid (DNA) synthesis in the nuclei of the cloned rat hepatoma cells (H4-II-E) with proliferative cells was investigated. Cells were cultured for 6-96 h in a alpha-minimum essential medium (alpha-MEM) containing fetal bovine serum (FBS; 1 or 10%). Cell number was significantly increased between 24 and 96 h after culture with 10% FBS; cell proliferation was markedly stimulated by culture with 10% FBS as compared with that of 1% FBS. In vitro DNA synthesis activity in the nuclei of cells was significantly elevated 6 h after culture with 10% FBS and its elevation was remarkable at 12 and 24 h after the culture. Nuclear DNA synthesis activity was significantly reduced in the presence of various protein kinase inhibitors (PD98059, staurosprine, or trifluoperazine) in the reaction mixture containing the nuclei of cells cultured for 12 and 24 h with FBS (1 and 10%). The addition of regucalcin (10(-7) and 10(-6)M) in the reaction mixture caused a significant inhibition of nuclear DNA synthesis activity. The presence of anti-regucalcin monoclonal antibody (25-100 ng/ml) in the reaction mixture containing the nuclei of cells cultured for 24 h with 10% FBS resulted in a significant increase in nuclear DNA synthesis activity. This increase was completely blocked by the addition of regucalcin (10(-6) M). The effect of anti-regucalcin antibody (100 ng/ml) in increasing nuclear DNA synthesis activity was significantly inhibited in the presence of various protein kinase inhibitors. DNA synthesis activity was significantly enhanced in the presence of anti-regucalcin antibody (100 ng/ml) in the reaction mixture containing the nuclei of cells cultured for 24 h with 10% FBS in the presence of Bay K 8644 (2.5 x 10(-6) M). Culture with Bay K 8644 did not cause a significant increase in DNA synthesis activity in the absence of anti-regucalcin antibody. The present study demonstrates that endogenous regucalcin plays a suppressive role in the enhancement of nuclear DNA synthesis with proliferative cells.  相似文献   

8.
The role of regucalcin, which is a regulatory protein in intracellular signaling pathway, in the regulation of glucose utilization and lipid production was investigated using the cloned rat hepatoma H4-II-E cells overexpressing regucalcin. The hepatoma cells (wild-type) and stable regucalcin/pCXN2-transfected cells (transfectant) were cultured for 72 h in a medium containing 10% fetal bovine serum (FBS) to obtain subconfluent monolayers. Cells with subconfluency were cultured for 24 or 72 h in medium containing either vehicle or insulin (10(-8) or 10(-7) M) with or without supplementation of glucose (10, 25, or 50 mg/ml of medium) in the absence of insulin. The production of triglyceride and free fatty acid was significantly increased in transfectants cultured without insulin and glucose supplementation as compared with that of wild-type cells. The supplementation of glucose (10, 25, or 50 mg/ml) caused a remarkable increase in medium glucose consumption, triglyceride, and free fatty acid productions in transfectants cultured without insulin. The presence of insulin (10(-7) M) caused a significant increase in medium glucose consumption, triglyceride, and free fatty acid productions in wild-type cells cultured with glucose supplementation. These increases were significantly prevented in transfectants cultured for 72 h. The expression of acetyl-CoA carboxylase, HMG-CoA reductase, glucokinase, pyruvate kinase, and glyceroaldehyde-3-phosphate dehydrogenase (G3PDH) mRNAs in wild-type cells was not significantly changed by culture with or without glucose supplementation in the presence of insulin. These gene expressions were not significantly changed in transfectants. The expression of glucose transporter 2 mRNA was significantly increased in transfectants as compared with that of wild-type cells. Such an increase was not seen in transfectants cultured in the presence of insulin with or without glucose supplementation. This study demonstrates that overexpression of regucalcin enhances glucose utilization and lipid production in the cloned rat hepatoma H4-II-E cells, and that it regulates the effect of insulin.  相似文献   

