首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
MST1 (mammalian STE20-like kinase 1) is a serine/threonine kinase that is cleaved and activated by caspases during apoptosis. Overexpression of MST1 induces apoptotic morphological changes such as chromatin condensation, but the mechanism is not clear. Here we show that MST1 induces apoptotic chromatin condensation through its phosphorylation of histone H2AX at Ser-139. During etoposide-induced apoptosis in Jurkat cells, the cleavage of MST1 directly corresponded with strong H2AX phosphorylation. In vitro kinase assay results showed that MST1 strongly phosphorylates histone H2AX. Western blot and kinase assay results with a mutant S139A H2AX confirmed that MST1 phosphorylates H2AX at Ser-139. Direct binding of MST1 and H2AX can be detected when co-expressed in HEK293 cells and was also confirmed by an endogenous immunoprecipitation study. When overexpressed in HeLa cells, both the MST1 full-length protein and the MST1 kinase domain (MST1-NT), but not the kinase-negative mutant (MST1-NT-KN), could induce obvious endogenous histone H2AX phosphorylation. The caspase-3 inhibitor benzyloxycarbonyl-DEVD-fluoromethyl ketone (Z-DEVD-fmk) attenuates phosphorylation of H2AX by MST1 but cannot inhibit MST1-NT-induced histone H2AX phosphorylation, indicating that cleaved MST1 is responsible for H2AX phosphorylation during apoptosis. Histone H2AX phosphorylation and DNA fragmentation were suppressed in MST1 knockdown Jurkat cells after etoposide treatment. Taken together, our data indicated that H2AX is a substrate of MST1, which functions to induce apoptotic chromatin condensation and DNA fragmentation.  相似文献   

2.
Damage that engenders DNA double-strand breaks (DSBs) activates ataxia telangiectasia mutated (ATM) kinase through its auto- or trans-phosphorylation on Ser1981 and activated ATM is one of the mediators of histone H2AX phosphorylation on Ser139. The present study was designed to explore: (i) whether measurement of ATM activation combined with H2AX phosphorylation provides a more sensitive indicator of DSBs than each of these events alone, and (ii) to reveal possible involvement of ATM activation in H2AX phosphorylation during apoptosis. Activation of ATM and/or H2AX phosphorylation in HL-60 or Jurkat cells treated with topotecan (Tpt) was detected immunocytochemically in relation to cell cycle phase, by multiparameter cytometry. Exposure to Tpt led to concurrent phosphorylation of ATM and H2AX in S-phase cells, whereas G1 cells were unaffected. Immunofluorescence (IF) of the S-phase cells immunostained for ATM-S1981P and gammaH2AX combined was distinctly stronger compared to that of the cells stained for each of these proteins alone. However, because of the relatively high ATM-S1981P IF of G1 cells, the ratio of IF of S to G1 cells, that is, the factor that determines competence of the assay in distinction of cells with DSBs, was 2- to 3-fold lower for ATM-S1981P alone, or for ATM-S1981P and gammaH2AX IF combined, than for gammaH2AX alone. ATM activation concurrent with H2AX phosphorylation, likely triggered by induction of DSBs during DNA fragmentation, occurred during apoptosis. The data suggest that frequency of activated ATM and phosphorylated H2AX molecules, per apoptotic cell, is comparable.  相似文献   

3.
De Souza CP  Osmani AH  Wu LP  Spotts JL  Osmani SA 《Cell》2000,102(3):293-302
Phosphorylation of histone H3 serine 10 correlates with chromosome condensation and is required for normal chromosome segregation in Tetrahymena. This phosphorylation is dependent upon activation of the NIMA kinase in Aspergillus nidulans. NIMA expression also induces Ser-10 phosphorylation inappropriately in S phase-arrested cells and in the absence of NIMX(cdc2) activity. At mitosis, NIMA becomes enriched on chromatin and subsequently localizes to the mitotic spindle and spindle pole bodies. The chromatin-like localization of NIMA early in mitosis is tightly correlated with histone H3 phosphorylation. Finally, NIMA can phosphorylate histone H3 Ser-10 in vitro, suggesting that NIMA is a mitotic histone H3 kinase, perhaps helping to explain how NIMA promotes chromatin condensation in A. nidulans and when expressed in other eukaryotes.  相似文献   

