首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alterations in rat liver transfer RNA (tRNA) methyltransferase activities have been observed after liver damage by various chemicals or by partial hepatectomy. The qualitative and quantitative nature of these activity changes and the time course for their induction have been studied. Since homologous tRNAs are essentially fully modified in vivo, E. coli tRNAs were used as in vitro substrates for the rat liver enzymes in these studies. Each of the liver-damaging agents tested rapidly caused increases in activities of the enzyme(s) catalyzing methyl group transfer to tRNAs that have an unmodified guanine at position 26 from the 5′ end of the molecule. This group of tRNAs includes E. coli tRNANfmet, tRNAAla1, tRNALeu1, or Leu2, and tRNASer3 (Group 1). In each case N2-methylguanine and N2,N2-dimethylguanine represented 90% or more of the products of these in vitro methylations. The product and substrate specificity observed are characteristic of N2-guanine methyltransferase II (S-adenosyl-L-methionine:tRNA (guanine-2)-methyltransferase, EC 2.1.1.32). In crude and partially purified preparations derived from livers of both control and treated animals this enzyme activity was not diminished significantly by exposure to 50°C for 10 min. The same liver-damaging agents induced little or no change in the activities of enzymes that catalyze methyl group transfer to various other E. coli tRNAs that do not have guanine at position 26 (Group 2). The results of mixing experiments appear to rule out the likelihood that the observed enzyme activity changes are due to stimulatory or inhibitory materials present in the enzyme preperations from control or treated animals. Thus, our experiments indicate that liver damage by each of several different methods, including surgery or administration of chemicals that are strong carcinogens, hepatotoxins, or cancer-promoting substances, all produce changes in liver tRNA methyltransferase activity that represent a selective increase in activity of N2-guanine tRNA methyltransferase II. It is proposed that the specificity of this change is not fortuitous, but is the manifestation of an as yet unidentified regulatory process.  相似文献   

2.
tRNA(guanine-1-)-methyltransferase (EC 2.1.1.31) and tRNA(N2-guanine)-methyltransferase I (EC 2.1.1.32) were isolated from rat liver. The (guanine-1-)-methyltransferase preparation is 6800-fold purified and is free from contaminating methyltransferases or ribonuclease. The molecular weight of (guanine-1-)-methyltransferase is 83 000. Of seven purified Escherichia coli tRNAs examined, only tRNAMetf was utilized as substrate by (guanine-1-)-methyltransferase. The methylation of tRNAMetf is maximally stimulated by 40 mM putrescine with a pH optimum of 8.0. Using E. coli K-12 tRNA, the Km for S-adenosylmethionine is 3 micrometer and Ki for S-adenosylhomocysteine is 0.11 micrometer for (guanine-1-)-methyltransferase. (N2-Guanine-)-methyltransferase is 6200-fold purified and is also free of interfering enzymes. It has a molecular weight of 69 000. E. coli tRNAPhe, tRNAVal and tRNAArg are substrates for this enzyme which introduces a methyl at the 2-amino group of the guanine at position 10 from the 5'-terminus of these tRNAs. The methylation of tRNAPhe is maximally stimulated by 100 micrometer spermidine with a pH optimum of 8.0. (N2-Guanine-)-methyltransferase has a Km for S-adenosylmethionine of 2 micrometer and a Ki for S-adenosylhomocysteine of 23 micrometer with E. coli K-12 tRNA as methyl acceptor.  相似文献   

3.
A tRNA (guanine-2) methyltransferase has been purified to homogeneity from the protozoan Tetrahymena pyriformis. The enzyme methylates purified E. coli tRNAs which have a guanine residue at position 26 from the 5' end; it also methylates tRNA prepared from the m22G- yeast mutant trm 1. This methyltransferase is therefore equivalent to the guanine methyltransferase 2mGII found in mammalian extracts. The purified 2mGII from Tetrahymena is capable of forming both N2-methylguanine and N22-dimethylguanine on a single tRNA isoaccepting species; under conditions of limiting tRNA or long reaction times the predominant product is dimethylguanine. Analysis of the products formed under varying reaction conditions suggests that dimethylguanine formation is a two step process requiring dissociation of the enzyme-monomethylated tRNA intermediate.  相似文献   

