首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
D akora , F.D. & V incent , J.M. 1984. Fast-growing bacteria from nodules of cowpea ( Vigna unguiculata (L.) Walp.) Journal of Applied Bacteriology 56 , 327–330.
First plating from nodules of cowpea frequently yielded fast-growing large colonies, either apparently uniform or associated with small colony forms typical of the expected slow-grower ( Bradyrhizobium ). Most cultures from single large colonies nodulated both cowpea and siratro ( Macroptilium atropurpureum ), but all such nodules revealed Bradyrhizobium alone or associated with a fast-growing form. Six of nine plants inoculated with a mixed inoculum of slow and fast forms had nodules occupied by both although in no case was the fast-grower able to secure solo invasion. Most of the fast-growing forms shared some internal antigens with Rhizo-biurn meliloti and/or R. trifolii ; none reacted with antiserum to Bradyrhizobium CB 756.  相似文献   

2.
Using ammonium sulfate precipitation, gel filtration, and affinity chromatography, inosine monophosphate (IMP) oxidoreductase (EC 1.2.1.14) was isolated from the soluble proteins of the plant cell fraction of nitrogen-fixing nodules of cowpea (Vigna unguiculata L. Walp). The enzyme, purified more than 140-fold with a yield of 11%, was stabilized with glycerol and required a sulfydryl-reducing agent for maximum activity. Gel filtration indicated a molecular weight of 200,000, and sodium dodecyl sulfate-gel electrophoresis a single subunit of 50,000 Da. The final specific activity ranged from 1.1 to 1.5 mumol min-1 mg protein-1. The enzyme had an alkaline pH optimum and showed a high affinity for IMP (Km = 9.1 X 10(-6) M at pH 8.8 and NAD levels above 0.25 mM) and NAD (Km = 18-35 X 10(-6) M at pH 8.8). NAD was the preferred coenzyme, with NADP reduction less than 10% of that with NAD, while molecular oxygen did not serve as an electron acceptor. Intermediates of ureide metabolism (allantoin, allantoic acid, uric acid, inosine, xanthosine, and XMP) did not affect the enzyme, while AMP, GMP, and NADH were inhibitors. GMP inhibition was competitive with a Ki = 60 X 10(-6) M. The purified enzyme was activated by K+ (Km = 1.6 X 10(-3) M) but not by NH+4. The K+ activation was competitively inhibited by Mg2+. The significance of the properties of IMP oxidoreductase for regulation of ureide biosynthesis in legume root nodules is discussed.  相似文献   

3.
Summary Cowpea rhizobia strains were examined with indigenous populations in nodulating cowpea (Vigna unguiculata (L) Walp) cv. Laura B. strain IRC256 formed dark nodules on cowpea, and were used as the standard against orthodox pink-nodule strains in evaluating nodulating competitiveness. The dark nodule phenotype and intrinsic antibiotic resistance pattern were used to identify the strains in the nodules. Our results showed the usefulness of the dark-nodule strain in evaluating nodulating competitiveness of cowpea rhizobia in soils where dark-nodule strains were not indigenous.  相似文献   

4.
The activity and isozymic composition of superoxide dismutase (SOD; EC 1.15.1.1) were determined in nodules of Phaseolus vulgaris L., Pisum sativum L., and Vigna unguiculata (L.) Walp. formed by Rhizobium phaseoll 3622, R. Ieguminosarum 3855, and Bradyrhizobium sp. BR7301, respectively. A Mn-SOD was present in Rhizobium and two in Bradyrhizobium and bacteroids. Nodule mitochondria from all three legume species had a single Mn-SOD with similar relative mobility, whereas the cytosol contained several CuZn-SODs: two in Phaseolus and Pisum, and four in Vigna. In the cytoplasm of V. unguiculata nodules, a Fe-containing SOD was also present, with an electrophoretic mobility between those of CuZn- and Mn-SODs, and an estimated molecular weight of 57,000. Total SOD activity of the soluble fraction of host cells, expressed on a nodule fresh weight basis, exceeded markedly that of bacteroids. Likewise, specific SOD activities of free-living bacteria were superior or equal to those of their symbiotic forms. Soluble extracts of bacteria and bacteroids did not show peroxidase activity (EC 1.11.1.7), but the nodule cell cytoplasm contained diverse peroxidase isozymes which were readily distinguishable from leghemoglobin components by electrophoresis. Data indicated that peroxidases and leghemoglobins did not significantly interfere with SOD localization on gels. Treatment with chloroform-ethanol scarcely affected the isozymic pattern of SODs and peroxidases, and had limited success in the removal of leghemoglobin.  相似文献   

