首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

DNA groove binders have been poorly studied as compared to the intercalators. A novel Ru(II) complex of [Ru(aeip)2(Haip)](PF6)2 {Haip?=?2-(9-anthryl)-1H-imidazo[4,5-f][1,10]phenanthroline and aeip = 2-(anthracen-9-yl)-1-ethyl-imidazo[4,5-f][1, 10]phenanthroline} is synthesized and characterized by elemental analysis, 1H NMR spectroscopy and mass spectrometry. The complex is evidenced to be a calf-thymus DNA groove binder with a large intrinsic binding constant of 106 M?1 order of magnitude as supported by UV–visible absorption spectral titrations, salt effects, DNA competitive binding with ethidium bromide, DNA melting experiment, DNA viscosity measurements and density functional theory calculations. The acid-base properties of the complex studied by UV–Vis spectrophotometric titrations are reported as well.  相似文献   

2.
Reported herein are studies of the concentration and temperature dependent interactions with DNA of the stereochemically defined mixed-metal supramolecular complexes, [(tpy)Ru(tppz)PtCl](PF6)3 and [ClPt(tppz)Ru(tppz)PtCl](PF6)4 (tpy = 2,2′:6′,2′′-terpyridine and tppz = 2,3,5,6-tetrakis(2-pyridyl)pyrazine). These metal complexes couple a ruthenium based light absorber (LA) to the bioactive platinum sites (BAS) using a tridentate bridging ligand (BL). The complexes exhibit intense Ru → tppz(π∗) metal to ligand charge transfer (MLCT) transitions in the visible region and adopt a square planar geometry around the Pt(II) center. The effect of incubating these metal complexes with DNA on the subsequent migration of DNA through an agarose gel was found to be more dramatic than that observed for the well known anticancer drug, cis-[Pt(NH3)2Cl2] (cisplatin). This effect was enhanced with increased incubation temperature. Unwinding of supercoiled plasmid DNA was found to be more pronounced for the trimetallic complex, [ClPt(tppz)Ru(tppz)PtCl](PF6)4, than for the bimetallic complex, [(tpy)Ru(tppz)PtCl](PF6)3.  相似文献   

3.
Metal complexes that establish interactions with DNA are being studied not only because of their potential use as therapeutic agents but also as tools for biochemistry and molecular biology. Searching for drugs with anti-trypanosome activity, we previously synthesized a series of ruthenium mixed ligand dimethyl sulfoxide complexes of the type [Ru(II)Cl(2)(DMSO)(2)L], where L is 5-nitrofurylsemicarbazone derivatives and DMSO is dimethyl sulfoxide. Though they present the ability to bind DNA, no activity against parasites in cell culture was observed. Considering their potential application as molecular tools we further analyzed the interactions with DNA through an electrophoretic approach. Non covalent withdrawal of superhelicity and a rapid nicking activity upon covalent interaction was observed. Inhibition of both effects was observed in the presence of distamycin suggesting the involvement of the DNA minor groove in the interaction with the nitrofurylsemicarbazone ruthenium complexes. In addition cleavage inhibition by dimethyl sulfoxide suggests an oxidative mechanism of action.  相似文献   

4.
Three binuclear Ru(II) complexes with two [Ru(bpy)2(pip)]2+-based subunits {where bpy = 2,2′-bipyridine and pip = 2-phenylimidazo[4,5-f][1,10]phenanthroline} being linked by varied lengths of flexible bridges, were synthesized and characterized by 1H NMR, elemental analysis, UV-visible (UV-vis) and photoluminescence spectroscopy. The structures of the three complexes were optimized by density functional theory calculations. The interaction of the complexes with calf thymus DNA was investigated by UV-vis and luminescence titrations, steady-state emission quenching by [Fe(CN)6]4−, DNA competitive binding with ethidium bromide, DNA melting experiments, and viscosity measurements. The experimental results indicated that the three complexes bound to the DNA most probably in a threading intercalation binding mode with high DNA binding constant values three orders of magnitude greater than the DNA binding constant value reported for proven DNA intercalator, mononuclear counterpart [Ru(bpy)2(p-mopip)]2+ {p-mopip = 2-(4-methoxylphenyl)imidazo[4,5-f][1,10]phenanthroline}.  相似文献   