4.
Transfer RNA (m7G46) methyltransferase catalyzes the methyl transfer from S-adenosylmethionine to N7 atom of the guanine 46 residue in tRNA. Analysis of the Aquifex aeolicus genome revealed one candidate open reading frame, aq065, encoding this gene. The aq065 protein was expressed in Escherichia coli and purified to homogeneity on 15% SDS-polyacrylamide gel electrophoresis. Although the overall amino acid sequence of the aq065 protein differs considerably from that of E. coli YggH, the purified aq065 protein possessed a tRNA (m7G46) methyltransferase activity. The modified nucleoside and its location were determined by liquid chromatography-mass spectroscopy. To clarify the RNA recognition mechanism of the enzyme, we investigated the methyl transfer activity to 28 variants of yeast tRNAPhe and E. coli tRNAThr. It was confirmed that 5'-leader and 3'-trailer RNAs of tRNA precursor are not required for the methyl transfer. We found that the enzyme specificity was critically dependent on the size of the variable loop. Experiments using truncated variants showed that the variable loop sequence inserted between two stems is recognized as a substrate, and the most important recognition site is contained within the T stem. These results indicate that the L-shaped tRNA structure is not required for methyl acceptance activity. It was also found that nucleotide substitutions around G46 in three-dimensional core decrease the activity.  相似文献   

5.
J M Glick  S Ross    P S Leboy 《Nucleic acids research》1975,2(10):1639-1651
Three tRNA methyltransferases from rat liver have been fractionated and purified greater than 100-fold. These enzymes have been examined for their sensitivity to inhibition by S-adenosylhomocysteine (SAH). The methyltransferase which forms m2-guanine in the region between the dihydrouridine loop and the acceptor stem of tRNA (m2-guanine methyltransferase I) is least sensitive to SAH inhibition, with a Ki of 8 muM. The enzyme responsible for forming m2-guanine between the dihydrouridine and anticodon loops (m2-guanine methyltransferase II) has a Ki of 0.3 muM, while m1-adenine methyltransferase shows intermediate sensitivity to SAH (Ki = 2.4 muM). All three methyltransferases have similar Km's for the S-adenosylmethionine substrate (1.5-2.0 muM). These results are consistent with the hypothesis that activity of individual tRNA methyltransferases may be controlled by enzyme systems which alter cellular SAH levels.  相似文献   

6.
L-ethionine has been found to inhibit uracil tRNA methylating enzymes in vitro under conditions where methylation of other tRNA bases is unaffected. No selective inhibitor for uracil tRNA methylases has been identified previously. 15 mM L-ethionine or 30 mM D,L-ethionine caused about 40% inhibition of tRNA methylation catalyzed by enzyme extracts from E. coli B or E. coli M3S (mixtures of methylases for uracil, guanine, cytosine, and adenine) but did not inhibit the activity of preparations from an E. coli mutant that lacks uracil tRNA methylase. Analysis of the 14CH3 bases in methyl-deficient E. coli tRNA after its in vitro methylation with E. coli B3 enzymes in the presence or absence of ethionine showed that ethionine inhibited 14CH3 transfer to uracil in tRNA, but did not diminish significantly the 14CH3 transfer to other tRNA bases. Under similar conditions 0.6 mM S-adenosylethionine and 0.2 mM ethylthioadenosine inhibited the overall tRNA base methylating activity of E. coli B preparations about 50% but neither of these ethionine metabolites preferentially inhibited uracil methylation. Ethionine was not competitive with S-adenosyl methionine. Uracil methylation was not inhibited by alanine, valine, or ethionine sulfoxide. It is suggested that the thymine deficiency that we found earlier in tRNA from ethionine-treated E. coli B cells, resulted from base specific inhibition by the amino acid, ethionine, of uracil tRNA methylation in vivo.  相似文献   

