首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Aquaporin-1 (AQP1) water channel plays a critical role for water reabsorption in the urinary concentrating mechanism. AQP1 expression in renal cells is upregulated by hypertonicity, but not urea, suggesting the requirement of an osmotic gradient. To investigate whether AQP1 expression is regulated by apical and/or basolateral hypertonicity, murine renal medullary mIMCD-K2 cells grown on permeable support were exposed to hypertonic medium. When the medium on the apical or basolateral membrane side was switched to hypertonic, the transcellular osmotic gradient was dissipated within 8h. Basolateral hypertonicity increased AQP1 expression more than apical hypertonicity. Comparable apical and basolateral hypertonicity without a transcellular hypertonic gradient, however, increased AQP1 expression. Cell surface biotinylation experiments revealed that hypertonicity promoted AQP1 trafficking to both plasma cell membranes. These results indicate that AQP1 expression is predominantly mediated by basolateral hypertonicity but a transcellular osmotic gradient is not necessary for its induction.  相似文献   

4.
5.
6.
Tpl2 knockout mice produce low levels of TNF-alpha when exposed to lipopolysaccharide (LPS) and they are resistant to LPS/D-Galactosamine-induced pathology. LPS stimulation of peritoneal macrophages from these mice did not activate MEK1, ERK1, and ERK2 but did activate JNK, p38 MAPK, and NF-kappaB. The block in ERK1 and ERK2 activation was causally linked to the defect in TNF-alpha induction by experiments showing that normal murine macrophages treated with the MEK inhibitor PD98059 exhibit a similar defect. Deletion of the AU-rich motif in the TNF-alpha mRNA minimized the effect of Tpl2 inactivation on the induction of TNF-alpha. Subcellular fractionation of LPS-stimulated macrophages revealed that LPS signals transduced by Tpl2 specifically promote the transport of TNF-alpha mRNA from the nucleus to the cytoplasm.  相似文献   

7.
8.
Interleukin (IL)-1beta is known to play a role in the formation of brain edema after various types of injury. Aquaporin (AQP)4 is also reported to be involved in the progression of brain edema. We tested the hypothesis that AQP4 is induced in response to IL-1beta. We found that expression of AQP4 mRNA and protein was significantly up-regulated by IL-1beta in cultured rat astrocytes, and that intracerebroventricular administration of IL-1beta increased the expression of AQP4 protein in rat brain. The effects of IL-1beta on induction of AQP4 were concentration and time dependent. The effects of IL-1beta on AQP4 were mediated through IL-1beta receptors because they were abolished by co-incubation with IL-1 receptor antagonist. It appeared that IL-1beta increased the level of AQP4 mRNA without involvement of de novo protein synthesis because cycloheximide, a protein synthesis inhibitor, did not inhibit the effects of IL-1beta. Inhibition of the nuclear factor-kappaB (NF-kappaB) pathway blocked the induction of AQP4 by IL-1beta in a concentration-dependent manner. These findings show that IL-1beta induces expression of AQP4 through a NF-kappaB pathway without involvement of de novo protein synthesis in rat astrocytes.  相似文献   

9.
The effects of IL-17A on mucin production and growth of airway epithelial cells were examined. Histological and immunohistochemical analyses revealed that IL-17A increased the mucin production and number of tracheal epithelial cells in air-liquid interface cultures. The biological property of IL-17A to stimulate the mucin production by tracheal epithelial cells was determined using an ELISA. The mitogenic effect of IL-17A on tracheal epithelial cells was confirmed with Calcein-AM assay. The growth-stimulatory effect of IL-17A was dose-dependent and mediated via the ERK MAP kinase pathway. Inhibitors of MEK abrogated the mitogenic effect of IL-17A, whereas an inhibitor of p38 or JNK displayed no significant inhibitory effect. Moreover, relatively lower doses of IL-13 also significantly increased the growth of tracheal epithelial cells through a distinct signaling pathway from that of IL-17A. These findings provide the first evidence that IL-17A stimulates the growth of airway epithelial cells through the ERK MAP kinase pathway.  相似文献   

10.
Water homeostasis of the nervous system is important during neural signal transduction. Astrocytes are crucial in water transport in the central nervous system under both physiological and pathological conditions. To date, five aquaporins (AQP) have been found in rat brain astrocytes. Most studies have focused on AQP4 and AQP9, however, little is known about the expression of AQP3, ‐5, and ‐8 as well as their regulating mechanism in astrocytes. The expression patterns of AQP3, ‐5, and ‐8 in astrocytes exposed to hyperosmotic solutions were examined to clarify the roles of AQP3, ‐5, and ‐8 in astrocyte water movement. The expression of AQP4 and AQP9 under the same hyperosmotic conditions was also investigated. The AQP4 and AQP9 expressions continuously increased until 12 h after hyperosmotic solution exposure, whereas the AQP3, ‐5, and ‐8 expressions continued to increase until 6 h after hyperosmotic solution exposure. The different AQPs decreased at corresponding time points (24 h for AQP4 andAQP9; 12 h for AQP3, ‐5, and ‐8 after hyperosmotic solution exposure). The ERK inhibitor can attenuate the expression of AQP3, ‐5, and ‐8 after hyperosmotic solution exposure. The p38 inhibitor can inhibit the AQP4 and AQP9 expressions in cultured astrocytes. AQP expression is directly related to the extracellular hyperosmotic stimuli. Moreover, different AQPs can be regulated by a distinct MAPK signal transduction pathway. J. Cell. Biochem. 114: 111–119, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

