首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
Two gram-positive anaerobic bacteria (strains E1H and MLS10) were isolated from the anoxic muds of Mono Lake, California, an alkaline, hypersaline, arsenic-rich water body. Both grew by dissimilatory reduction of As(V) to As(III) with the concomitant oxidation of lactate to acetate plus CO2. Bacillus arsenicoselenatis (strain E1H) is a spore-forming rod that also grew by dissimilatory reduction of Se(VI) to Se(IV). Bacillus selenitireducens (strain MLS10) is a short, non-spore-forming rod that grew by dissimilatory reduction of Se(IV) to Se(0). When the two isolates were cocultured, a complete reduction of Se(VI) to Se(0) was achieved. Both isolates are alkaliphiles and had optimal specific growth rates in the pH range of 8.5–10. Strain E1H had a salinity optimum at 60 g l–1 NaCl, while strain MLS10 had optimal growth at lower salinities (24–60 g l–1 NaCl). Both strains have limited abilities to grow with electron donors and acceptors other than those given above. Strain MLS10 demonstrated weak growth as a microaerophile and was also capable of fermentative growth on glucose, while strain E1H is a strict anaerobe. Comparative 16S rRNA gene sequence analysis placed the two isolates with other Bacillus spp. in the low G+C gram-positive group of bacteria. Received: 21 May 1998 / Accepted: 31 August 1998  相似文献   

2.
A dissimilatory Fe(III)-reducing bacterium was isolated from mining-impacted lake sediments and designated strain CdA-1. The strain was isolated from a 4-month enrichment culture with acetate and Fe(III)-oxyhydroxide. Strain CdA-1 is a motile, obligately anaerobic rod, capable of coupling the oxidation of acetate and other organic acids to the reduction of ferric iron. Fe(III) reduction was not observed using methanol, ethanol, isopropanol, propionate, succinate, fumarate, H2, citrate, glucose, or phenol as potential electron donors. With acetate as an electron donor, strain CdA-1 also grew by reducing nitrate or fumarate. Growth was not observed with acetate as electron donor and O2, sulfoxyanions, nitrite, trimethylamine N-oxide, Mn(IV), As(V), or Se(VI) as potential terminal electron acceptors. Comparative 16 S rRNA gene sequence analyses show strain CdA-1 to be most closely related (93.6% sequence similarity) to Rhodocyclus tenuis. However, R. tenuis did not grow heterotrophically by Fe(III) reduction, nor did strain CdA-1 grow photrophically. We propose that strain CdA-1 represents a new genus and species, Ferribacterium limneticum. Strain CdA-1 represents the first dissimilatory Fe(III) reducer in the β subclass of Proteobacteria, as well as the first Fe(III) reducer isolated from mine wastes. Received: 14 July 1998 / Accepted: 14 December 1998  相似文献   

3.
Aims: To isolate an alkaliphilic bacterium and to investigate its ability of extracellular reduction. Methods and Results: An alkaliphilic and halotolerant humus‐reducing anaerobe, Bacillus pseudofirmus MC02, was successfully isolated from a pH 10·0 microbial fuel cell. To examine its ability of extracellular reduction, AQDS (anthraquinone‐2, 6‐disulfonae), humic acids (HA) and Fe(III) oxides were chosen as representative electron acceptors. All the experiments were conducted in a pH 9·5 carbonate buffer. The results are as follows: (i) Sucrose, lactate, glucose and glycerol were the favourable electron donors for AQDS reduction by the strain MC02; (ii) The strain had the ability of reducing HA in the presence of sucrose; (iii) It could effectively reduce Fe(III) oxides coupled with sucrose fermentation when AQDS was added as electron shuttle and its Fe(III) reducing capacity ranked as: lepidocrocite (γ‐FeOOH) > goethite (α‐FeOOH) > haematite(α‐Fe2O3); (iv) The strain could decolourize azo dye Orange I. Conclusions: Bacillus pseudofirmus MC02 was capable of extracellular reduction in AQDS, HA and Fe(III) oxides, and it can be used for decolourizing azo dye (Orange I) in alkaline conditions. Significance and Impact of the Study: This is the first report of an alkaliphlic strain of B. pseudofirmus capable of extracellular reduction in AQDS, HA, Fe(III) oxides and decolourization of Orange I. This study could provide valuable information on alkaline biotransformation in the printing and dyeing wastewater and saline‐alkali soil.  相似文献   