7.
An enzyme was purified from rat liver and leukemic rat spleen which methylates guanosine residues in tRNA to N(2)-methylguanosine. By sequence analysis of bulk E. coli tRNA methylated with crude extracts it was shown that the enzyme is responsible for about 50% of total m(2)G formed invitro. The extent of methylation of a number of homogenous tRNA species was measured using the purified enzyme from both sources. Among tested E. coli tRNAs only tRNA(Arg), tRNA(Phe), and tRNA(Val) yielded significantly more m(2)G than the bulk tRNA. The K(m) for tRNA(Arg) in the methylation reaction with enzymes from either tissue was 7.8 x 10(-7) M as compared to the value 1 x 10(-5) M obtained for the bulk tRNA. In a pancreatic RNase digest of bulk tRNA as well as of pure tRNA(Arg), tRNA(Phe), and tRNA(Val), A-m(2)G-Cp was found to be the only sequence methylated. Thus, the mammalian methyltransferase specifically recognizes the guanylate residue at position 10 from the 5'-end contained in a sequence (s(4))U-A-G-Cp. Furthermore, there is no change between the enzyme from normal liver and leukemic spleen in the affinity for tRNA, the methylating capacity, and tRNA site and sequence recognition specificity.  相似文献   

8.
Bulk tRNA from yeast and Rat liver can be methylated in vitro with -adenosylmethionine and B, subtilis extracts. The sole product formed is 1-methyladenosine (m1A). This tRNA (adenine-1) methyltransferase converts quantitatively the 3'-terminal adenosine-residue in the dihydrouridine-loop of tRNAThr and tRNATyr from yeast into m1A. Out of 16 eucaryotic tRNAs with known sequences 6 accepted methyl groups, all at a molar ratio of 1. These tRNAs have in common an unpaired adenosine-residue at the specific site in the sequence Py-A-A+-G-G-C-m2G. Out of 12 tRNAs from E. coli 6 served as specific substrates. These E. coli tRNAs also have an unpaired adenosine-residue at the 3'-end of the D-loop. Besides restrictions in primary structure intact secondary and tertiary structure is important for recognition of the specific tRNAs by the enzyme.  相似文献   

9.
《The Journal of cell biology》1989,109(4):1411-1419
The TRM1 gene of Saccharomyces cerevisiae encodes a tRNA modification enzyme, N2,N2-dimethylguanosine-specific tRNA methyltransferase, which modifies both mitochondrial and cytoplasmic tRNAs. The enzyme is targeted to mitochondria for the modification of mitochondrial tRNAs. Cellular fractionation and indirect immunofluorescence studies reported here demonstrate that this enzyme is also localized to the nucleus. Further, immunofluorescence experiments using strains that overproduce the enzyme show a staining at the periphery of the nucleus suggesting that the enzyme is found in a subnuclear destination near or at the nuclear membrane. There is no obvious cytoplasmic staining in these overproducing strains. Fusion protein technology was used to begin to localize sequences involved in the nuclear targeting of this enzyme. Indirect immunofluorescence studies indicate that sequences between the first 70 and 213 NH2-terminal amino acids of the methyltransferase are sufficient to target Escherichia coli beta-galactosidase to nuclei.  相似文献   

