首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lyon CJ  Evans CJ  Bill BR  Otsuka AJ  Aguilera RJ 《Gene》2000,252(1-2):147-154
The Caenorhabditis elegans nuc-1 gene has previously been implicated in programmed cell death due to the presence of persistent undegraded apoptotic DNA in nuc-1 mutant animals. In this report, we describe the cloning and characterization of nuc-1, which encodes an acidic nuclease with significant sequence similarity to mammalian DNase II. Database searches performed with human DNase II protein sequence revealed a significant similarity with the predicted C. elegans C07B5.5 ORF. Subsequent analysis of crude C. elegans protein extracts revealed that wild-type animals contained a potent endonuclease activity with a cleavage preference similar to DNase II, while nuc-1 mutant worms demonstrated a marked reduction in this nuclease activity. Sequence analysis of C07B5.5 DNA and mRNA also revealed that nuc-1(e1392), but not wild-type animals contained a nonsense mutation within the CO7B5.5 coding region. Furthermore, nuc-1 transgenic lines carrying the wild-type C07B5.5 locus demonstrated a complete complementation of the nuc-1 mutant phenotype. Our results therefore provide compelling evidence that the C07B5.5 gene encodes the NUC-1 apoptotic nuclease and that this nuclease is related in sequence and activity to DNase II.  相似文献   

2.
Summary At least four species of nucleases (nuclease N1, N2, N3 and N4) and one ribonuclease (ribonuclease N3) were detected in extract of wild type mycelia grown in high phosphate media by gel filtration of 0–65% ammonium sulfate precipitate through Sephadex G-100. Nuclease N4 eluted the first is a latent nuclease, the activity of which is not detectable within a week after preparation of the extract but a significant increase in nuclease activity was observed during additional one or two weeks by standing the fraction at 4°C. Nuclease N1 eluted the second is very labile and nuclease N2 eluted the third is stable at the temperature. Nuclease N3 eluted the last was activated within two or three weeks at 4°C. Although all the four nucleases were detected independent of the concentration of orthophosphate in culture media, significantly large amounts of latent ribonuclease (ribonuclease N3) and a number of nucleases including at least one latent nuclease were observed in wild type mycelia grown in low phosphate media. Ribonuclease N3 was determined to be a repressible enzyme. The activities of these constitutive latent nucleases, ribonuclease N3 and a number of nucleases specifically present in wild type mycelia grown in low phosphate media were not observed or significantly reduced in both nuc-1 and nuc-2 mutants, which were deficient to derepress at least eight orthophosphate repressible enzymes relating to phosphate metabolism. A revertant from nuc-2 restored the ability to show activation of at least one of the constitutive latent nucleases.  相似文献   

3.
A finding was made that a species of ribonuclease is released into mycelial culture media when a wild-type strain of Neurospora crassa was grown on limiting amounts of phosphate. The ribonuclease activity in the fully derepressed state extends to about 60 to 100 fold of that in the repressed state. The synthesis of the ribonuclease was inhibited by the addition of rifampicin, cycloheximide or orthophosphate. Three molecular species of the ribonuclease were found. Two enzyme fractions showing larger molecular weights were suspected to be aggregates containing the enzyme showing the smallest molecular weight (molecular weight of 10 300). All three fractions showed pH optima of around 7, preferential hydrolysis of polyguanylic acid and poor hydrolysis of guanosine 2',3',-cyclic monophosphate. These characteristics were the same as those of ribonuclease N1, and it was suggested that ribonuclease N1 is a repressible extracellular enzyme. Mutations in the genes nuc-1 and nuc-2 caused loss of ability to derepress this enzyme, but heterokaryon between them partially restored the ability. The nuc-1 mutation was epistatic to the nuc-2 alleles which are partly constitutive in the ribonuclease production.  相似文献   