5.
Octaarginine (R8) is a representative cell-penetrating peptide. Lanthionine synthetase component C-like protein 1 (LanCL1) was identified as a potential intracellular target of R8 by using a photo-crosslinking assay that utilized a phenyl-trifluoromethyl diazirine moiety and peptide mass fingerprinting. Increased cellular uptake of R8 by LanCL1-overexpressing cells was observed.  相似文献   

6.
The new ligand 2-(4-phenoxyphenyl)-1H-imidazo[4,5-f][1,10]phenanthroline (ppip) and its Ru(II) complexes [Ru(2,9-dmp)2(ppip)]2+ (1) and [Ru(4,7-dmp)2(ppip)]2+ (2; 2,9- and 4,7-dmp = 2,9- and 4,7-dimethyl-1,10-phenanthroline, resp.) were synthesized and characterized. The binding properties of the two complexes towards calf-thymus DNA (CT-DNA) in buffered H2O (pH 7.2) were investigated by different spectrophotometric methods and viscosity measurements. Both 1 and 2 strongly bind to CT-DNA by means of intercalation, but with different binding strengths. In contrast to the more tightly bound complex 2, the sterically more-demanding complex 1 showed no fluorescence emission, neither alone nor in the presence of CT-DNA. Our results demonstrate that the position of Me groups on phenanthroline (phen) ancillary ligands significantly affects the overall DNA-recognition propensities of Ru(II)-polypyridyl complexes. Further, the partly resolved complex 2 was shown by circular dichroism (CD) to stereoselectively recognize CT-DNA, in contrast to 1.  相似文献   

7.
A mononuclear Ru(II) complex based on a new heptacyclic ligand (dpqp) has been prepared and characterized by NMR spectroscopy, ES mass spectrometry and electrochemistry. It forms dimers and aggregates of up to seven complex units in CH3CN solution observed by ESMS. The monomer has an extremely weak luminescence in water or even in organic solvent probably due to the existence of a low lying π-π excited state centered on the heptacycle. In spite of the strong interaction of the complex with DNA, its luminescence is not enhanced by the DNA microenvironment.  相似文献   

8.
A new porphyrin 5,15-(4-pyridyl)-10,20-(pentafluorophenyl)porphyrin (H2DPDPFPP) and its diruthenium(II) analog ([trans-H2(DPDPFPP)Ru2(bipy)4Cl2(PF6)2]) have been synthesized and characterized. Electronic transitions associated with the porphyrin consist of an intense Soret band near 400 nm and four Q-bands from 500 nm to 650 nm. Coordination of two [Ru(bipy)2Cl]+ groups, where bipy = 2,2′-bipyridine, to the pyridyl nitrogens of the porphyrin give additional electronic transitions associated with the bipy orbitals and metal to ligand charge transfer (MLCT) transitions associated with the Ru(II) and bipy orbitals. Reversible redox couples in the cathodic region occur at E1/2 = −0.74 V and −1.21 V versus Ag/AgCl reference which are shifted to more positive potentials when the porphyrin is coordinated to the Ru(II) groups. Gel electrophoresis studies with linearized pUC18 indicate an interaction between the metallated porphyrin and DNA which is confirmed by UV/Vis titrations with calf thymus (CT) DNA giving a binding constant of ca. 105 M−1. When buffered, pH 7, solutions of circular plasmid DNA containing the ruthenium porphyrin are irradiated with a 50 W tungsten lamp cleavage of the DNA is observed.  相似文献   