10.
An enzyme activity transferring methyl groups from S-adenosylmethionine to endogenous tRNA was detected in the cytosol of aggregative Dictyostelium discoideum amoebae. This enzyme was purified more than 1000-fold and was characterized as a tRNA (adenine-N1-)-methyltransferase. Kinetic analysis yielded a K0.5 for S-adenosylmethionine of 0.27 microM and competitive inhibition by S-adenosylhomocysteine showed an I0.5 of 0.26 microM. The tRNA methyltransferase activity was stimulated by monovalent cations and the pH optimum was 7.3. tRNAs isolated from D. discoideum as well as from other eucaryotic sources could be methylated only to a minor extent. In contrast, Escherichia coli tRNA accepted up to 0.6 mol methyl group/mol tRNA, suggesting that the target nucleotide is unmethylated in procaryotic tRNA, but is commonly methylated in tRNAs from eucaryotic organisms. The activity of the methyltransferase increased 4-6-fold during cell differentiation from the vegetative to the aggregative stage.  相似文献   

11.
Transfer RNAs from Escherichia coli, yeast (Sacharomyces cerevisiae), and calf liver were subjected to controlled hydrolysis with venom exonuclease to remove 3'-terminal nucleotides, and then reconstructed successively with cytosine triphosphate (CTP) and 2'- or 3'-deoxyadenosine 5'-triphosphate in the presence of yeast CTP(ATP):tRNA nucleotidyltransferase. The modified tRNAs were purified by chromatography on DBAE-cellulose or acetylated DBAE-cellulose and then utilized in tRNA aminoacylation experiments in the presence of the homologous aminoacyl-tRNA synthetase activities. The E. coli, yeast, and calf liver aminoacyl-tRNA synthetases specific for alanine, glycine, histidine, lysine, serine, and threonine, as well as the E. coli and yeast prolyl-tRNA synthetases and the yeast glutaminyl-tRNA synthetase utilized only those homologous modified tRNAs terminating in 2'-deoxyadenosine (i.e., having an available 3'-OH group). This is interpreted as evidence that these aminoacyl-tRNA synthetases normally aminoacylate their unmodified cognate tRNAs on the 3'-OH group. The aminoacyl-tRNA synthetases from all three sources specific argining, isoleucine, leucine, phenylalanine, and valine, as well as the E. coli and yeast enzymes specific for methionine and the E. coli glutamyl-tRNA synthetase, used as substrates exclusively those tRNAs terminating in 3'-deoxyadenosine. Certain aminoacyl-tRNA synthetases, including the E. coli, yeast, and calf liver asparagine and tyrosine activating enzymes, the E. coli and yeast cysteinyl-tRNA synthetases, and the aspartyl-tRNA synthetase from yeast, utilized both isomeric tRNAs as substrates, although generally not at the same rate. While the calf liver aspartyl- and cysteinyl-tRNA synthetases utilized only the corresponding modified tRNA species terminating in 2'-deoxyadenosine, the use of a more concentrated enzyme preparation might well result in aminoacylation of the isomeric species. The one tRNA for which positional specificity does seem to have changed during evolution is tryptophan, whose E. coli aminoacyl-tRNA synthetase utilized predominantly the cognate tRNA terminating in 3'-deoxyadenosine, while the corresponding yeast and calf liver enzymes were found to utilize predominantly the isomeric tRNAs terminating in 2'-deoxyadenosine. The data presented indicate that while there is considerable diversity in the initial position of aminoacylation of individual tRNA isoacceptors derived from a single source, positional specificity has generally been conserved during the evolution from a prokaryotic to mammalian organism.  相似文献   

12.
The CCA-adding enzyme (ATP:tRNA adenylyltransferase or CTP:tRNA cytidylyltransferase (EC )) generates the conserved CCA sequence responsible for the attachment of amino acid at the 3' terminus of tRNA molecules. It was shown that enzymes from various organisms strictly recognize the elbow region of tRNA formed by the conserved D- and T-loops. However, most of the mammalian mitochondrial (mt) tRNAs lack consensus sequences in both D- and T-loops. To characterize the mammalian mt CCA-adding enzymes, we have partially purified the enzyme from bovine liver mitochondria and determined cDNA sequences from human and mouse dbESTs by mass spectrometric analysis. The identified sequences contained typical amino-terminal peptides for mitochondrial protein import and had characteristics of the class II nucleotidyltransferase superfamily that includes eukaryotic and eubacterial CCA-adding enzymes. The human recombinant enzyme was overexpressed in Escherichia coli, and its CCA-adding activity was characterized using several mt tRNAs as substrates. The results clearly show that the human mt CCA-adding enzyme can efficiently repair mt tRNAs that are poor substrates for the E. coli enzyme although both enzymes work equally well on cytoplasmic tRNAs. This suggests that the mammalian mt enzymes have evolved so as to recognize mt tRNAs with unusual structures.  相似文献   