5.
Persistent decrease in the productivity of cowpea (Vigna unguiculata L.) has been partly due to attack by bruchids including Zabrotes subfasciatus and Callosobruchus maculatus. Resistance to these insects in Phaseolus vulgaris L. has been shown to be associated with arcelins, a family of seed proteins encoded by a multigenic family of lectins on the APA locus. In this work, we report the construction of an expression vector containing Arc1 gene isolated from P. vulgaris and introduced into cowpea as a strategy to confer resistance to insect attack. Following transformation and selection, feeding experiments in which C. maculatus and Z. subfasciatus were fed with transgenic (L3 and L5) and non-transgenic (control) grains showed that introduced gene protected the transgenic line. Significant differences (p < .05 and p < .01) were found in the number of eggs laid, the number of emerging insects and the loss of grain mass in L3, compared with control, for both insects. Similar observations were made in L5 with the exception of the number of laid eggs. The strategy here described may form the basis for the development of a cowpea variety tolerant to bruchids in a crop cultivated by farmers throughout Latin America and Africa.  相似文献   

6.
Inoculation with Bradyrhizobium sp. strain 127E14 has been shown to cause a dramatic increase in the internode length of lima bean (Phaseolus lunatus L.), when compared to control plants inoculated with strain 127E15. This rhizobial-induced growth also occurs in cowpea (Vigna unguiculata [L.] Walp), an alternate host for the symbiont. Cowpea plants inoculated with strain 127E14 were 23% taller than those inoculated with strain 127E14 after 6 weeks of growth. Petiole length was found to be significantly greater in plants inoculated with strain 127E14. Cowpea plants treated at the apex with exogenous GA3 or GA4/7 responded by increasing internode length when compared to controls. As in lima beans, the rhizobial-induced growth response observed in cowpeas may be in response to an imbalance in the levels of GA-like substances within the plants. Gibberellins A1, A3, A8, A19, A20, A29, and A44have been identified by GC-MS analysis in stems of cowpea, whereas the gibberellins A1, A19, A20, A29, and A44 were found to be present in nodule tissue formed by strain 127E14. The presence of these GAs indicates that the early 13-hydroxylation biosynthetic pathway is operative in cowpea. GAs identified in cowpea nodules are similar to those found in lima bean nodules formed by the same rhizobia. The finding that rhizobial strain 127E14 induces GA-dependent growth responses in two host legumes further supports the hypothesis that the presence of this bacteria alters the GA balance within the plant.  相似文献   

7.
Costa  E.S.  Bressan-Smith  R.  Oliveira  J.G.  Campostrini  E. 《Photosynthetica》2003,41(1):77-82
Bean plants Phaseolus vulgaris L. (cv. Carioca and Negro Huasteco) and Vigna unguiculata L. Walp (cv. Epace-10) were grown in a growth chamber with a photosynthetic photon flux density of 200 mol m–2 s–1 at leaf level and air temperature of 25+1 °C. Fully expanded, first pair leaves of 12-d-old plants were submitted for 90 min to high temperature (25, 30, 35, 40, 45, and 48 °C). Chlorophyll a fluorescence parameters (ETR, qP, qN, and F0) were investigated using a modulated fluorimeter at 25 °C during recovery considered here as 48 h after stress induction period. An accentuated decrease in qP and an increase in qN at 48 °C in Carioca and Negro Huasteco was not observed in Epace-10. In response to excitation irradiance a great potential for ETR was found in Negro Huasteco at 25 °C, also demonstrated by net photosynthetic rate. At 48 °C ETR was high for Epace-10 while it was equal to zero for Carioca and Negro Huasteco. Tolerance to high temperature observed in Epace-10 provided important information about the adaptative characteristics of Vigna cultivars to warm climates.  相似文献   