9.
The heteroleptic complexes, [(MePhtpy)RuCl(dpp)](PF6) and [(tpy)RuCl(dpp)](PF6), have been synthesized, characterized, and investigated with respect to their photophysical, redox, and DNA photocleavage properties (where MePhtpy = 4′-(4-methylphenyl)-2,2′:6′,2′′-terpyridine and dpp = 2,3-bis(2-pyridyl)pyrazine, tpy = 2,2′:6′,2′′-terpyridine). The X-ray crystal structure confirms the identity of the new [(MePhtpy)RuCl(dpp)](PF6) complex. These heteroleptic complexes were found to photocleave DNA in the presence of oxygen, unlike the previously studied complex, [Ru(tpy)2](PF6)2. The photophysical, redox, and DNA photocleavage properties of the heteroleptic complexes were compared with those of the homoleptic complexes, [Ru(MePhtpy)2](PF6)2 and [Ru(tpy)2](PF6)2. The heteroleptic complexes showed intense metal to ligand charge transfer (MLCT) transition at lower energy ([(MePhtpy)RuCl(dpp)](PF6), 522 nm; [(tpy)RuCl(dpp)](PF6), 516 nm) and longer excited state lifetimes as compared to the homoleptic complexes. The [Ru(MePhtpy)2]2+ complex was found to photocleave DNA in contrast to [Ru(tpy)2]2+. The introduction of a methylphenyl group on the tepyridine ligand not only enhances the 3MLCT excited state lifetime but also increases the lipophilicity and thereby the DNA binding ability of the molecule. An increase in lipophilicity upon addition of a methylphenyl group on the 2,2′:6′,2′′-terpyridine ligand was confirmed by determination of the partition coefficient ([(MePhtpy)RuCl(dpp)](PF6), log P = +1.16; [(tpy)RuCl(dpp)](PF6), log P = −1.27). The heteroleptic complexes photocleave DNA more efficiently than the homoleptic complexes, with the greatest activity being observed for the newly prepared [(MePhtpy)RuCl(dpp)](PF6) complex.  相似文献   

10.
Gao F  Chao H  Ji LN 《化学与生物多样性》2008,5(10):1962-1979
The interaction of ruthenium(II)-polypyridyl complexes with DNA has attracted considerable interests during the past two decades. This paper presents some recent progresses in our laboratory on the interaction of Ru(II)-polypyridyl complexes with DNA. The first part describes the effect of modulating the intercalative ligand on the DNA-binding behaviors of the complexes, such as DNA-binding affinity, DNA-binding enantioselectivity, DNA molecular 'light switch' effect, and DNA sequence selectivity. The second part focuses on the DNA photocleavage by the complexes and its mechanism. In the final part, we discuss the topoisomerase inhibition and its mechanism, as well as the antitumor activity of the Ru(II)-polypyridyl complexes.  相似文献   

11.
A DNA-intercalating Ru(II) polypyridyl complex [Ru(bpy)2(appo)]2+ (bpy = 2,2′-bipyridine, appo = 11-aminopteridino[6,7-f][1,10]phenanthrolin-13(12H)-one) has been synthesized and characterized by elemental analysis, electrospray mass spectra, 1H NMR, UV/Vis spectrum, fluorescent spectrum and electrochemistry. The DNA-binding, photocleavage, and topoisomerase inhibition of the complex was studied. Interestingly, the complex binds to DNA via an intercalative mode with preference for GC sequences and cleaves the pBR322 DNA upon irradiation. In addition, the complex shows high inhibition activity against topoisomerase II by interfere the DNA religation.  相似文献   

12.
A new ruthenium(II) complex, [Ru(bpy)2(Htip)]Cl2 {where bpy = 2,2′-bipyridine and Htip = 2-(thiophen-2-yl)-1H-imidazo[4,5-f][1,10]phenanthroline}, has been synthesized and characterized by 1H NMR spectroscopy, elemental analysis, and mass spectrometry. The pH effects on UV-Vis absorption and emission spectra of the complex have been studied, and the ground- and excited-state acidity ionization constant values have been derived. The calf thymus (ct) DNA binding properties of the complex have been investigated with UV-Vis absorption and luminescence titrations, steady-state emission quenching by [Fe(CN)6]4−, DNA competitive binding with ethidium bromide, DNA melting experiments, and viscosity measurements. The molecular structures and electronic properties of [Ru(bpy)2(Htip)]2+ and deprotonated form [Ru(bpy)2(tip)]+ have also been investigated by means of density functional theory calculations in an effort to understand the DNA binding properties. The results suggest that the complex undergo three-step successive protonation/deprotonation reactions with one of which occurring over physiological pH region, and act as a ct-DNA intercalator with an intrinsic DNA binding constant value on 105 M−1 order of magnitude that is insensitive to pH.  相似文献   