13.
14.
A 7-methylguanine (m7G) specific tRNA methyltransferase from E. coli MRE 600 was purified about 1000 fold by affinity chromatography on Sepharose bound with normal E. coli tRNA. The purified enzyme catalyzes exclusively the formation of m7G in submethylated bulk tRNA of E. coli K12 met- rel-. The purified enzyme transfers the methyl group from S-adenosyl-methionine to initiator tRNA of B. subtilis and 0.8 moles m7G residues are formed per mole tRNA. It is suggested that the enzyme specifically recognizes the extra arm unpaired guanylate residue.  相似文献   

15.
Active preparations of tRNA and aminoacyl-tRNA synthetases have been isolated from exponentially growing cells of Mycobacterium smegmatis and Mycobacterium tuberculosis H37Rv. Though the aminoacyl-tRNA synthetases of older cells retain their activity, the tRNAs seem to undergo modification and show poorer activity. The mycobacterial enzyme preparations catalyse homologous and heterologous aminoacylation between tRNA from the two species (M. smegmatis and M. tuberculosis H37Rv) or from Escherichia coli, with equal efficiency; tRNA samples from eukaryotic cells (yeast and rat liver) do not serve as substrates for the mycobacterial synthetases. The analytical separation of the different amino acid specific tRNAs from M. smegmatis resembles the pattern found in other bacteria. Purification of valine- (three species) and methionine-specific tRNA (two species) to 70-80% purity has been accomplished by using column-chromatographic techniques. Of the two species of tRNAMet, one can be formylated in the presence of formyl tetrahydrofolate and the transformylase from mycobacteria.  相似文献   

16.
17.
The mod5-1 mutation is a nuclear mutation in Saccharomyces cerevisiae that reduces the biosynthesis of N6-(delta 2-isopentenyl)adenosine in both cytoplasmic and mitochondrial tRNAs to less than 1.5% of wild-type levels. The tRNA modification enzyme, delta 2-isopentenyl pyrophosphate:tRNA isopentenyl transferase, cannot be detected in vitro with extracts from mod5-1 cells. A characterization of the MOD5 gene would help to determine how the same enzyme activity in different cellular compartments can be abolished by a single nuclear mutation. To that end we have cloned the MOD5 gene and shown that it restores delta 2-isopentenyl pyrophosphate:tRNA isopentenyl transferase activity and N6-(delta 2-isopentenyl)adenosine to tRNA in both the mitochondria and the nucleus/cytoplasm compartments of mod5-1 yeast cells. That MOD5 sequences are expressed in Escherichia coli and can complement an N6-(delta 2-isopentenyl)-2-methylthioadenosine-deficient E. coli mutant leads us to conclude that MOD5 is the structural gene for delta 2-isopentenyl pyrophosphate:tRNA isopentenyl transferase.  相似文献   