8.
A survey of allozyme variation in cultivar-groups of cowpea [Vigna unguiculata (L.) Walp.] was undertaken by examining 21 enzyme systems encoded by 36 loci in 271 accessions representing the five cultivar-groups. Very low levels of variation were found within accessions, which is typical of self-pollinating species. Little variation was also found among accessions. Compared with other legume crops, V. unguiculata is depauperate in allozyme variation. We found an average of 1.61 alleles per locus with 42% of the loci polymorphic and a total heterozygosity of 0.061. Of the variation present, 90% was found within cultivar-groups, while 10% was among cultivar-groups. Data analyses revealed continuous variation among cultivar-groups and geographic regions with the accessions failing to segregate into discrete morphophysiological or geographic clusters. However, evolved cultivar-groups (cv.-gr. Melanophthalmus and cv.-gr. Sesquipedalis) appear to be less diverse than their putative primitive cultivar-group progenitors. Due to the lack of availability of critical material, no clear center of origin can be established. However, the data presented suggest that Northeast Africa could be a possible center of domestication. Received: 18 February 1999 / Accepted: 4 November 1999  相似文献   

9.
Cowpea (Vigna unguiculata (L.) Walp.) nodules have been investigated by means of cytochemical and immunocytochemical procedures at the ultrastructural level in order to assess the role of the uninfected cells in ureide biogenesis. Uricase activity in the nodules was shown by cytochemical methods to be localized exclusively in the numberous large peroxisomes confined to the uninfected cells; the small peroxisomes in the infected cells did not stain for uricase. Uricase was also localized in the peroxisomes of uninfected cells by immunogold techniques employing polyclonal antibodies against nodule-specific uricase of soybean. There was no labeling above background of any structures in the infected cells. The results indicate that the uninfected cells are essential for ureide biogenesis in cowpea. Although tubular endoplasmic reticulum, the presumptive site of allantoinase, increases greatly in the uninfected cells during nodule development, it virtually disappears as the nodules mature. The inconsistency between the disappearance of the tubular endoplasmic reticulum from older nodules and the high allantoinase activity reported for older plants remains to be explained.Abbreviations DAB 3,3-diaminobenzidine - ER endoplasmic reticulum - GARG goat anti-rabbit immunoglobulin G - IgG immunoglobulin G - kDa knodalton - Mr apparent molecular mass - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis  相似文献   

10.
Summary Rhizobium strains CIAT 301, CIAT 79 and SLM 602 were tested and found effective in the nodulation and nitrogen fixation of cowpea cv. MI-35 (Vigna unguiculata (L.) Walp) plants in growth chamber experiments. Fresh weight of nodules increased with plant age initially and stabilized in 20–30 days from planting, followed by a secondary flush of nodule growth after 30 days. Apparent nitrogen fixation per gram nodule fresh weight reached a maximum in 20–30 days after planting and then decreased, even though a flush of new nodules was produced.  相似文献   

11.
12.
Fractionation of cell organelles of nitrogen-fixing nodules of cowpea (Vigna unguiculata L. Walp) by discontinuous and continuous sucrose density centrifugation indicated that starch-containing plastids possessed the complete pathway for purine nucleotide synthesis together with significant activities of some other enzymes associated with the provision of substrates in purine synthesis; triosephosphate isomerase (EC 5.3.1.1), NADH-glutamate synthase (EC 2.6.1.53), aspartate aminotransferase (EC 2.6.1.1), phosphoglycerate oxidoreductase (EC 1.1.1.95), and methylene tetrahydrofolate oxidoreductase (EC 1.5.1.5). Enzymes of purine oxidation, xanthine oxidoreductase (EC 1.2.3.2), and urate oxidase (EC 1.7.3.3) were recovered in the soluble fraction; glutamine synthetase (EC 6.3.1.2) occurred in bacteroids and in the cytosol. Intact, infected (bacteroid-containing) and uninfected cells were prepared by enzymatic maceration of the central zone of the nodule and partially separated by centrifugation on discontinuous sucrose gradients. Glutamine synthetase was largely restricted to infected cells whereas plastid enzymes, de novo purine synthesis, and urate oxidase were present in both cell types. Although the levels of all enzymes assayed were higher in infected cells, both cell types possessed the necessary enzyme complement for ureide formation. A model for the cellular and subcellular organization of nitrogen metabolism and the transport of nitrogenous solutes in cowpea nodules is proposed.  相似文献   