4.
5.
Histone H2AX is phosphorylated on Ser-139 by ATM kinase in response to damage that induces dsDNA breaks. Immunocytochemical detection of phosphorylated H2AX (gammaH2AX), thus, reveals the presence of dsDNA breaks in chromatin. Multiparameter cytometry was presently used to correlate the appearance of gammaH2AX with: a. cell cycle phase; b. caspase-3 activation; and c. apoptosis-associated DNA fragmentation in individual human leukemic HL-60 cells treated with the DNA topoisomerase I (topo1) inhibitors topotecan (TPT) and camptothecin (CPT) or with the topo2 inhibitor mitoxantrone (MTX). In response to TPT or CPT maximal increase of gammaH2AX immunofluorescence was seen in S-phase cells by 90 min. In contrast, following MTX treatment the maximal rise of gammaH2AX was detected at 2 h in G1 cells and the cell cycle phase specificity was much less apparent. A linear relationship between the drug concentration and increase of gammaH2AX immunofluorescence was seen only up to 200 nM TPT; a decline in gammaH2AX was apparent at a concentration range between 0.4 and 1.6 microM TPT. Thus, the intensity of gammaH2AX immunofluorescence, as a marker of cell survival following TPT treatment, can be used only within a limited range of drug concentration. Following treatment with TPT, CPT or MTX the peak of H2AX phosphorylation preceded caspase-3 activation and the appearance of apoptosis-associated DNA fragmentation, both selective to S-phase cells. Progression of apoptosis was paralleled by a decrease in gammaH2AX immunofluorescence. The data also indicate that regardless whether treated with inhibitors of topo1 or topo2, at comparable levels of dsDNA breaks, the cells replicating DNA have a higher proclivity to undergo apoptosis compared to G1 or G2/M cells.  相似文献   

6.
Chromosome condensation at mitosis correlates with the activation of p34cdc2 kinase, the hyperphosphorylation of histone H1 and the phosphorylation of histone H3. Chromosome condensation can also be induced by treating interphase cells with the protein phosphatase 1 and 2A inhibitors okadaic acid and fostriecin. Mouse mammary tumour FT210 cells grow normally at 32 degrees C, but at 39 degrees C they lose p34cdc2 kinase activity and arrest in G2 because of a temperature-sensitive lesion in the cdc2 gene. The treatment of these G2-arrested FT210 cells with fostriecin or okadaic acid resulted in full chromosome condensation in the absence of p34cdc2 kinase activity or histone H1 hyperphosphorylation. However, phosphorylation of histones H2A and H3 was strongly stimulated, partly through inhibition of histone H2A and H3 phosphatases, and cyclins A and B were degraded. The cells were unable to complete mitosis and divide. In the presence of the protein kinase inhibitor starosporine, the addition of fostriecin did not induce histone phosphorylation and chromosome condensation. The results show that chromosome condensation can take place without either the histone H1 hyperphosphorylation or the p34cdc2 kinase activity normally associated with mitosis, although it requires a staurosporine-sensitive protein kinase activity. The results further suggest that protein phosphatases 1 and 2A may be important in regulating chromosome condensation by restricting the level of histone phosphorylation during interphase, thereby preventing premature chromosome condensation.  相似文献   