9.
The role of endogenous regucalcin, which is a regulatory protein in calcium signaling, in the regulation of nitric oxide (NO) synthase activity in the cloned rat hepatoma H4-II-E cells was investigated. Hepatoma cells were cultured for 24-72 h in the presence of fetal bovine serum (FBS; 10%). NO synthase activity in the 5,500 g supernatant of cell homogenate was significantly increased by the addition of calcium chloride (10 microM) and calmodulin (2.5 microg/ml) in the enzyme reaction mixture. The presence of trifluoperazine (TFP; 50 microM), an antagonist of calmodulin, inhibited the effect of calcium (10 microM) addition in increasing NO synthase activity, indicating the existence of Ca(2+)/calmodulin-dependent NO synthase in hepatoma cells. NO synthase activity was significantly decreased by the addition of regucalcin (10(-8) or 10(-7) M) in the reaction mixture without or with Ca(2+)/calmodulin addition. The effect of regucalcin (10(-7) M) in decreasing NO synthase activity was also seen in the presence of TFP (50 microM) or EGTA (1 mM). The presence of anti-regucalcin monoclonal antibody (10-50 ng/ml) in the reaction mixture caused a significant elevation of NO synthase activity. NO synthase activity was significantly suppressed in the hepatoma cells (transfectants) overexpressing regucalcin. This decrease was completely abolished in the presence of anti-regucalcin monoclonal antibody (50 ng/ml) in the reaction mixture. Moreover, the effect of Ca(2+)/calmodulin addition in increasing NO synthase activity in the hepatoma cells (wild-type) was completely prevented in transfectants. The present study demonstrates that endogenous regucalcin has a suppressive effect on NO synthase activity in the cloned rat hepatoma H4-II-E cells.  相似文献   

10.
The involvement of signaling factors, which are related to serum component, on the regucalcin mRNA expression in the cloned rat hepatoma cells (H4-II-E) was investigated. The change in regucalcin mRNA levels was analyzed by Northern blotting using rat liver regucalcin complementary DNA (0.9 kb of open reading frame). H4-II-E cells were cultured for 2 or 6 h in a medium containing various reagents in the presence of serum (10% fetal bovine serum) after the subconfluent with 3-day-culture. The regucalcin mRNA expression was significantly increased by serum addition. This increase was clearly inhibited by the presence of EGTA (10(-3) M), A23187 (10(-6) M), trifluoperazine (10(-5) M), staurosporine (10(-7) M), or genistein (10(-5) M) with 6-h-culture, although the beta-actin mRNA expression was not altered by the reagents. Meanwhile, the regucalcin mRNA expression was significantly stimulated by the addition of Bay K 8644 (2.5 x 10(-6) M) in the presence of serum. This effect was also seen in the presence of genistein (10(-5) M). The present study suggests that the regucalcin mRNA expression is mediated through signaling pathways which are partly involved in Ca2+-dependent protein kinases and tyrosine kinase in H4-II-E hepatoma cells.  相似文献   

11.
The expression of hepatic Ca2+-binding protein regucalcin in the cloned rat hepatoma cells (H4-II-E) was investigated. The change in regucalcin mRNA levels was analyzed by Northern blotting using rat liver regucalcin complementary DNA (0.9 kb of open reading frame). Regucalcin mRNA was expressed in H4-II-E hepatoma cells. This expression was clearly stimulated in the presence of serum (10% fetal bovine serum). Bay K 8644 (2. 5 × 10-6 M), a Ca2+ channel agonist, significantly stimulated regucalcin mRNA expression in the absence or presence of 10% serum. Dibutyryl cyclic AMP (10-3 M) did not have a stimulatory effect on the regucalcin mRNA expression. The presence of phorbol 12-myristate 13-acetate (PMA; 10-6 M) or estrogen (10-8 M) caused a significant increase in regucalcin mRNA levels in the hepatoma cells cultured in serum-free medium, while insulin (5 × 10-9 M) or dexamethasone (10-6 M) had no effect. Bay K 8644-stimulated regucalcin mRNA expression in the hepatoma cells was completely blocked in the presence of trifluoperazine (10-5 M), an antagonist of calmodulin, or staurosporine (10-7 M), an inhibitor of protein kinase C. The stimulatory effect of PMA was clearly inhibited in the presence of stauroporine. The present study demonstrates that regucalcin mRNA is expressed in the transformed H4-II-E hepatoma cells, and that the expression is stimulated through Ca2+-dependent signaling factors.  相似文献   