13.
Staked and ‘topped’ cowpea plants (cv. K 2809) withsix trifoliate leaves were defoliated in various ways and grownon for 9 d in controlled-environment growth cabinets. Leaveswhich were from 2 to 3 weeks old contributed little to furtherdry weight increment of vegetative plants. When parts of youngleaves were removed plant dry weight increase was affected onlyslightly as compensatory expansion of the remaining laminaetook place. The complete removal of several young leaves washighly detrimental to subsequent plant growth. Thus, the outcomeof defoliation depended not just on the absolute leaf area removedbut also on the position (age) of the leaves treated and whetheror not loss of whole leaves or just parts of leaves was involved.  相似文献   

14.
Abstract

The presence of latent infections was studied in five cowpeas varieties. Seeds of the varieties were planted and the seedlings inoculated with antigens from Cucumber mosaic virus (CMV) genus Cucumovirus, Bean common mosaic virus (BCMV) genus Potyvirus (Blackeye cowpea mosaic virus strain), Southern bean mosaic virus (SBMV) genus Sobemovirus and Cowpea mottle virus (CPMoV) genus Carmovirus seven days after planting. Seedlings expressing symptoms were rouged at two weeks after inoculation, while asymptomatic ones were subjected to serological indexing to detect the presence/absence of latent infection. Protein A-sandwich enzyme-linked immunosorbent assay (PAS ELISA) was employed for the serological detection of CMV, SBMV and CPMoV, while antigen-coated plate (ACP) ELISA was used to detect BCMV in the asymptomatic plants. Cowpea seedlings without virus symptoms but with positive serological reactions were considered as being latently infected. All of the inoculated TVu 1272 and SuVita-2 plants showed symptoms consistent with CMV and CPMoV infections, respectively. The rate of CMV latent infection was high in TVu 1179 (14.5%), low in SuVita-2 (1.3%) but not recorded in TVu 1272.  相似文献   

15.
Root tip mitotic and tapetal polytene cells ofVigna unguiculataandPhaseolus coccineus were hybridized with a ribosomal DNA(rDNA) probe. While the number of rDNA sites were as expectedforP. coccineus, it was surprisingly higher inV. unguiculatawhere ten rDNA sites were found in both tissues. A sequentialbanding technique on mitotic chromosomes ofV. unguiculata wasused to map the positions of the rDNA sites more accurately.In mitotic cells eight of the rDNA hybridization sites weresimilar in size while the remaining sites were smaller. In contrast,the hybridization sites were more variable in size in polytenecells with no more than six sites being relatively large. Thedifferences in size of the hybridization sites between the twotissues suggest differential amplification of the rDNA sequences.InP. coccineus six hybridization sites were found in both tissuetypes. The relative sizes of the sites were similar in bothtissue. The presence of speckled signal surrounding four ofthe six sites suggested that at least four of the rDNA siteswere transcribed. rDNA; in situ ; Vigna ; Phaseolus ; polytene; tapetal; Leguminosae  相似文献   