4.
刘洪艳  袁媛  张姗  李凯强 《微生物学通报》2021,48(12):4521-4529
[背景] 一些异化铁还原细菌兼具铁还原和发酵产氢能力,可作为发酵型异化铁还原细菌还原机制研究的对象。[目的] 筛选出一株发酵型异化铁还原细菌。在异化铁还原细菌培养体系中,设置不同电子供体并分析电子供体。[方法] 通过三层平板法从海洋沉积物中筛选纯菌株,基于16S rRNA基因序列进行菌株鉴定。通过测定细菌培养液Fe (II)浓度及发酵产氢量分析菌株异化铁还原和产氢性质。[结果] 菌株LQ25与Clostridium butyricum的16S rRNA基因序列相似性达到100%,结合电镜形态观察,菌株命名为Clostridium sp.LQ25。在氢氧化铁为电子受体培养条件下,菌株生长较对照组(未添加氢氧化铁)显著提高。菌株LQ25能够利用丙酮酸钠、葡萄糖和乳酸钠进行生长。丙酮酸钠为电子供体时,菌株LQ25细胞生长和异化铁还原效率最高,菌体蛋白质含量是(78.88±3.40) mg/L,累积产生Fe (II)浓度为(8.27±0.23) mg/L。以葡萄糖为电子供体时,菌株LQ25发酵产氢量最高,达(475.2±14.4) mL/L,相比对照组(未添加氢氧化铁)产氢量提高87.7%。[结论] 筛选到一株具有异化铁还原和发酵产氢能力的菌株Clostridium sp.LQ25,为探究发酵型异化铁还原细菌胞外电子传递机制提供了新的实验材料。  相似文献   

5.
Studies on the microorganisms living in hydrocarbon-contaminated sediments in San Diego Bay, California led to the isolation of a novel Fe(III)-reducing microorganism. This organism, designated strain SDBY1, was an obligately anaerobic, non-motile, non-flagellated, gram-negative rod. Strain SDBY1 conserves energy to support growth from the oxidation of acetate, lactate, succinate, fumarate, laurate, palmitate, or stearate. H2 was also oxidized with the reduction of Fe(III), but growth with H2 as the sole electron donor was not observed. In addition to various forms of soluble and insoluble Fe(III), strain SDBY1 also coupled growth to the reduction of fumarate, Mn(IV), or S0. Air-oxidizedminus dithionite-reduced difference spectra exhibited peaks at 552.8, 523.6, and 422.8 nm, indicative ofc-type cytochrome(s). Strain SDBY1 shares physiological characteristics with organisms in the generaGeobacter, Pelobacter, andDesulfuromonas. Detailed analysis of the 16S rRNA sequence indicated that strain SDBY1 should be placed in the genusDesulfuromonas. The new species nameDesulfuromonas palmitatis is proposed.D. palmitatis is only the second marine organism found (afterD. acetoxidans) to oxidize multicarbon organic compounds completely to carbon dioxide with Fe(III) as an electron acceptor and provides the first pure culture model for the oxidation of long-chain fatty acids coupled to Fe(III) reduction.  相似文献   

6.
Biological reduction of nitric oxide (NO) chelated by ferrous ethylenediaminetetraacetate (Fe(II)EDTA) to N2 is one of the core processes in a chemical absorption–biological reduction integrated technique for nitrogen oxide (NO x ) removal from flue gases. A new isolate, identified as Pseudomonas sp. DN-2 by 16S rRNA sequence analysis, was able to reduce Fe(II)EDTA-NO. The specific reduction capacity as measured by NO was up to 4.17 mmol g DCW−1 h−1. Strain DN-2 can simultaneously use glucose and Fe(II)EDTA as electron donors for Fe(II)EDTA-NO reduction. Fe(III)EDTA, the oxidation of Fe(II)EDTA by oxygen, can also serve as electron acceptor by strain DN-2. The interdependency between various chemical species, e.g., Fe(II)EDTA-NO, Fe(II)EDTA, or Fe (III)EDTA, was investigated. Though each complex, e.g., Fe(II)EDTA-NO or Fe(III)EDTA, can be reduced by its own dedicated bacterial strain, strain DN-2 capable of reducing Fe(III)EDTA can enhance the regeneration of Fe(II)EDTA, hence can enlarge NO elimination capacity. Additionally, the inhibition of Fe(II)EDTA-NO on the Fe(III)EDTA reduction has been explored previously. Strain DN-2 is probably one of the major contributors for the continual removal of NO x due to the high Fe(II)EDTA-NO reduction rate and the ability of Fe(III)EDTA reduction.  相似文献   