11.
Endogenous cardiotonic glycosides bind to the inhibitory binding site of the plasma membrane sodium pump (Na+/K+-ATPase). Plasma levels of endogenous cardiotonic glycosides increase in several disease states, such as essential hypertension and uremia. Low concentrations of ouabain, which do not inhibit Na+/K+-ATPase, induce cell proliferation. The mechanisms of ouabain-mediated response remain unclear. Recently, we demonstrated that in opossum kidney (OK) proximal tubular cells, low concentrations of ouabain induce cell proliferation through phosphorylation of protein kinase B (Akt) in a calcium-dependent manner. In the present study, we identified ERK as an upstream kinase regulating Akt activation in ouabain-stimulated cells. Furthermore, we provide evidence that low concentrations of ouabain stimulate Na+/K+-ATPase-mediated 86Rb uptake in an Akt-, ERK-, and Src kinase-dependent manner. Ouabain-mediated ERK phosphorylation was inhibited by blockade of intracellular calcium release, calcium entry, tyrosine kinases, and phospholipase C. Pharmacological inhibition of phosphoinositide-3 kinase and Akt failed to inhibit ouabain-stimulated ERK phosphorylation. Ouabain-mediated Akt phosphorylation was inhibited by U0126, a MEK/ERK inhibitor, suggesting that ouabain-mediated Akt phosphorylation is dependent on ERK. In an in vitro kinase assay, active recombinant ERK phosphorylated recombinant Akt on Ser473. Moreover, transient transfection with constitutively active MEK1, an upstream regulator of ERK, increased Akt phosphorylation and activation, whereas overexpression of constitutively active Akt failed to stimulate ERK phosphorylation. Ouabain at low concentrations also promoted cell proliferation in an ERK-dependent manner. These findings suggest that ouabain-stimulated ERK phosphorylation is required for Akt phosphorylation on Ser473, cell proliferation, and stimulation of Na+/K+-ATPase-mediated 86Rb uptake in OK cells. opossum kidney cells; sodium/potassium adenosine triphosphatase; extracellular signal-regulated kinase; cell proliferation  相似文献   

12.
13.
Stimulation of human colonic epithelial T84 cells with the muscarinic receptor agonist carbachol, a stable analog of acetylcholine, induced Akt, p70S6K1 and ERK activation. Treatment of T84 cells with the selective inhibitor of EGF receptor (EGFR) tyrosine kinase AG1478 abrogated Akt phosphorylation on Ser473 induced by either carbachol or EGF, indicating that carbachol-induced Akt activation is mediated through EGFR transactivation. Surprisingly, AG1478 did not suppress p70S6K1 phosphorylation on Thr389 in response to carbachol, indicating the G protein-coupled receptor (GPCR) stimulation induces p70S6K1 activation, at least in part, via an Akt-independent pathway. In contrast, treatment with the selective MEK inhibitor U0126 (but not with the inactive analog U0124) inhibited carbachol-induced p70S6K1 activation, indicating that the MEK/ERK/RSK pathway plays a critical role in p70S6K1 activation in GPCR-stimulated T84 cells. These findings imply that GPCR activation induces p70S6K1 via ERK rather than through the canonical PI 3-kinase/Akt/TSC/mTORC1 pathway in T84 colon carcinoma cells.  相似文献   

14.
The sodium hydrogen exchanger isoform 1 (NHE1) is present in nearly all cells. Regulation of proton flux via the exchanger is a permissive step in cell growth and tumorgenesis and is vital in control of cell volume. The regulation of NHE1 by growth factors involves the Ras-extracellular signal regulated kinase (ERK) pathway, however, the mechanism for G protein-coupled receptor (GPCR) activation of NHE1 is not well established. In this report, the relationship between GPCRs, ERK, and NHE1 in CCL39 cells is investigated. We give evidence that two agonists, the specific alpha(1)-adrenergic agonist, phenylephrine and the water-soluble lipid mitogen, lysophosphatidic acid (LPA) activate NHE1 in CCL39 cells. Activation of ERK by phenylephrine and LPA occurs in a dose- and time-dependent manner. Optimal ERK activation was observed at 10 min and displayed a maximum stimulation at 100 microM phenylephrine and 10 microM LPA. alpha(1)-Adrenergic stimulation also led to a rise in steady-state pH(i) of 0.16+/-0.02 pH units, and incubation with LPA induced a 0.43+/-0.06 pH unit increase in pH(i). Phenylephrine-induced activation of NHE1 transport and ERK activity was inhibited by pretreating the cells with the MEK inhibitor PD98059. While only half of the LPA activatable exchange activity was abolished by PD98059 and U0126. To further demonstrate the specificity of the phenylephrine and LPA regulation of NHE1 and ERK, CCL39 cells were transfected with a kinase inactive MEK. The data indicate that ERK activation is essential for phenylephrine stimulation of NHE1, and that ERK and RhoA are involved in LPA stimulation of NHE1 by more than one mechanism. In addition, evidence of the convergence of these two pathways is shown by the loss of NHE1 activity when both pathways are inhibited and by the partial additivity of the two agonists on ERK and NHE1 activity. These studies indicate a direct involvement of ERK in the alpha(1)-adrenergic activation of NHE1 and a significant role for both ERK and RhoA in LPA stimulation of NHE1 in CCL39 fibroblasts.  相似文献   