18.
We showed recently that a mutant of Escherichia coli initiator tRNA with a CAU-->CUA anticodon sequence change can initiate protein synthesis from UAG by using formylglutamine instead of formylmethionine. We further showed that coupling of the anticodon sequence change to mutations in the acceptor stem that reduced Vmax/Km(app) in formylation of the tRNAs in vitro significantly reduced their activity in initiation in vivo. In this work, we have screened an E. coli genomic DNA library in a multicopy vector carrying one of the mutant tRNA genes and have found that the gene for E. coli methionyl-tRNA synthetase (MetRS) rescues, partially, the initiation defect of the mutant tRNA. For other mutant tRNAs, we have examined the effect of overproduction of MetRS on their activities in initiation and their aminoacylation and formylation in vivo. Some but not all of the tRNA mutants can be rescued. Those that cannot be rescued are extremely poor substrates for MetRS or the formylating enzyme. Overproduction of MetRS also significantly increases the initiation activity of a tRNA mutant which can otherwise be aminoacylated with glutamine and fully formylated in vivo. We interpret these results as follows. (i) Mutant initiator tRNAs that are poor substrates for MetRS are aminoacylated in part with methionine when MetRS is overproduced. (ii) Mutant tRNAs aminoacylated with methionine are better substrates for the formylating enzyme in vivo than mutant tRNAs aminoacylated with glutamine. (iii) Mutant tRNAs carrying formylmethionine are significantly more active in initiation than those carrying formylglutamine. Consequently, a subset of mutant tRNAs which are defective in formylation and therefore inactive in initiation when they are aminoacylated with glutamine become partially active when MetRS is overproduced.  相似文献   

19.
The crystal structure of Escherichia coli tRNA (guanosine-1) methyltransferase (TrmD) complexed with S-adenosyl homocysteine (AdoHcy) has been determined at 2.5A resolution. TrmD, which methylates G37 of tRNAs containing the sequence G36pG37, is a homo-dimer. Each monomer consists of a C-terminal domain connected by a flexible linker to an N-terminal AdoMet-binding domain. The two bound AdoHcy moieties are buried at the bottom of deep clefts. The dimer structure appears integral to the formation of the catalytic center of the enzyme and this arrangement strongly suggests that the anticodon loop of tRNA fits into one of these clefts for methyl transfer to occur. In addition, adjacent hydrophobic sites in the cleft delineate a defined pocket, which may accommodate the GpG sequence during catalysis. The dimer contains two deep trefoil peptide knots and a peptide loop extending from each knot embraces the AdoHcy adenine ring. Mutational analyses demonstrate that the knot is important for AdoMet binding and catalytic activity, and that the C-terminal domain is not only required for tRNA binding but plays a functional role in catalytic activity.  相似文献   

20.
Methylation of tRNA at the N-1 position of guanosine to form m(1)G occurs widely in nature. It occurs at position 37 in tRNAs from all three kingdoms, and the methyltransferase that catalyzes this reaction is known from previous work of others to be critically important for cell growth in Escherichia coli and the yeast Saccharomyces cerevisiae. m(1)G is also widely found at position 9 in eukaryotic tRNAs, but the corresponding methyltransferase was unknown. We have used a biochemical genomics approach with a collection of purified yeast GST-ORF fusion proteins to show that m(1)G(9) formation of yeast tRNA(Gly) is associated with ORF YOL093w, named TRM10. Extracts lacking Trm10p have undetectable levels of m(1)G(9) methyltransferase activity but retain normal m(1)G(37) methyltransferase activity. Yeast Trm10p purified from E. coli quantitatively modifies the G(9) position of tRNA(Gly) in an S-adenosylmethionine-dependent fashion. Trm10p is responsible in vivo for most if not all m(1)G(9) modification of tRNAs, based on two results: tRNA(Gly) purified from a trm10-Delta/trm10-Delta strain is lacking detectable m(1)G; and a primer extension block occurring at m(1)G(9) is removed in trm10-Delta/trm10-Delta-derived tRNAs for all 9 m(1)G(9)-containing species that were testable by this method. There is no obvious growth defect of trm10-Delta/trm10-Delta strains. Trm10p bears no detectable resemblance to the yeast m(1)G(37) methyltransferase, Trm5p, or its orthologs. Trm10p homologs are found widely in eukaryotes and many archaea, with multiple homologs in several metazoans, including at least three in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号