7.
康博伦  袁媛  王珊  刘洪艳 《微生物学通报》2021,48(10):3497-3505
[背景] 异化铁还原细菌能够在还原Fe (III)的同时将毒性较大的Cr (VI)还原成毒性较小的Cr (III),解决铬污染的问题。[目的] 基于丁酸梭菌(Clostridium butyricum) LQ25异化铁还原过程制备生物磁铁矿,开展异化铁还原细菌还原Cr (VI)的特性研究。[方法] 构建以氢氧化铁为电子受体和葡萄糖为电子供体的异化铁培养体系。菌株LQ25培养结束时制备生物磁铁矿。设置不同初始Cr (VI)浓度(5、10、15、25和30 mg/L),分别测定菌株LQ25对Cr (VI)还原效率以及生物磁铁矿对Cr (VI)的还原效率。[结果] 菌株LQ25在设置的Cr (VI)浓度范围内都能良好生长。当Cr (VI)浓度为15 mg/L时,在异化铁培养条件下,菌株LQ25对Cr (VI)的还原率为63.45%±5.13%,生物磁铁矿对Cr (VI)的还原率为87.73%±9.12%,相比菌株还原Cr (VI)的效率提高38%。pH变化能影响生物磁铁矿对Cr (VI)的还原率,当pH 2.0时,生物磁铁矿对Cr (VI)的还原率最高,几乎达到100%。电子显微镜观察发现生物磁铁矿表面有许多孔隙,X-射线衍射图谱显示生物磁铁矿中Fe (II)的存在形式是Fe (OH)2[结论] 基于异化铁还原细菌制备生物磁铁矿可用于还原Cr (VI),这是一种有效去除Cr (VI)的途径。  相似文献   

8.
A new, phylogenetically distinct, dissimilatory, Fe(III)-reducing bacterium was isolated from surface sediment of a hydrocarbon-contaminated ditch. The isolate, designated strain PAL-1, was an obligately anaerobic, non-fermentative, motile, gram-negative vibrio. PAL-1 grew in a defined medium with acetate as electron donor and ferric pyrophosphate, ferric oxyhydroxide, ferric citrate, Co(III)-EDTA, or elemental sulfur as sole electron acceptor. PAL-1 also used proline, hydrogen, lactate, propionate, succinate, fumarate, pyruvate, or yeast extract as electron donors for Fe(III) reduction. It is the first bacterium known to couple the oxidation of an amino acid to Fe(III) reduction. PAl-1 did not reduce oxygen, Mn(IV), U(VI), Cr(VI), nitrate, sulfate, sulfite, or thiosulfate with acetate as the electron donor. Cell suspensions of PAL-1 exhibited dithionite-reduced minus air-oxidized difference spectra that were characteristic of c-type cytochromes. Analysis of the 16S rRNA gene sequence of PAL-1 showed that the strain is not related to any of the described metal-reducing bacteria in the Proteobacteria and, together with Flexistipes sinusarabici, forms a separate line of descent within the Bacteria. Phenotypically and phylogenetically, strain PAl-1 differs from all other described bacteria, and represents the type strain of a new genus and species, Geovibrio ferrireducens. Received: 26 September 1995 / Accepted: 28 February 1996  相似文献   