4.
The mammalian apurinic/apyrimidinic (AP) endonuclease (APE1) is a multifunctional protein that plays essential roles in DNA repair and gene regulation. We decomposed the APEs into 12 blocks of highly conserved sequence and structure (molegos). This analysis suggested that residues in molegos common to all APEs, but not to the less specific nuclease, DNase I, would dictate enhanced binding to damaged DNA. To test this hypothesis, alanine was substituted for N226 and N229, which form hydrogen bonds to the DNA backbone 3' of the AP sites in crystal structures of the APE1/DNA complex. While the cleavage rate at AP sites of both N226A and N229A mutants increased, their ability to bind to damaged DNA decreased. The ability of a double mutant (N226A/N229A) to bind damaged DNA was further decreased, while the V(max) was almost identical to that of the wild-type APE1. A double mutant at N226 and R177, a residue that binds to the same phosphate as N229, had a significantly decreased activity and substrate binding. As the affinity for product DNA was decreased in all the mutants, the enhanced reaction rate of the single mutants could be due to alleviation of product inhibition of the enzyme. We conclude that hydrogen bonds to phosphate groups 3' to the cleavage site is essential for APE1's binding to the product DNA, which may be necessary for efficient functioning of the base excision repair pathway. The results indicate that the molego analysis can aid in the redesign of proteins with altered binding affinity and activity.  相似文献   

5.
David Shortle  Beth Lin 《Genetics》1985,110(4):539-555
A collection of 77 unique missense mutations distributed across the gene encoding staphylococcal nuclease (nuc) has been assembled. These mutations were induced by random gap misrepair mutagenesis of the cloned gene and were identified in E. coli transformants expressing reduced levels of nuclease activity. Four nuc- mutations which alter amino acid residues at positions outside of the active site region of the enzyme were submitted to a second round of mutagenesis, and characterization of several independent NUC+ isolates lead to the identification of three second-site suppressor mutations within the protein-coding sequence of the nuc gene. On separation from the mutation originally suppressed and recombination with a number of other nuc- mutations, all three suppressors displayed the property of "global" suppression, i.e., phenotypic suppression of the nuclease-minus character of multiple different alleles. A simple and generally applicable strategy was used to obtain efficient homologous recombination between plasmids for purposes of mapping nuc- mutations, mapping second-site suppressors and constructing double mutant combinations from pairs of single mutations.  相似文献   

6.
An extracellular nuclease from Basidiobolus haptosporus (designated as nuclease Bh1) was purified to homogeneity by ammonium sulfate precipitation, heat treatment, negative adsorption on DEAE-cellulose, and chromatography on phenyl-Sepharose followed by FPLC on phenyl-Superose. The overall yield was 26%. The Mr of the purified enzyme, determined by gel filtration, was 41 000 whereas by SDS/PAGE (after deglycosylation) it was 30 000. It is a glycoprotein with a pI of 6.8. The optimum pH and temperature for DNA hydrolysis were 8. 5 and 60 degrees C, respectively. Nuclease Bh1 is a metalloprotein but has no obligate requirement for metal ions to be active, nor is its activity stimulated in the presence of metal ions. The enzyme was inhibited by Zn2+, Ag2+, Hg2+, Fe3+ and Al3+, inorganic phosphate, pyrophosphate, dithiothreitol, 2-mercaptoethanol, NaCl and KCl. It was stable to high concentrations of organic solvents and urea but susceptible to low concentrations of SDS and guanidine hydrochloride. Nuclease Bh1 is a multifunctional enzyme and its substrate specificity is in the order of ssDNA approximately 3'AMP > RNA > dsDNA. Studies on its mode of action showed that it cleaved supercoiled pUC 18 DNA and phage M13 DNA, endonucleolytically, generating single base nicks. The enzyme hydrolyzed DNA with preferential liberation of 5'dGMP, suggesting it to be a guanylic acid preferential endoexonuclease. 5'dGMP, the end product of hydrolysis, was a competitive inhibitor of the enzyme. The absence of 5'dCMP as a hydrolytic product, coupled with the resistance of (dC)10 and deoxyribodinucleoside monophosphates having cytosine either at the 3' or the 5' end, indicates that C-linkages are resistant to cleavage by nuclease Bh1.  相似文献   