16.
17.
Cowpea (Vigna unguiculata [L.] Walp.) is a major crop for worldwide food and nutritional security, especially in sub‐Saharan Africa, that is resilient to hot and drought‐prone environments. An assembly of the single‐haplotype inbred genome of cowpea IT97K‐499‐35 was developed by exploiting the synergies between single‐molecule real‐time sequencing, optical and genetic mapping, and an assembly reconciliation algorithm. A total of 519 Mb is included in the assembled sequences. Nearly half of the assembled sequence is composed of repetitive elements, which are enriched within recombination‐poor pericentromeric regions. A comparative analysis of these elements suggests that genome size differences between Vigna species are mainly attributable to changes in the amount of Gypsy retrotransposons. Conversely, genes are more abundant in more distal, high‐recombination regions of the chromosomes; there appears to be more duplication of genes within the NBS‐LRR and the SAUR‐like auxin superfamilies compared with other warm‐season legumes that have been sequenced. A surprising outcome is the identification of an inversion of 4.2 Mb among landraces and cultivars, which includes a gene that has been associated in other plants with interactions with the parasitic weed Striga gesnerioides. The genome sequence facilitated the identification of a putative syntelog for multiple organ gigantism in legumes. A revised numbering system has been adopted for cowpea chromosomes based on synteny with common bean (Phaseolus vulgaris). An estimate of nuclear genome size of 640.6 Mbp based on cytometry is presented.  相似文献   

18.
Mature de-embryonated cotyledons with intact proximal end of Vigna unguiculata were cultured on B5 basal medium containing varying concentrations of BAP. Thirty-six percent of the explants produced shoots on B5 medium supplemented with 8× 10–6 M BAP. Cotyledon explants were pre-incubated for 24 h, inoculated with A. tumefaciens pUCD2614 carrying pUCD2340, co-cultivated for 48 h and transferred to hygromycin-B (25 mg/l) containing shoot induction medium. Approximately 15–19% of the explants produced shoots on the selection medium. The elongated shoots were subsequently rooted on B5 basal medium containing hygromycin. The transgenic plants were later established in pots. The presence of hpt gene in the transgenic plants was confirmed by Southern blot hybridization.Abbreviations BAP 6-Benzylaminopurine - 2,4-D 2,4-dichlorophenoxyacetic acid - hpt hygromycin phosphotransferase - IAA Indole-3-acetic acid - NAA 1-naphthaleneacetic acid  相似文献   

19.
Summary The effects of K and Mg application on dry matter yield and uptake of K, Mg and Ca in cowpea were studied in greenhouse at Haryana Agricultural University, Hissar (india). Dry matter yields of leaves, stems and roots increased by 17, 30 and 27 per cent over control due to application of 150 ppm K and 17, 16 and 26 per cent by 40 ppm Mg respectively. Potassium application has antagonistic effect on Ca concentration of leaves, stems and roots and synergistic on root Mg concentrations upto 25 ppm K. However, Mg had a synergistic effect on concentration of K upto 20 ppm Mg and antagonistic at 40 ppm Mg in all plant parts. Uptake of K, Mg and Ca increased by Mg application, but K increased only K uptake.  相似文献   

20.
Cowpeas grown in nutrient solutions, from which Ni had been removed by a ligand exchange technique, accumulated urea in most tissues. Urea levels were highest (up to 3.1 percent dry weight) in necrotic leaf tips. Urea accumulation in Ni-deficient cowpea tissues amounted to about 1 percent of the total N. The accumulation of urea was presumably associated with the catabolism of N compounds in older tissues and the redistribution of N catabolites within the plant during the reproductive growth. The exclusion of N salts from the nutrient media at a late stage of growth, either with or without added Ni, led to a general amelioration of urea accumulation and a lower level of the related amino acid, arginine, in root and stem tissue. Plant leaves that contained toxic levels of urea and displayed necrotic symptoms had tissue Ni levels ranging from less than 0.01 to 0.15 μg Ni per gram dry weight. Nickel concentrations in tissue from plants not treated with Ni, were initially very low, but increased as the cowpeas matured. Apparently, there was a source of Ni contamination in the Ni-deficient growth media which provided a source of Ni for uptake by the plants during growth. Ureide levels were low and unaffected by Ni deprivation. No evidence for free purines or uric acid accumulation in plant tissues could be found. It is hypothesized that Ni (and urease) participates in the normal N metabolism of these plants during the reproductive phase of growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号