9.
Microbially induced calcium carbonate precipitation (MICP) is a phenomenon based on urease activity of halotolerant and alkaliphilic microorganisms that can be used for the soil bioclogging and biocementation in geotechnical engineering. However, enrichment cultures produced from indigenous soil bacteria cannot be used for large-scale MICP because their urease activity decreased with the rate about 5 % per one generation. To ensure stability of urease activity in biocement, halotolerant and alkaliphilic strains of urease-producing bacteria for soil biocementation were isolated from either sandy soil or high salinity water in different climate zones. The strain Bacillus sp. VUK5, isolated from soil in Ukraine (continental climate), was phylogenetically close in identity (99 % of 16S rRNA gene sequence) to the strain of Bacillus sp. VS1 isolated from beach sand in Singapore (tropical rainforest climate), as well as to the strains of Bacillus sp. isolated by other researchers in Ghent, Belgium (maritime temperate climate) and Yogyakarta, Indonesia (tropical rainforest climate). Both strains Bacillus sp. VS1 and VUK5 had maximum specific growth rate of 0.09/h and maximum urease activities of 6.2 and 8.8 mM of hydrolysed urea/min, respectively. The halotolerant and alkaliphilic strain of urease-producing bacteria isolated from water of the saline lake Dead Sea in Jordan was presented by Gram-positive cocci close to the species Staphylococcus succinus. However, the strains of this species could be hemolytic and toxigenic, therefore only representatives of alkaliphilic Bacillus sp. were used for the biocementation studies. Unconfined compressive strengths for dry biocemented sand samples after six batch treatments with strains VS1and VUK5 were 765 and 845 kPa, respectively. The content of precipitated calcium and the strength of dry biocemented sand at permeability equals to 1 % of initial value were 12.4 g Ca/kg of dry sand and 454 kPa, respectively, in case of biocementation by the strain VS1. So, halotolerant, alkaliphilic, urease-producing bacteria isolated from different climate zones have similar properties and can be used for biocementation of soil.  相似文献   

10.
Butyrivibrio fibrisolvens strains D1 and A38 produced little lactate, but strain 49 converted as much as 75% of its glucose to lactate. Strain 49 had tenfold more lactate dehydrogenase activity than strains D1 or A38, this activity was stimulated by fructose 1,6-bisphosphate, and had a pH optimum of 6.25. A role for fructose 1,6-bisphosphate or pH regulation of lactate production in strain 49 was, however, contradicted by the observations that very low concentrations (< 0.2 mM) of fructose 1,6-bisphosphate gave maximal activity, and continuous cultures did not produce additional lactate when the pH was decreased. The lactate production of strain 49 was clearly inhibited by the presence of acetate in the growth medium. When strain 49 was supplemented with as little as 5 mM acetate, lactate production decreased dramatically, and most of the glucose was converted to butyrate. Strain 49 did not possess butyrate kinase activity, but it had a butyryl-CoA/acetate CoA transferase that converted butyryl-CoA directly to butyrate, using acetate as an acceptor. The transferase had a low affinity for acetate (K m of 5 mM), and this characteristic explained the acetate stimulation of growth and butyrate formation. Strains D1 and A38 had butyrate kinase but not butyryl-CoA/acetate CoA transferase, and it appeared that this difference could explain the lack of acetate stimulation and lactate production. Based on these results, it is unlikely that B. fibrisolvens would ever contribute significantly to the pool of ruminal lactate. Since relatives of strain 49 (strains Nor37, PI-7, VV1, and OB156, based on 16S rRNA sequence analysis) all had the same method of butyrate production, it appeared that butyryl-CoA/acetate CoA transferase might be a phylogenetic characteristic. We obtained a culture of strain B835 (NCDO 2398) that produced large amounts of lactate and had butyryl-CoA/acetate CoA transferase activity, but this strain had previously been grouped with strains A38 and D1 based on 16S rRNA sequence analysis. Our strain B835 had a 16S rRNA sequence unique from the one currently deposited in GenBank, and had high sequence similarity with strains 49 and Nor37 rather than with strains A38 or D1. Received: 3 December 1998 / Accepted: 18 February 1999  相似文献   