7.
The phosphorylation of histone H2AX at serine 139 is one of the earliest responses of mammalian cells to ionizing radiation-induced DNA breaks. DNA breaks are also generated during the terminal stages of apoptosis when chromosomal DNA is cleaved into oligonucleosomal pieces. Apoptotic DNA fragmentation and the consequent chromatin condensation are important for efficient clearing of genomic DNA and nucleosomes and for protecting the organism from auto-immmunization and oncogenic transformation. In this study, we demonstrate that H2AX is phosphorylated during apoptotic DNA fragmentation in mouse, Chinese hamster ovary, and human cells. We have previously shown that ataxia telangiectasia mutated kinase (ATM) is primarily responsible for H2AX phosphorylation in murine cells in response to ionizing radiation. Interestingly, we find here that DNA-dependent protein kinase (DNA-PK) is solely responsible for H2AX phosphorylation during apoptosis while ATM is dispensable for the process. Moreover, the kinase activity of DNA-PKcs (catalytic subunit of DNA-PK) is specifically required for the induction of gammaH2AX. We further show that DNA-PKcs is robustly activated in apoptotic cells, as evidenced by autophosphorylation at serine 2056, before it is inactivated by cleavage. In contrast, ATM is degraded well before DNA fragmentation and gammaH2AX induction resulting in the predominance of DNA-PK during the later stages of apoptosis. Finally, we show that DNA-PKcs autophosphorylation and gammaH2AX induction occur only in apoptotic nuclei with characteristic chromatin condensation but not in non-apoptotic nuclei from the same culture establishing the most direct link between DNA fragmentation, DNA-PKcs activation, and H2AX phosphorylation. It is well established that DNA-PK is inactivated by cleavage late in apoptosis in order to forestall DNA repair. Our results demonstrate, for the first time, that DNA-PK is actually activated in late apoptotic cells and is able to initiate an early step in the DNA-damage response, namely H2AX phosphorylation, before it is inactivated by proteolysis.  相似文献   

8.
BACKGROUND: DNA replication stress often induces DNA damage. The antitumor drug hydroxyurea (HU), a potent inhibitor of ribonucleotide reductase that halts DNA replication through its effects on cellular deoxynucleotide pools, was shown to damage DNA inducing double-strand breaks (DSBs). Aphidicolin (APH), an inhibitor of alpha-like DNA polymerases, was also reported to cause DNA damage, but the evidence for induction of DSBs by APH is not straightforward. Histone H2AX is phosphorylated on Ser 139 in response to DSBs and one of the protein kinases that phosphorylate H2AX is ataxia telangiectasia mutated (ATM); activation of ATM is through its phosphorylation of Ser 1981. The present study was undertaken to reveal whether H2AX is phosphorylated in cells exposed to HU or APH and whether its phosphorylation is mediated by ATM. MATERIALS AND METHODS: HL-60 cells were treated in cultures with 0.1-5.0 mM HU or 1-4 muM APH for up to 5 h. Activation of ATM and H2AX phosphorylation was detected immunocytochemically using Ab specific to Ser1981-ATM or Ser 139-H2AX epitopes, respectively, concurrent with measurement of cellular DNA content. RESULTS: While exposure of cells to HU led to H2AX phosphorylation selectively during S phase and the cells progressing through the early portion of S (DI = 1.1-1.4) were more affected than late-S phase (DI = 1.6-1.9) cells, ATM was not activated by HU. In fact, the level of constitutive ("programmed") ATM phosphorylation was distinctly suppressed, in all phases of the cell cycle, at 0.1-5.0 mM HU. Cells' exposure to APH also resulted in H2AX phosphorylation at Ser139 with no evidence of ATM activation, and as in the case of HU, the early-S cells were more affected than the late-S phase cells. The rise in frequency of apoptotic cells became apparent after 2 h of exposure to HU or APH, and all apoptotic cells had markedly elevated levels of both H2AX-Ser139 and ATM-Ser1981 phosphorylation. CONCLUSIONS: The lack of correlation between H2AX phosphorylation and ATM activation indicates that protein kinase(s) other than ATM (ATR and/or DNA-dependent protein kinase) are activated by DSBs induced by replication stress. Interestingly, HU inhibits the constitutive ("programmed") level of ATM phosphorylation in untreated cells. However, DNA fragmentation during apoptosis activates ATM and dramatically increases level of H2AX phosphorylation.  相似文献   