7.
A mutant of Neurospora crassa with an altered repressible acid phosphatase has been isolated. The enzyme is much more thermolabile than that of wild type, and has an increased Michaelis constant. Tests of allelic interactions (in partial diploids) and in vitro mixing experiments were consistent with the mutation being in the structural gene for the enzyme. This gene, pho-3, was found to be located in the right arm of Linkage Group IV (LGIV). Thus, pho-3 and the structural gene for repressible alkaline phosphatase, pho-2 (LG V), map in separate linkage groups and cannot be part of the same operon. Neither of these structural genes is linked to the known regulatory genes, nuc-1 (LG I), nuc-2 (LG II), and preg (LG II).  相似文献   

8.
The fruit body of shiitake (Lentinus edodes) produces two acid nucleases, nuclease Le1 and nuclease Le3, both of which are thought to be candidates for the enzyme that produces a flavorful substance, 5'-GMP, and the primary structure of one of the nucleases, nuclease Le1, has been analyzed by both protein chemistry and gene cloning [Biosci. Biotechnol. Biochem. 64, 948-957 (2000)]. In this study the amino acid sequence of nuclease Le3 was analyzed by protein chemistry and gene cloning. Nuclease Le3 is a glycoprotein that contains 280 amino acid residues, and the molecular mass of the protein moiety of nuclease Le3 is 31,045. The nucleotide sequence of the cDNA and genomic DNA encoding nuclease Le3 revealed the presence of an 18-residue putative signal peptide. Nuclease Le3 contains 170, 108, and 98 amino acid residues that are identical to residues of nuclease Le1, nuclease P1, and nuclease S, respectively. The amino acid residues involved in coordination with Zn2+ atoms in nuclease P1 are all conserved in nuclease Le3. Nuclease Le3 contains 9 half-cystine residues, and 7 of them are located in the same positions as in nuclease Le1.  相似文献   

9.
We previously isolated the RNC1/TRM2 gene and provided evidence that it encodes a protein with a possible role in DNA double strand break repair. RNC1 was independently re-isolated as the TRM2 gene encoding a methyl transferase involved in tRNA maturation. Here we show that Trm2p purified as a fusion protein displayed 5' --> 3' exonuclease activity on double-strand (ds) DNA, and endonuclease activity on single-strand (ss) DNA, properties characteristic of previously isolated endo-exonucleases. A variant of Trm2p, Trm2p(ctDelta76aa) lacking 76 amino acids at the C-terminus retained nuclease activities but not the methyl transferase activity. Both the native and the variant exhibited sensitivity to the endo-exonuclease inhibitor pentamidine. The Saccharomyces cerevisiae trm2(Delta232-1920nt) mutant (containing only the first 231 nucleotides of the TRM2 gene) displayed low sensitivity to methyl methane sulfonate (MMS) and suppressed the MMS sensitivity of rad52 mutants in trm2(Delta232-1920nt)rad52 double mutants. The deletion of KU80, in trm2(Delta232-1920nt) mutant background displayed higher MMS sensitivity supporting the view of the possible role of Trm2p in a competing repair pathway separate from NHEJ. In addition, trm2 exo1 double mutants were synergistically more sensitive to MMS and ionizing radiation than either of the single mutant suggesting that TRM2 and EXO1 can functionally complement each other. However, the C-terminal portion, required for its methyl transferase activity was found not important for DNA repair. These results propose an important role for TRM2 in DNA repair with a potential involvement of its nuclease function in homologous recombination based repair of DNA DSBs.  相似文献   