11.
Strain MPA‐C3 was isolated by incubating arsenic‐bearing sediments under anaerobic, mesophilic conditions in minimal media with acetate as the sole source of energy and carbon, and As(V) as the sole electron acceptor. Following growth and the respiratory reduction of As(V) to As(III), a yellow precipitate formed in active cultures, while no precipitate was observed in autoclaved controls, or in uninoculated media supplemented with As(III). The precipitate was identified by X‐ray diffraction as alacranite, As8S9, a mineral previously only identified in hydrothermal environments. Sequencing of the 16S rRNA gene indicated that strain MPA‐C3 is a member of the Deferribacteres family, with relatively low (90%) identity to Denitrovibrio acetiphilus DSM 12809. The arsenate respiratory reductase gene, arrA, was sequenced, showing high homology to the arrA gene of Desulfitobacterium halfniense. In addition to As(V), strain MPA‐C3 utilizes NO3?, Se(VI), Se(IV), fumarate and Fe(III) as electron acceptors, and acetate, pyruvate, fructose and benzoate as sources of carbon and energy. Analysis of a draft genome sequence revealed multiple pathways for respiration and carbon utilization. The results of this work demonstrate that alacranite, a mineral previously thought to be formed only chemically under hydrothermal conditions, is precipitated under mesophilic conditions by the metabolically versatile strain MPA‐C3.  相似文献   

12.
Shewanella decolorationis S12 is capable of high rates of azo dye decolorization and dissimilatory Fe(III) reduction. Under anaerobic conditions, when Fe(III) and azo dye were copresent in S12 cultures, dissimilatory Fe(III) reduction and azo dye biodecolorization occurred simultaneously. Furthermore, the dye decolorization was enhanced by the presence of Fe(III). When 1 mM Fe(III) was added, the methyl red decolorizing efficiency was 72.1% after cultivation for 3 h, whereas the decolorizing efficiency was only 60.5% in Fe(III)-free medium. The decolorizing efficiencies increased as the concentration of Fe(III) was increased from 0 to 6 mM. Enzyme activities, which mediate the dye decolorization and Fe(III) reduction, were not affected by preadaption of cells to Fe(III) and azo dye nor by the addition of chloramphenicol. Both the Fe(III) reductase and the azo reductase were membrane associated. The respiratory electron transport chain inhibitors metyrapone, dicumarol, and stigmatellin showed significantly different effects on Fe(III) reduction than on azo dye decolorization.  相似文献   

13.
Three strains of new obligately anaerobic alkaliphilic bacteria have been isolated as a saccharolytic component from the cellulolytic community of alkaline Lake Nizhnee Beloe (Transbaikal region, Russia), a lake with low salt concentration. DNA analysis of these strains showed an interspecies level of DNA similarity of 96–100%. Strain Z-79820 was selected for further investigations. Cells were Gram-positive, asporogenous, nonmotile short rods with pointed ends. The strain was a true alkaliphile: growth occurred from pH 7.2 to 10.2 with the optimum at pH 9.0. Strain Z-79820 was halotolerant and could grow in medium with up to 10% (w/v) NaCl, with the optimum between 0 and 4% NaCl. The new isolate obligately depended on Na+ ions in the form of carbonates or chlorides. Total Na+ content needed for optimal growth was 0.46 M Na+, with a wide range from 0.023–0.9 M Na+ at which growth also occurred. The isolate was a mesophile and grew at temperatures from 6 to 50°C (slow growth at 6 and 15°C) with an optimum at 35°C. The organotrophic organism fermented ribose, xylose, glucose, mannose, fructose, sucrose, mannitol, and peptone. The products of glucose fermentation were acetate, ethanol, formate, H2, and CO2. Yeast extract was required for some anabolic needs. The DNA G+C content of the type strain Z-79820 was 42.1 mol%. The new bacterium fell into the 16S rRNA gene cluster XV of the Gram-positive bacteria with low G+C content, where it formed an individual branch. Based on its growth characteristics and genotype traits, we propose the new genus and species named Alkalibacter saccharofermentans with the type strain Z-79820 (=DSM14828), Uniqem-218 (Institute Microbiology, RAS; ).  相似文献   