9.
Song L  Li D  Liu R  Zhou H  Chen J  Huang X 《Cell biology international》2007,31(10):1184-1190
Ser-10 phosphorylation of histone H3 is revealed to be relative to chromosome condensation at prophase during mitosis. In this report, we demonstrate using immunofluorescence microscopy that the subcellular distribution of the Ser-10 phosphorylated histone H3 was similar to that characteristic of chromosomal passenger proteins during the terminal stages of cytokinesis. Co-immunoprecipitation indicates that the Ser-10 phosphorylated histone H3 is associated with the aurora B, and both of the proteins were compacted into a complex with special ternary structure located in the centre of the midbody. When the level of the Ser-10 phosphorylated histone H3 was reduced by RNA interference, the cells formed an aberrant midbody and could not complete cytokinesis successfully. This evidence suggests that Ser-10 phosphorylated histone H3 is a chromosomal passenger protein and plays a crucial role in cytokinesis.  相似文献   

10.
ATM phosphorylates histone H2AX in response to DNA double-strand breaks   总被引:38,自引:0,他引:38  
A very early step in the response of mammalian cells to DNA double-strand breaks is the phosphorylation of histone H2AX at serine 139 at the sites of DNA damage. Although the phosphatidylinositol 3-kinases, DNA-PK (DNA-dependent protein kinase), ATM (ataxia telangiectasia mutated), and ATR (ATM and Rad3-related), have all been implicated in H2AX phosphorylation, the specific kinase involved has not yet been identified. To definitively identify the specific kinase(s) that phosphorylates H2AX in vivo, we have utilized DNA-PKcs-/- and Atm-/- cell lines and mouse embryonic fibroblasts. We find that H2AX phosphorylation and nuclear focus formation are normal in DNA-PKcs-/- cells and severely compromised in Atm-/- cells. We also find that ATM can phosphorylate H2AX in vitro and that ectopic expression of ATM in Atm-/- fibroblasts restores H2AX phosphorylation in vivo. The minimal H2AX phosphorylation in Atm-/- fibroblasts can be abolished by low concentrations of wortmannin suggesting that DNA-PK, rather than ATR, is responsible for low levels of H2AX phosphorylation in the absence of ATM. Our results clearly establish ATM as the major kinase involved in the phosphorylation of H2AX and suggest that ATM is one of the earliest kinases to be activated in the cellular response to double-strand breaks.  相似文献   

11.

Background  

In response to DNA damage or structural alterations of chromatin, histone H2AX may be phosphorylated on Ser139 by phosphoinositide 3-kinase related protein kinases (PIKKs) such as ataxia telangiectasia mutated (ATM), ATM-and Rad-3 related (ATR) kinase, or by DNA dependent protein kinase (DNA-PKcs). When DNA damage primarily involves formation of DNA double-strand breaks (DSBs), H2AX is preferentially phosphorylated by ATM rather than by the other PIKKs. We have recently reported that brief exposure of human pulmonary adenocarcinoma A549 cells or normal human bronchial epithelial cells (NHBE) to cigarette smoke (CS) induced phosphorylation of H2AX.  相似文献   

12.
Oxidative burst is a defense mechanism used by specialized phagocytes such as granulocytes or monocytes to kill the invading microorganisms through generation of superoxide anions. Oxidative burst also results in DNA damage of the phagocytes. Phagocytes are terminally differentiated and some of very short life-span cells. We could find no reports whether oxidative burst-mediated DNA damage triggers in such cells histone H2AX-Ser139 phosphorylation and activation of Ataxia Telangiectasia Mutated (ATM), the signals otherwise used to activate DNA repair and checkpoint pathways in proliferating cells. We now present the evidence that induction of oxidative stress in human peripheral blood leukocytes by phorbol myristate acetate (PMA) was associated with intense phosphorylation of histone H2AX and with ATM activation, seen already 60 min after exposure to PMA. The modifications of H2AX and ATM in individual granulocytes, monocytes and lymphocytes were detected prior to caspases activation and thus were unrelated to induction of apoptosis. A large intercellular variation in response was observed, and only a fraction of cells in these subpopulations showed H2AX and ATM modifications. The data are compatible with the earlier observations of DNA damage during oxidative burst and suggest that even in terminally differentiated cells that have a short life-span, DNA damage triggers recruitment of the DNA repair machinery. The observed H2AX phosphorylation in lymphocytes may reflect their DNA damage by the superoxide ions propagating from the neighboring granulocytes and/or monocytes.  相似文献   