15.
16.
17.
Colonic mucus barrier is regarded as the first defense line against bacteria and antigens from directly attaching to the epithelium, which would further lead to intestinal inflammation activation and pathological conditions. As MUC2 mucin is the predominant component of the mucus, understanding the regulatory mechanisms of MUC2 is important for mucus barrier protection. Somatostatin (SST) has been found to play a role in colon protection through various manners. However, whether SST involves in colonic mucus barrier regulation is still unclear. The aim of this study is to investigate the effects and potential mechanisms of SST on colonic MUC2 expression and mucus secretion. In vivo study, exogenous somatostatin (octreotide) administration effectively stimulated mice colonic MUC2 expression and mucus secretion. In human goblet-like cell LS174T cells, SST exposure also significantly stimulated MUC2 expression and mucus secretion. Further studies indicated that SST receptor 5 (SSTR5) was significantly activated by SST, whereas specific SSTR5 siRNA transfection of LS174T cells significantly blocked SST-induced increase in MUC2 expression and mucus secretion. In addition, SSTR5 agonist L817,818 also upregulated MUC2 expression and mucus secretion in LS174T cells. Mechanistic studies further demonstrated that SST/SSTR5-mediated MUC2 upregulation was dependent on Notch-Hes1 pathway suppression by detecting notch intracellular domain (NICD) and Hes1 proteins. Taken together, our findings suggested that SST could participate in colonic mucus barrier regulation through SSTR5-Notch-Hes1-MUC2 signaling pathway. These findings provide a deep insight into the role of SST on colonic mucus regulation under physiological conditions.  相似文献   

18.
19.
Polycyclic aromatic hydrocarbons (PAHs) such as benzo(a)pyrene (BP) are toxic environmental contaminants known to enhance production of pro-inflammatory cytokines such as IL-1beta. The present study was designed in order to determine whether TNFalpha, another cytokine acting in inflammation, may also constitute a target for these chemicals. Both TNFalpha mRNA and TNFalpha secretion levels were found to be enhanced in human BP-treated macrophages. Dioxin, a contaminant activating the aryl hydrocarbon receptor (AhR) like PAHs, was also shown to increase TNFalpha expression. BP-mediated TNFalpha induction was however not suppressed by AhR antagonists, making unlikely the involvement of the typical AhR signalling pathway. BP-exposure of macrophages did not enhance NF-kappaB DNA binding activity, but it activated the MAP kinase ERK1/2. In addition, the use of chemical inhibitors of extracellular signal-regulated protein kinase (ERK) activation fully abrogated induction of TNFalpha production in BP-treated macrophages. These data likely indicate that PAHs enhance TNFalpha expression in human macrophages through an ERK-related mechanism. Such a regulation may contribute to confer pro-inflammatory properties to these widely-distributed environmental contaminants.  相似文献   

20.
Ma L  Huang YG  Deng YC  Tian JY  Rao ZR  Che HL  Zhang HF  Zhao G 《Life sciences》2007,80(26):2461-2468
Decreased sweat secretion is a primary side effect of topiramate in pediatric patients, but the mechanism underlying this effect remains unclear. This study aimed to better understand how topiramate decreases sweat secretion by examining its effect on the expression of carbonic anhydrase (CA) II and aquaporin-5 (AQP5), total CA activity, as well as on tissue morphology of sweat glands in mice. Both developing and mature mice were treated with a low (20 mg/kg/day) and high dose (80 mg/kg/day) of topiramate for 4 weeks. Sweat secretion was investigated by an established technique of examining mold impressions of hind paws. CA II and AQP5 expression levels were determined by immunofluorescence and immunoblotting and CA activity by a colorimetric assay. In mature mice, topiramate treatment decreased the number of pilocarpine reactive sweat glands from baseline in both the low and high dose groups by 83% and 75%, respectively. A similar decrease was seen in developing mice. Mature mice with reactive sweat glands that declined more than 25% compared to baseline were defined as anhidrotic mice. These mice did not differ from controls in average secretory coil diameter, CA II expression and CA activity. In contrast, anhidrotic mice did show a reduction in membrane AQP5 expression in sweat glands after topiramate delivery. Thus, sweat secretion and membrane AQP5 expression in mouse sweat glands decreased following topiramate administration. These results suggest dysregulation of AQP5 may be involved in topiramate-induced hypohidrosis and topiramate may serve as a novel therapy for hyperhidrosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号