14.
An isolate, designated GC-29, that could incompletely oxidize glucose to acetate and carbon dioxide with Fe(III) serving as the electron acceptor was recovered from freshwater sediments of the Potomac River, Maryland. This metabolism yielded energy to support cell growth. Strain GC-29 is a facultatively anaerobic, gram-negative motile rod which, in addition to glucose, also used sucrose, lactate, pyruvate, yeast extract, casamino acids or H2 as alternative electron donors for Fe(III) reduction. Stain GC-29 could reduce NO3(-), Mn(IV), U(VI), fumarate, malate, S2O3(2-), and colloidal S0 as well as the humics analog, 2,6-anthraquinone disulfonate. Analysis of the almost complete 16S rRNA sequence indicated that strain GC-29 belongs in the Shewanella genus in the epsilon subdivision of the Proteobacteria. The name Shewanella saccharophilia is proposed. Shewanella saccharophilia differs from previously described fermentative microorganisms that metabolize glucose with the reduction of Fe(III) because it transfers significantly more electron equivalents to Fe(III); acetate and carbon dioxide are the only products of glucose metabolism; energy is conserved from Fe(III) reduction; and glucose is not metabolized in the absence of Fe(III). The metabolism of organisms like S. saccharophilia may account for the fact that glucose is metabolized primarily to acetate and carbon dioxide in a variety of sediments in which Fe(III) reduction is the terminal electron accepting process.  相似文献   

15.
An unusual propionigenic bacterium was isolated from the intestinal tract of the soil-feeding termite Thoracotermes macrothorax. Strain TmPN3 is a motile, long rod that stains gram-positive, but reacts gram-negative in the KOH test. It forms terminal endospores and ferments lactate, glucose, lactose, fructose, and pyruvate to propionate and acetate via the methyl-malonyl-CoA pathway. Propionate and acetate are formed at a ratio of 2:1, typical of most propionigenic bacteria. Under a H2/CO2 atmosphere, the fermentation product pattern of glucose, fructose, and pyruvate shifts towards propionate formation at the expense of acetate. Cell suspensions reduce oxygen with lactate, glucose, glycerol, or hydrogen as electron donor. In the presence of oxygen, the product pattern of lactate fermentation shifts from propionate to acetate production. 16S rRNA gene sequence analysis showed that strain TmPN3 is a firmicute that clusters among the Acidaminococcaceae, a subgroup of the Clostridiales comprising obligately anaerobic, often endospore-forming bacteria that possess an outer membrane. Based on phenotypic differences and less than 92% sequence similarity to the 16S rRNA gene sequence of its closest relative, the termite hindgut isolate Acetonema longum, strain TmPN3T is proposed as the type species of a new genus, Sporotalea propionica gen. nov. sp. nov. (DSM 13327T, ATCC BAA-626T).  相似文献   

16.
A marine psychrotolerant, dissimilatory Fe(III)-reducing bacterium, Shewanella sp. strain PV-4, from the microbial mat at a hydrothermal vent of Loihi Seamount in the Pacific Ocean has been further characterized, with emphases on metal reduction and iron biomineralization. The strain is able to reduce metals such as Fe(III), Co(III), Cr(VI), Mn(IV), and U(VI) as electron acceptors while using lactate, formate, pyruvate, or hydrogen as an electron donor. Growth during iron reduction occurred over the pH range of 7.0 to 8.9, a sodium chloride range of 0.05 to 5%, and a temperature range of 0 to 37 degrees C, with an optimum growth temperature of 18 degrees C. Unlike mesophilic dissimilatory Fe(III)-reducing bacteria, which produce mostly superparamagnetic magnetite (<35 nm), this psychrotolerant bacterium produces well-formed single-domain magnetite (>35 nm) at temperatures from 18 to 37 degrees C. The genome size of this strain is about 4.5 Mb. Strain PV-4 is sensitive to a variety of commonly used antibiotics except ampicillin and can acquire exogenous DNA (plasmid pCM157) through conjugation.  相似文献   

17.
A strictly anaerobic, homoacetogenic, Gram-positive, non spore-forming bacterium, designated strain SR12T(T=type strain), was isolated from an anaerobic methanogenic digestor fed with olive mill wastewater. Yeast extract was required for growth but could also be used as sole carbon and energy source. Strain SR12Tutilized a few carbohydrates (glucose, fructose and sucrose), organic compounds (lactate, crotonate, formate and betaine), alcohols (methanol), the methoxyl group of some methoxylated aromatic compounds, and H2+CO2. The end-products of carbohydrate fermentation were acetate, formate, butyrate, H2and CO2. End-products from lactate and methoxylated aromatic compounds were acetate and butyrate. Strain SR12Twas non-motile, formed aggregates, had a G+C content of 55 mol % and grew optimally at 35°C and pH 7.2 on a medium containing glucose. Phylogenetically, strain SR12Twas related toEubacterium barkeri, E. callanderi, andE. limosumwithE. barkerias the closest relative (similarity of 98%) with which it bears little phenotypic similarity or DNA homology (60%). On the basis of its phenotypic, genotypic, and phylogenetic characteristics, we propose to designate strain SR12TasEubacterium aggreganssp. nov. The type strain is SR12T(=DSM 12183).  相似文献   