12.
The role of endogenous regucalcin in the regulation of Ca(2+)-ATPase, a Ca(2+) sequestrating enzyme, in rat liver nuclei was investigated. Nuclear Ca(2+)-ATPase activity was significantly reduced by the addition of regucalcin (0.1-0.5 microM) into the enzyme reaction mixture. The presence of anti-regucalcin monoclonal antibody (25 or 50 ng/ml) caused a significant elevation of Ca(2+)-ATPase activity; this effect was completely abolished by the addition of regucalcin (0.1 microM). The effect of anti-regucalcin antibody (50 ng/ml) in increasing Ca(2+)-ATPase activity was completely prevented by the presence of thapsigargin (10(-6) M), an inhibitor of Ca(2+) sequestrating enzyme, N-ethylmaleimide (1 mM), a modifying reagent of thiol groups, or vanadate (10(-5) M), an inhibitor of phosphorylation of the enzyme by ATP, which revealed an inhibitory effect on nuclear Ca(2+)-ATPase activity. Meanwhile, the effect of anti-regucalcin antibody (50 ng/ml) was significantly enhanced by the addition of calmodulin (5 microg/ml), which could increase nuclear Ca(2+)-ATPase activity. In addition, the effect of antibody (50 ng/ml) was significantly reduced by the presence of trifluoperazine (20 microM), an antagonist of calmodulin. These results suggest that the endogenous regucalcin in liver nuclei has a suppressive effect on nuclear Ca(2+)-ATPase activity, and that regucalcin can inhibit an activating effect of calmodulin on the enzyme.  相似文献   

13.
The effect of regucalcin (RC), a regulatory protein in intracellular signaling pathway, on the gene expression of various mineral ion transport-related proteins was investigated using the cloned normal rat kidney proximal tubular epithelial NRK52E cells overexpressing RC. NRK52E cells (wild-type) and stable RC/pCXN2 transfectant were cultured for 72 h in medium containing 5% bovine serum (BS) to obtain subconfluent monolayers. After culture for 72 h, cells were further cultured 24-72 h in a medium containing either vehicle, aldosterone (10(-8) or 10(-7) M), or parathyroid hormone (PTH) (1-34) (10(-8) or 10(-7) M) without BS. RC was markedly localized in the nucleus of transfectants. Overexpression of RC caused a significant increase in rat outer medullary K(+) channel (ROMK) mRNA expression, while it caused a remarkable decrease in L-type Ca(2+) channel and calcium-sensing receptor (CaR) mRNA expressions. Overexpression of RC did not have an effect on epithelial sodium channel (ENaC), Na, K-ATPase (alpha-subunit), Type II Na-Pi cotransporter (NaPi-IIa), angiotensinogen, Na(+)-Ca(2+) exchanger, and glyceroaldehyde-3-phosphate dehydrogenase (G3PDH) mRNA expressions. Hormonal effect on gene expression, moreover, was examined. Culture with aldosterone (10(-8) or 10(-7) M) caused a significant increase in ENaC, Na, K-ATPase, and ROMK mRNA expressions in the wild-type cells. Those increases were weakened in the transfectants. Culture with PTH (10(-8) or 10(-7) M) significantly decreased NaPi-IIa mRNA expression in the wild-type cells. This effect was not altered in the transfectants. PTH significantly decreased angiotensinogen mRNA expression in the wild-type cells and the transfectants, while aldosterone had no effect. Culture with PTH (10(-8) or 10(-7) M) caused a significant decrease in L-type Ca(2+) channel and CaR mRNA expressions in the wild-type cells, while the hormone significantly increased Na(+)-Ca(2+) exchanger mRNA expression. The effects of PTH on L-type Ca(2+) channel, CaR, and Na(+)-Ca(2+) exchanger mRNA expressions were also seen in the transfectants. This study demonstrates that overexpression of RC caused a remarkable increase in its nuclear localization, and that it has suppressive effects on the gene expression of L-type Ca(2+) channel or CaR, which regulates intracellular Ca(2+) signaling, among various regulator proteins for mineral ions in NRK52E cells.  相似文献   

14.
15.
The role of regucalcin, which is a regulatory protein in intracellular signaling, in the regulation of Ca(2+)-ATPase activity in the mitochondria of brain tissues was investigated. The addition of regucalcin (10(-10) to 10(-8) M), which is a physiologic concentration in rat brain tissues, into the enzyme reaction mixture containing 25 microM calcium chloride caused a significant increase in Ca(2+)-ATPase activity, while it did not significantly change in Mg(2+)-ATPase activity. The effect of regucalcin (10(-9) M) in increasing mitochondrial Ca(2+)-ATPase activity was completely inhibited in the presence of ruthenium red (10(-7) M) or lanthanum chloride (10(-7) M), both of which are inhibitors of mitochondrial uniporter activity. Whether the effect of regucalcin is modulated in the presence of calmodulin or dibutyryl cyclic AMP (DcAMP) was examined. The effect of regucalcin (10(-9) M) in increasing Ca(2+)-ATPase activity was not significantly enhanced in the presence of calmodulin (2.5 microg/ml) which significantly increased the enzyme activity. DcAMP (10(-6) to 10(-4) M) did not have a significant effect on Ca(2+)-ATPase activity. The effect of regucalcin (10(-9) M) in increasing Ca(2+)-ATPase activity was not seen in the presence of DcAMP (10(-4) M). Regucalcin levels were significantly increased in the brain tissues or the mitochondria obtained from regucalcin transgenic (RC TG) rats. The mitochondrial Ca(2+)-ATPase activity was significantly increased in RC TG rats as compared with that of wild-type rats. This study demonstrates that regucalcin has a role in the regulation of Ca(2+)-ATPase activity in the brain mitochondria of rats.  相似文献   