10.
Several mutant forms of staphylococcal nuclease with one or two defined amino acid substitutions have been purified, and the effects of the altered amino acid sequence on the stability of the folded conformation have been analyzed by guanidine hydrochloride denaturation. Two nuc- mutations, which greatly reduced the level of enzyme activity accumulated in E coli colonies carrying a recombinant plasmid with the mutant nuc gene (ie, a NUC- phenotype), both result in protein unfolding at significantly lower guanidine hydrochloride concentrations than the wild-type protein, whereas three sup mutations isolated on the basis of their ability to suppress partially the NUC- phenotype of the above two mutations result in unfolding at significantly higher guanidine hydrochloride concentrations. Characterization of nuclease molecules with two different amino acid substitutions, either nuc- + sup pairs or sup + sup pairs, suggests that the effect of an amino acid substitution on the stability of the native conformation, as measured by the value of delta delta GD, may not be a constant, but rather a variable that is sensitive to the presence of other substitutions at distant sites in the same molecule. Surprisingly, the slopes of the log Kapp vs guanidine hydrochloride concentration plots vary by as much as 35% among the different proteins.  相似文献   

11.
An endonuclease was isolated from 5 days old Agropyron elongatum 8x = Elytrigia turcica McGuire seedlings. The enzyme was purified by means of ammonium sulfate fractionation, DEAE-cellulose and Heparin Sepharose column. The final preparation, named nuclease A, gave a single band after silver staining had followed SDS-electrophoresis that was identified with nuclease activities. The enzyme also showed a single band after activity staining on gel polymerized in the presence of heat denatured DNA (ssDNA)/RNA. The Mr of native enzyme was 36 and the enzyme's moiety consisted of one polypeptide chain. Nuclease A activity was stimulated in the presence of Zn(2+) and was moderately reduced by NaCl yet strongly by spermine. The enzyme had pH optimum 5.5 and isoelectric point (pI) 4.7. It hydrolyzed the nucleic acids in the order ssDNA > dsDNA > or = RNA; hence it was classified as a plant nuclease type I (EC 3.1.30.2). Synthetic homopolyribonucleotides were hydrolyzed in the order polyU > polyI > or = polyA > polyG > polyC. Nuclease A nicked the supercoiled plasmid DNA while it was incapable of hydrolyzing dinucleoside monophosphates. With regard to nuclease A base linkage specificity towards a synthetic 5'-(32)P labeled deoxydecanucleotide [5'-(32)P]CCTGGCAGTT, the enzyme firstly exhibited a preference to Ap downward arrow G bond and then to Gp downward arrow T, Cp downward arrow A and Gp downward arrow G bonds while it was incapable of hydrolyzing the Cp downward arrow C bond. The substrate's products of nuclease A were oligonucleotides with the monoesterified phosphate at the 3' position. Nuclease A may perform a crucial function in the metabolism of nucleic acids during seedling growth and could be used as a biochemical tool for analysis of nucleic acids structure.  相似文献   

12.
Most nucleases from gametes of Chlamydomonas reinhardtii needCa2$ for full activation. They have been named nuclease C andat least six species of isozymes have been found in the femalegamete (Ogawa and Kuroiwa 1985a). Nuclease C1&2 and C3 were purified from the vegetative cellsof this organism. Nuclease C1&2 exhibited a sharp pH optimumat 9.5, while nuclease C3 preferred a more neutral pH at 7.0–8.5.Use of the Ca2$-EGTA [ethylene-glycol-bis-(2-aminoethyl ether)-N,N,N',N'-tetraaceticacid] buffer in the reaction mixture made it possible to determinetheir activity at the physiological Ca2$ concentration. NucleaseC3 was not activated at low Ca2$ concentration and exhibiteda sharp optimum at 10–3{small tilde}10–4 M. NucleaseC1&2 were activated at a physiological concentration of10–6 M; increasing the Ca2$ concentration did not affectthe activity. Nuclease C gave active fragments upon trypsin digestion. Trypticfragments of nuclease C1&2 and C3 had molecular weightsof 21,000 (referred as C6T) and 16,000 (C4T), respectively.Upon regulating the digestion, a few fragments were identifiedas intermediates of nuclease C6T by the in situ nuclease assay.These tryptic fragments were similar in molecular size to theminor components of nuclease C found in the cell lysates ofgametes and early zygotes. This finding suggests that a minorspecies of nuclease C may be produced from the major nucleaseC during gametogenesis. (Received June 26, 1985; Accepted August 28, 1985)  相似文献   