18.
A marine psychrotolerant, dissimilatory Fe(III)-reducing bacterium, Shewanella sp. strain PV-4, from the microbial mat at a hydrothermal vent of Loihi Seamount in the Pacific Ocean has been further characterized, with emphases on metal reduction and iron biomineralization. The strain is able to reduce metals such as Fe(III), Co(III), Cr(VI), Mn(IV), and U(VI) as electron acceptors while using lactate, formate, pyruvate, or hydrogen as an electron donor. Growth during iron reduction occurred over the pH range of 7.0 to 8.9, a sodium chloride range of 0.05 to 5%, and a temperature range of 0 to 37°C, with an optimum growth temperature of 18°C. Unlike mesophilic dissimilatory Fe(III)-reducing bacteria, which produce mostly superparamagnetic magnetite (<35 nm), this psychrotolerant bacterium produces well-formed single-domain magnetite (>35 nm) at temperatures from 18 to 37°C. The genome size of this strain is about 4.5 Mb. Strain PV-4 is sensitive to a variety of commonly used antibiotics except ampicillin and can acquire exogenous DNA (plasmid pCM157) through conjugation.  相似文献   

19.
A dissimilatory Fe(III)- and Mn(IV)-reducing bacterium was isolated from bottom sediments of the Great Bay estuary, New Hampshire. The isolate was a facultatively anaerobic gram-negative rod which did not appear to fit into any previously described genus. It was temporarily designated strain BrY. BrY grew anaerobically in a defined medium with hydrogen or lactate as the electron donor and Fe(III) as the electron acceptor. BrY required citrate, fumarate, or malate as a carbon source for growth on H2 and Fe(III). With Fe(III) as the sole electron acceptor, BrY metabolized hydrogen to a minimum threshold at least 60-fold lower than the threshold reported for pure cultures of sulfate reducers. This finding supports the hypothesis that when Fe(III) is available, Fe(III) reducers can outcompete sulfate reducers for electron donors. Lactate was incompletely oxidized to acetate and carbon dioxide with Fe(III) as the electron acceptor. Lactate oxidation was also coupled to the reduction of Mn(IV), U(VI), fumarate, thiosulfate, or trimethylamine n-oxide under anaerobic conditions. BrY provides a model for how enzymatic metal reduction by respiratory metal-reducing microorganisms has the potential to contribute to the mobilization of iron and trace metals and to the immobilization of uranium in sediments of Great Bay Estuary.  相似文献   

20.
Dissimilatory iron-reducing microorganisms play an important role in the biogeochemical cycle of iron and influence iron mineral formation and transformation. However, studies on microbial iron-reducing processes in deep-sea hydrothermal fields are limited. A novel piezophilic, thermophilic, anaerobic, fermentative iron-reducing bacteria of class Clostridia, named Anoxybacter fermentans DY22613T, was isolated from East Pacific Rise hydrothermal sulfides. In this report, we examined its cell growth, fermentative metabolites, and biomineralization coupled with dissimilatory iron reduction. Both soluble ferric citrate (FC) and solid amorphous Fe(III) oxyhydroxide (FO) could promote cell growth of this strain, accompanied by increased peptone consumption. More acetate, butyrate, and CO2 were produced than without adding FO or FC in the media. The highest yield of H2 was observed in the Fe(III)-absent control. Coupled to fermentation, magnetite particles, and iron-sulfur complexes were respectively formed by the strain during FO and FC reduction. Under experimental conditions mimicking the pressure prevailing at the deep-sea habitat of DY22613T (20?MPa), Fe(III)-reduction rates were enhanced resulting in relatively larger magnetite nanoparticles with more crystal faces. These results implied that the potential role of A. fermentans DY22613T in situ in deep-sea hydrothermal sediments is coupling iron reduction and mineral transformation to fermentation of biomolecules. This bacterium likely contributes to the complex biogeochemical iron cycling in deep-sea hydrothermal fields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号