13.
The hydration of nitriles to the corresponding amides is an important reaction for both laboratory and industry purposes. The classical synthesis method requires harsh conditions, gives low yields, and is nonselective due to further hydrolysis of the amides into carboxylic acids. To obtain good yields and high selectivity, transition metal complexes have been utilized as catalysts for this transformation. Herein, a series of Ru(II)- and Os(II)-arene complexes--based on pyranone, thiopyranone, and pyridinone ligands--were assayed on the hydration of chloroacetonitriles. The influence of the substitution pattern of the ligand, and of the nuclearity and of the type of substrate on the yield, the selectivity, and the turnover numbers are discussed.  相似文献   

14.
A DNA-intercalating Ru(II) polypyridyl complex [Ru(bpy)2(appo)]2+ (bpy = 2,2′-bipyridine, appo = 11-aminopteridino[6,7-f][1,10]phenanthrolin-13(12H)-one) has been synthesized and characterized by elemental analysis, electrospray mass spectra, 1H NMR, UV/Vis spectrum, fluorescent spectrum and electrochemistry. The DNA-binding, photocleavage, and topoisomerase inhibition of the complex was studied. Interestingly, the complex binds to DNA via an intercalative mode with preference for GC sequences and cleaves the pBR322 DNA upon irradiation. In addition, the complex shows high inhibition activity against topoisomerase II by interfere the DNA religation.  相似文献   

15.
The mechanism of enzymatic elongation by Escherichia coli DNA polymerase II of a DNA primer, which is annealed to a unique position on the bacteriophage fd viral DNA, has been studied. The enzyme is found to dissociate from the substrate at specific positions on the genome which act as “barriers” to further primer extension. It is believed these are sites of secondary structure in the DNA. When the template is complexed with E. coli DNA binding protein many of these barriers are eliminated and the enzyme remains associated with the same primer-template molecule during extensive intervals of DNA synthesis. Despite the presence of E. coli DNA binding protein, at least one barrier on the fd genome remains rate-limiting to chain extension and disturbs the otherwise processive mechanism of DNA synthesis. This barrier is overcome by increasing the concentration of enzyme.In contrast, it is found that DNA polymerase I is not rate-limited by structural barriers in the template, however, it exhibits a non-processive mechanism of elongation.These findings provide a framework for understanding the necessity for participation of proteins other than a DNA polymerase in chain extension during chromosomal replication.  相似文献   

16.
Excited state transitions and energies of a series of [Ru(bpy)3]2+ type complexes incorporating the ligand, 4,4′-bis-phosphonato(methyl)-2,2′-bipyridine (dmpbpy) was investigated, and the influence of this organometallic ligand on the electronic structure of the complexes was examined using Time-Dependent Density Functional Theory (TD-DFT). Experimental data and the theoretical TD-DFT calculations were presented to support the effect of non-equivalent ligand substitution on spectral and molecular orbital (MO) energy properties on this class of tris-chelate surface sensitisers. For the series of complexes studied, it was identified that the lowest lying LUMO states were consistently found to reside on the ligand 2,2′-bipyridine (bpy) for gas phase calculations. As an implication of this, it was suggested that this could impact the effectiveness of these complexes as surface sensitisers in PEC cell applications such as the dye-sensitised solar cell (DSC) due to the lower probability of the excited state electron residing on a ligand anchored to the semiconductor substrate. However, further calculations in a solvation medium showed that the electron withdrawing nature of PO3H2 on dmpbpy saw the lowest lying LUMO states are populated on dmpbpy. This inhomogeneous distribution of electron density across non-equivalent ligands may have implications for further ‘spectral tuning’ of surface sensitisers. Despite the TD-DFT gas phase calculations not being corrected for solvent/media effects, the three longest wavelength bands associated with known charge transfer phenomena were identified. The symmetry allowed MLCT in the visible region was assigned as a  ←  transition, the mid-UV spectrum LC was assigned  ← π in origin. Whilst the near-UV shoulder on the blue side of MLCT showed  ←  and π∗ ←  transitional character and was tentatively described as MC/MLCT. UV-Vis absorption spectra calculated for solvated analogues containing dmpbpy indicated that the low energy transitions associated with the MLCT are subject to bathochromic shift due to solvent polarity by 0.062 eV (500 cm−1) compared with the gas phase calculations, which is more highly correlated to the observed experimental transitions.  相似文献   