13.
Two molecular species of repressible extracellular phosphodiesterases showing cyclic 2',3'- and cyclic 3',5'-nucleotide phosphodiesterase activities were detected in mycelial culture media of wild-type Neurospora crassa and purified. The two molecular species were found to be monomeric and polymeric forms of an enzyme constituted of identical subunits having molecular weights of 50,000. This enzyme had the same electrophoretic mobility as repressible acid phosphatase. The enzyme designated repressible cyclic phosphodiesterase showed pH optima of 3.2 to 4.0 with a cyclic 3',5'-AMP substrate and 5.0 to 5.6 with a cyclic 2',3'-AMP substrate. Repressible cyclic phosphodiesterase was activated by MnCl2 and CoCl2 with cyclic 2',3'-AMP as substrate and was slightly activated by MnCl2 with cyclic 3',5'-AMP. The enzyme hydrolyzed cyclic 3',5'- and cyclic 2',3'-nucleotides, in addition to bis-rho-nitrophenyl phosphate, but not certain 5' -and 3'-nucleotides. 3'-GMP and 3'-CMP were hydrolyzed less efficiently. Mutant strains A1 (nuc-1) and B1 (nuc-2), which cannot utilize RNA or DNA as a sole source of phosphorus, were unable to produce repressible cyclic phosphodiesterase. The wild type (74A) and a heterocaryon between strains A1 and B1 produced the enzyme and showed growth on orthophosphate-free media containing cyclic 2',3'-AMP or cyclic 3',5'-AMP, whereas both mutants showed little or no growth on these media.  相似文献   

14.
15.
HIV-1 develops resistance to protease inhibitors predominantly by selecting mutations in the protease gene. Studies of resistant mutants of HIV-1 protease with single amino acid substitutions have shown a range of independent effects on specificity, inhibition, and stability. Four double mutants, K45I/L90M, K45I/V82S, D30N/V82S, and N88D/L90M were selected for analysis on the basis of observations of increased or decreased stability or enzymatic activity for the respective single mutants. The double mutants were assayed for catalysis, inhibition, and stability. Crystal structures were analyzed for the double mutants at resolutions of 2.2-1.2 A to determine the associated molecular changes. Sequence-dependent changes in protease-inhibitor interactions were observed in the crystal structures. Mutations D30N, K45I, and V82S showed altered interactions with inhibitor residues at P2/P2', P3/P3'/P4/P4', and P1/P1', respectively. One of the conformations of Met90 in K45I/L90M has an unfavorably close contact with the carbonyl oxygen of Asp25, as observed previously in the L90M single mutant. The observed catalytic efficiency and inhibition for the double mutants depended on the specific substrate or inhibitor. In particular, large variation in cleavage of p6(pol)-PR substrate was observed, which is likely to result in defects in the maturation of the protease from the Gag-Pol precursor and hence viral replication. Three of the double mutants showed values for stability that were intermediate between the values observed for the respective single mutants. D30N/V82S mutant showed lower stability than either of the two individual mutations, which is possibly due to concerted changes in the central P2-P2' and S2-S2' sites. The complex effects of combining mutations are discussed.  相似文献   

16.
An extracellular nuclease from Streptomyces thermonitrificans (designated as nuclease Stn alpha) was purified to homogeneity with an overall yield of 2.8%. The Mr of the purified enzyme was 39.6 kDa. The purified enzyme showed an exclusive requirement of Mn2+ for its activity but is not a metalloprotein. The optimum pH for ds- and ssDNA hydrolysis were 7.0 and 7.5 whereas, the optimum temperature was 40 and 45 degrees C, respectively. The enzyme was inhibited by divalent cations, inorganic phosphate and pyrophosphate but not by 3' and 5' mononucleotides. Nuclease Stn alpha is a multifunctional enzyme and its substrate specificity is in the order of dsDNA>ssDNA>RNA. The end products of both ds- and ssDNA hydrolysis were predominantly oligonucleotides (80-85%) and a small amount of 3' mononucleotides (10-15%) suggesting an endo mode of action.  相似文献   