16.
The properties of Ca2+ channels in strips and single muscle cells of longitudinal muscle of estrogen-dominated rat myometrium were studied under the effects of elevation of K+ concentration, the partial channel agonist Bay K 8644, and nitrendipine. In isolated strips in 0.5 mM Ca2+, Bay K 8644 (pD2 = 7.8-8.0) lowered the threshold for and enhanced the contractions in response to an elevation of K+ concentration, including the maximum response to K+ elevation alone. Bay K 8644 alone in concentrations up through 10(-6) M did not initiate contractions in 0.5 mM Ca2+ solutions. At higher concentrations (10(-5) M), Bay K 8644 behaved as an antagonist to contractions induced by elevation of K+. In isolated cells 10(-7) M Bay K 8644 enhanced the shortenings to elevated K+ and lowered the threshold K+ concentration required. Also no significant contraction occurred with 10(-7) M Bay K 8644 at normal K+ concentration. In contrast with its effect in isolated strips, no significant increase in maximum shortening (to 60 mM K+) was observed, possibly because cells without a mechanical load were maximally shortened by K+ alone. From these studies, we conclude that Ca2+ channels of isolated strips and cells of rat myometrium behave similarly and have similar properties to those of other smooth muscles in their interactions with elevation of K+, nitrendipine, and Bay K 8644.  相似文献   

17.
18.
19.
20.
We tested the hypothesis that somatostatin (SRIF) inhibits insulin secretion from an SV40 transformed hamster beta cell line (HIT cells) by an effect on the voltage-dependent Ca2+ channels and examined whether G-proteins were involved in the process. Ca2+ currents were recorded by the whole cell patch-clamp method, the free cytosolic calcium, [Ca2+]i, was monitored in HIT cells by fura-2, and cAMP and insulin secretion were measured by radioimmunoassay. SRIF decreased Ca2+ currents, [Ca2+]i, and basal insulin secretion in a dose-dependent manner over the range of 10(-12)-10(-7)M. The increase in [Ca2+]i and insulin secretion induced by either depolarization with K+ (15 mM) or by the Ca2+ channel agonist, Bay K 8644 (1 microM) was attenuated by SRIF in a dose-dependent manner over the same range of 10(-12)-10(-7) M. the half-maximal inhibitory concentrations (IC50) for SRIF inhibition of insulin secretion were 8.6 X 10(-12) M and 8.3 X 10(-11) M for K+ and Bay K 8644-stimulated secretion and 1 X 10(-10) M and 2.9 X 10(-10) M for the SRIF inhibition of the K+ and Bay K 8644-induced rise in [Ca2+]i, respectively. SRIF also attenuated the rise in [Ca2+]i induced by the cAMP-elevating agent, isobutylmethylxanthine (1 mM) in the presence of glucose. Bay K 8644, K+ and SRIF had no significant effects on cAMP levels and SRIF had no effects on adenylyl cyclase activity at concentrations lower than 1 microM. SRIF (100 nM) did not change K+ efflux (measured by 86Rb+) through ATP-sensitive K+ channels in HIT cells. SRIF (up to 1 microM) had no significant effect on membrane potential measured by bisoxonol fluorescence. Pretreatment of the HIT cells with pertussis toxin (0.1 microgram/ml) overnight abolished the effects of SRIF on Ca2+ currents, [Ca2+]i and insulin secretion implying a G-protein dependence in SRIF's actions. Thus, one mechanism by which SRIF decreases insulin secretion is by inhibiting Ca2+ influx through voltage-dependent Ca2+ channels, an action mediated through a pertussis toxin-sensitive G-protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号