17.
18.
Many antitumor drugs act as topoisomerase inhibitors, and the inhibitions are usually related to DNA binding. Here we designed and synthesized DNA-intercalating Ru(II) polypyridyl complexes Δ--[Ru(bpy)2(uip)]2+ and Λ-[Ru(bpy)2(uip)]2+ (bpy is 2,2′-bipyridyl, uip is 2-(5-uracil)-1H-imidazo[4,5-f][1,10]phenanthroline). The DNA binding, photocleavage, topoisomerase inhibition, and cytotoxicity of the complexes were studied. As we expected, the synthesized Ru(II) complexes can intercalate into DNA base pairs and cleave the pBR322 DNA with high activity upon irradiation. The mechanism studies reveal that singlet oxygen (1O2) and superoxide anion radical (O2•−) may play an important role in the photocleavage. The inhibition of topoisomerases I and II by the Ru(II) complexes has been studied. The results suggest that both complexes are efficient inhibitors towards topoisomerase II by interference with the DNA religation and direct topoisomerase II binding. Both complexes show antitumor activity towards HELA, hepG2, BEL-7402, and CNE-1 tumor cells. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

19.
A novel complex, [Ru(phen)2pzip]2+1 (phen = 1,10-phenanthroline; pzip = 2-(pyrazine-2-yl)imidazo-[4,5-f][1,10]phenanthroline]), has been synthesized and characterized by elemental analysis, ES-MS, 1H NMR. The DNA-binding behaviors of this complex were studied by spectroscopic methods and viscosity measurements. The results indicate that the complex can bind to CT-DNA in an intercalative mode. When irradiated at 365 nm, complex 1 can promote the cleavage of plasmid pBR322DNA. Furthermore, Zn2+ can trigger the DNA cleavage of complex 1 without irradiation. The mechanism studies revealed that the DNA cleavage by complex 1 in the presence of Zn2+ is likely to proceed via a hydrolytic cleavage process.  相似文献   

20.
The present study was performed to examine the affinity of Escherichia coli mismatch repair (MMR) protein MutS for DNA damaged by an intercalating compound. We examined the binding properties of this protein with various DNA substrates containing a single centrally located adduct of ruthenium(II) arene complexes [(eta(6)-arene)Ru(II)(en)Cl][PF(6)] [arene is tetrahydroanthracene (THA) or p-cymene (CYM); en is ethylenediamine]. These two complexes were chosen as representatives of two different classes of monofunctional ruthenium(II) arene compounds which differ in DNA-binding modes: one that involves combined coordination to G N7 along with noncovalent, hydrophobic interactions, such as partial arene intercalation (tricyclic-ring Ru-THA), and the other that binds to DNA only via coordination to G N7 and does not interact with double-helical DNA by intercalation (monoring Ru-CYM). Using electrophoretic mobility shift assays, we examined the binding properties of MutS protein with various DNA duplexes (homoduplexes or mismatched duplexes) containing a single centrally located adduct of ruthenium(II) arene compounds. We have shown that presence of the ruthenium(II) arene adducts decreases the affinity of MutS for ruthenated DNA duplexes that either have a regular sequence or contain a mismatch and that intercalation of the arene contributes considerably to this inhibitory effect. Since MutS initiates MMR by recognizing DNA lesions, the results of the present work support the view that DNA damage due to intercalation is removed from DNA by a mechanism(s) other than MMR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号