17.
A new acetate-requiring mutant strain of Neurospora crassa, ace-9, has been isolated. The mutant gene was mapped between nuc-2 and arg-12 on the right arm of the second linkage group. The ace-9 mutant strain shows very weak activity of pyruvate dehydrogenase complex (PDHC). Three strains that show no activity of PDHC had already been found, i.e., ace-2, ace-3, and ace-4. Thus the ace-9 is the fourth gene that causes the deficiency in PDHC activity by a mutation. Deficiency of PDHC activity in ace-9 strain seems to be due to defective E1 component, because (1) the activity of E1 component enzyme is very weak in ace-9 mutant strain, and (2) normal PDHC activity was resumed when a preparation of ace-9 was mixed with E1-E2 fraction of wild type or with E1 component of wild type E. coli. Difference in thermostability of both E1 component enzyme and PDHC between ace-9 and the wild type strains supports this conclusion.  相似文献   

18.
Specific cleavage of tRNA by nuclease S1.   总被引:19,自引:15,他引:4       下载免费PDF全文
Nuclease S1 specifically hydrolizes tRNAs in their anticodon loops, forming new 5' phosphate and 3' OH ends. Some single-stranded regions are not cut by nuclease S1. The strong preference of nuclease S1 for the anticodon region can be used for rapid identification of an anticodon-containing oligonucleotide and subsequent identification of the probable amino acid specificity of tRNA.  相似文献   

19.
The Streptomyces coelicolor dnaE gene, encoding the catalytic alpha-subunit of DNA polymerase III (pol III) was isolated by genetic complementation of a temperature-sensitive DNA replication mutant, S. coelicolor ts-38. The deduced protein sequence (1179 residues) is highly similar to the Escherichia coli-type pol III alpha-subunit, rather than to the PolC-type alpha-subunit that is known to be essential for replication in the 'low G + C' Gram-positive bacteria such as Bacillus subtilis. The dnaE gene is able to restore replication to a 'slow stop' mutant (ts-38) and a 'fast stop' mutant (ts-114); the dnaE gene of ts-38 carries a single amino acid substitution (Glu-802 to Lys), and the mutation in ts-114 has been mapped between codons 697 and 1062 of dnaE. Mutant ts-38 is considered to be defective in assembly of the multisubunit pol III holoenzyme and, hence, in initiation of replication, whereas ts-114 is defective in chain elongation. This study provides the first evidence that a DnaE-type pol III is essential for replication in a Gram-positive bacterium. In addition, the complementation studies suggest that the C-terminal 117 residues are not essential for DnaE function in S. coelicolor. When integrated at a distant site on the chromosome, a fragment containing the 3' half of dnaE(codons 697-1179) is capable of rescuing ts-38 (but not ts-114) at the restrictive temperature; it was demonstrated that homogenotization was responsible for this phenomenon.  相似文献   

20.
In the process of developing a gene transfer system for the marine, unicellular, nitrogen-fixing cyanobacterium Cyanothece sp. strain BH68K, two major restriction barriers have been identified. A cell wall-associated nuclease exhibited non-site-specific degradation of covalently closed circular and linear double-stranded DNA molecules, including Cyanothece sp. strain BH68K chromosomal DNA. The nuclease is easily released from intact cells by using water or buffer containing Triton X-100. Nuclease activity was undetectable in cell extracts prepared from water-washed cells. Comparison of the restriction endonuclease susceptibility of Cyanothece sp. strain BH68K DNA to that of Anabaena sp. strain PCC 7120 revealed that these organisms have a nearly identical pattern of restriction and therefore may contain similar systems for DNA methylation. Restriction by DpnI, MboI, and Sau3AI indicated the presence of adenine methylation. Cyanothece sp. strain BH68K cell extracts contain a type II restriction endonuclease, Csp68KI. The activity of Csp68KI was easily detected in cell extracts without extensive purification. Csp68KI is an isoschizomer of AvaII and recognizes the nucleotide sequence 5'-GG(A/T)CC-3'. Cleavage occurs between the guanosine nucleotides producing 3-bp 5' overhang ends.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号