13.
Aurora kinase B (AURKB) is a chromosomal passenger protein that is essential for a number of processes during mitosis. Its activity is regulated by association with two other passenger proteins, INCENP and Survivin, and by phosphorylation on Thr 232. In this study, we examine expression and phosphorylation on Thr-232 of AURKB during meiotic maturation of pig oocytes in correlation with histone H3 phosphorylation and chromosome condensation. We show that histone H3 phosphorylation on Ser-10, but not on Ser-28, correlates with progressive chromosome condensation during oocyte maturation; Ser-10 phosphorylation starts around the time of the breakdown of the nuclear envelope, with the maximal activity in metaphase I, whereas Ser-28 phosphorylation does not significantly change in maturing oocytes. Treatment of oocytes with 50 microM butyrolactone I (BL-I), an inhibitor of cyclin-dependent kinases, or cycloheximide (10 microg/ml), inhibitor of proteosynthesis, results in a block of oocytes in the germinal vesicle stage, when nuclear membrane remains intact; however, condensed chromosome fibers or highly condensed chromosome bivalents can be seen in the nucleoplasm of BL-I- or cycloheximide-treated oocytes, respectively. In these treated oocytes, no or only very weak AURKB activity and phosphorylation of histone H3 on Ser-10 can be detected after 27 h of treatment, whereas phosphorylation on Ser-28 is not influenced. These results suggest that AURKB activity and Ser-10 phosphorylation of histone H3 are not required for chromosome condensation in pig oocytes, but might be required for further processing of chromosomes during meiosis.  相似文献   

14.
Histone H2AX is phosphorylated on Ser-139 by ATM kinase in response to damage that induces dsDNA breaks. Immunocytochemical detection of phosphorylated H2AX (gH2AX), thus, reveals the presence of dsDNA breaks in chromatin. Multiparameter cytometry was presently used to correlate the appearance of gH2AX with:

a. cell cycle phase;

b. caspase-3 activation; and

c. apoptosis-associated DNA fragmentation in individual human leukemic HL-60 cells treated with the DNA topoisomerase I (topo1) inhibitors topotecan (TPT) and camptothecin (CPT) or with the topo2 inhibitor mitoxantrone (MTX).

In response to TPT or CPT maximal increase of gH2AX immunofluorescence was seen in S-phase cells by 90 min. In contrast, following MTX treatment the maximal rise of gH2AX was detected at 2 h in G1 cells and the cell cycle phase specificity was much less apparent. A linear relationship between the drug concentration and increase of gH2AX immunofluorescence was seen only up to 200 nM TPT; a decline in gH2AX was apparent at a concentration range between 0.4 and 1.6 mM TPT. Thus, the intensity of gH2AX immunofluorescence, as a marker of cell survival following TPT treatment, can be used only within a limited range of drug concentration. Following treatment with TPT, CPT or MTX the peak of H2AX phosphorylation preceded caspase-3 activation and the appearance of apoptosis-associated DNA fragmentation, both selective to S-phase cells. Progression of apoptosis was paralleled by a decrease in gH2AX immunofluorescence. The data also indicate that regardless whether treated with inhibitors of topo1 or topo2, at comparable levels of dsDNA breaks, the cells replicating DNA have a higher proclivity to undergo apoptosis compared to G1 or G2/M cells.  相似文献   

15.
Histone phosphorylation was investigated in several mammalian cells undergoing apoptosis (human HL-60 and HeLa, mouse FM3A and N18 cells, and rat thymocytes). Among the four nucleosomal core histones (H2A, H2B, H3, and H4), H2B, which is not usually phosphorylated in quiescent or growing cells, was found to be phosphorylated after treatment with various apoptotic inducers. The H2B was phosphorylated around the time when nucleosomal DNA fragmentation was initiated and, like this fragmentation, was completely blocked with Z-Asp-CH(2)-DCB, an inhibitor of ICE or ICE-like caspase. The involved single phosphopeptide of H2B proved to be phosphorylatable in vitro with a protein kinase C, and the site Ser-32 was tentatively identified. Despite typical apoptotic chromatin condensation, the H3 phosphorylation was at a low level, and the sites where phosphorylation did occur did not include any mitosis-specific phosphopeptides. Phosphorylation of H4 was increased, but the other two histone proteins (H1 and H2A) were not appreciably changed. These observations imply that 1) H2B phosphorylation occurs universally in apoptotic cells and is associated with apoptosis-specific nucleosomal DNA fragmentation, 2) chromatin condensation in apoptosis occurs by a different biochemical mechanism from those operating during mitosis or premature chromosome condensation, and 3) this unique phosphorylation of H2B is a useful biochemical hallmark of apoptotic cells.  相似文献   

16.
This review covers the topic of cytometric assessment of activation of Ataxia telangiectasia mutated (ATM) protein kinase and histone H2AX phosphorylation on Ser139 in response to DNA damage, particularly the damage that involves formation of DNA double-strand breaks. Briefly described are molecular mechanisms associated with activation of ATM and the downstream events that lead to recruitment of DNA repair machinery, engagement of cell cycle checkpoints, and activation of apoptotic pathway. Examples of multiparameter analysis of ATM activation and H2AX phosphorylation vis-a-vis cell cycle phase position and induction of apoptosis that employ flow- and laser scanning-cytometry are provided. They include cells treated with a variety of exogenous genotoxic agents, such as ionizing and UV radiation, DNA topoisomerase I (topotecan) and II (mitoxantrone, etoposide) inhibitors, nitric oxide-releasing aspirin, DNA replication inhibitors (aphidicolin, hydroxyurea, thymidine), and complex environmental carcinogens such as present in tobacco smoke. Also presented is an approach to identify DNA replicating (BrdU incorporating) cells based on selective photolysis of DNA that triggers H2AX phosphorylation. Listed are strategies to distinguish ATM activation and H2AX phosphorylation induced by primary DNA damage by genotoxic agents from those effects triggered by DNA fragmentation that takes place during apoptosis. While we review most published data, recent new findings also are included. Examples of multivariate analysis of ATM activation and H2AX phosphorylation presented in this review illustrate the advantages of cytometric flow- and image-analysis of these events in terms of offering a sensitive and valuable tool in studies of factors that induce DNA damage and/or affect DNA repair and allow one to explore the linkage between DNA damage, cell cycle checkpoints and initiation of apoptosis.  相似文献   

17.
A variant of histone H2A, H2AX, is phosphorylated on Ser139 in response to DNA double-strand breaks (DSBs), and clusters of the phosphorylated form of H2AX (gamma-H2AX) in nuclei of DSB-induced cells show foci at breakage sites. Here, we show phosphorylation of H2AX in a cell cycle-dependent manner without any detectable DNA damage response. Western blot and immunocytochemical analyses with the anti-gamma-H2AX antibody revealed that H2AX is phosphorylated at M phase in HeLa cells. In ataxia-telangiectasia cells lacking ATM kinase activity, gamma-H2AX was scarcely detectable in the mitotic chromosomes, suggesting involvement of ATM in M-phase phosphorylation of H2AX. Single-cell gel electrophoresis assay and Western blot analysis with the anti-phospho-p53 (Ser15) antibody indicated that H2AX in human M-phase cells is phosphorylated independently of DSB and DNA damage signaling. Even in the absence of DNA damage, phosphorylation of H2AX in normal cell cycle progression may contribute to maintenance of genomic integrity.  相似文献   

18.
Phosphorylation of histone H3 on Ser-10 is regarded as an epigenetic mitotic marker and is tightly correlated with chromosome condensation during both mitosis and meiosis. However, it was also reported that histone H3 Ser-10 phosphorylation occurs when cells are exposed to various death stimuli, suggesting a potential role in the regulation of apoptosis. Here we report that histone H3 Ser-10 phosphorylation is mediated by the pro-apoptotic kinase protein kinase C (PKC) δ during apoptosis. We observed that PKCδ robustly phosphorylates histone H3 on Ser-10 both in vitro and in vivo. Ectopic expression of catalytically active PKCδ efficiently induces condensed chromatin structure in the nucleus. We also discovered that activation of PKCδ is required for histone H3 Ser-10 phosphorylation after treatment with DNA damaging agents during apoptosis. Collectively, these findings suggest that PKCδ is the kinase responsible for histone H3 Ser-10 phosphoryation during apoptosis and thus contributes to chromatin condensation together with other apoptosis-related histone modifications. As a result, histone H3 Ser-10 phosphorylation can be designated a new ‘apoptotic histone code’ mediated by PKCδ.  相似文献   

19.
DNA damage response recruits complex molecular machinery involved in DNA repair, arrest of cell cycle progression, and potentially in activation of apoptotic pathway. Among the first responders is the Mre11- (MRN) complex of proteins (Mre11, Rad50, Nbs1), essential for activation of ATM; the latter activates checkpoint kinase 2 (Chk2) and phosphorylates histone H2AX. In the present study the recruitment of Mre11 and phosphorylation of ATM, Chk2 and H2AX (γH2AX) detected immunocytochemically were measured by laser scanning cytometry to assess kinetics of these events in A549 cells treated with H2O2. Recruitment of Mre11 was rapid, peaked at 10 min of exposure to the oxidant, and was of similar extent in all phases of the cell cycle. ATM and Chk2 activation as well as H2AX phosphorylation reached maximum levels after 30 min of treatment with H2O2; the extent of phosphorylation of each was most prominent in S-, less in G1-, and the least in G2M- phase cells. A strong correlation between activation of ATM and Chk2, measured in the same cells, was seen in all phases of the cycle. In untreated cells activated Chk2 and Mre11 were distinctly present in centrosomes while in interphase cells they had characteristic punctate nuclear localization. The punctate expression of activated Chk2 both in untreated and H2O2 treated cells was accentuated when measured as maximal pixel rather than integrated value of immunofluorescence (IF) per nucleus, and was most pronounced in G1 cells, likely reflecting the function of Chk2 in activating Cdc25A. Subpopulations of G1 and G2M cells with strong maximal pixel of Chk2-Thr68P IF in association with centrosomes were present in untreated cultures. Cytometric multiparameter assessment of the DNA damage response utilizing quantitative image analysis that allows one to measure inhomogeneity of fluorochrome distribution (e.g. maximal pixel) offers unique advantage in studies of the response of different cell constituents in relation to cell cycle position.  相似文献   

20.
TRAIL is an endogenous death receptor ligand also used therapeutically because of its selective proapoptotic activity in cancer cells. In the present study, we examined chromatin alterations induced by TRAIL and show that TRAIL induces a rapid activation of DNA damage response (DDR) pathways with histone H2AX, Chk2, ATM, and DNA-PK phosphorylations. Within 1 h of TRAIL exposure, immunofluorescence confocal microscopy revealed γ-H2AX peripheral nuclear staining (γ-H2AX ring) colocalizing with phosphorylated/activated Chk2, ATM, and DNA-PK inside heterochromatin regions. The marginal distribution of DDR proteins in early apoptotic cells is remarkably different from the focal staining seen after DNA damage. TRAIL-induced DDR was suppressed upon caspase inhibition or Bax inactivation, demonstrating that the DDR activated by TRAIL is downstream from the mitochondrial death pathway. H2AX phosphorylation was dependent on DNA-PK, while Chk2 phosphorylation was dependent on both ATM and DNA-PK. Downregulation of Chk2 decreased TRAIL-induced cell detachment; delayed the activation of caspases 2, 3, 8, and 9; and reduced TRAIL-induced cell killing. Together, our findings suggest that nuclear activation of Chk2 by TRAIL acts as a positive feedback loop involving the mitochondrion-dependent activation of caspases, independently of p53.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号