首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bak S  Feyereisen R 《Plant physiology》2001,127(1):108-118
The first committed step in the biosynthesis of indole glucosinolates is the conversion of indole-3-acetaldoxime into an indole-3-S-alkyl-thiohydroximate. The initial step in this conversion is catalyzed by CYP83B1 in Arabidopsis (S. Bak, F.E. Tax, K.A. Feldmann, D.A. Galbraith, R. Feyereisen [2001] Plant Cell 13: 101-111). The knockout mutant of the CYP83B1 gene (rnt1-1) shows a strong auxin excess phenotype and are allelic to sur-2. CYP83A1 is the closest relative to CYP83B1 and shares 63% amino acid sequence identity. Although expression of CYP83A1 under control of its endogenous promoter in the rnt1-1 background does not prevent the auxin excess and indole glucosinolate deficit phenotype caused by the lack of the CYP83B1 gene, ectopic overexpression of CYP83A1 using a 35S promoter rescues the rnt1-1 phenotype. CYP83A1 and CYP83B1 heterologously expressed in yeast (Saccharomyces cerevisiae) cells show marked differences in their substrate specificity. Both enzymes convert indole-3-acetaldoxime to a thiohydroximate adduct in the presence of NADPH and a nucleophilic thiol donor. However, indole-3-acetaldoxime has a 50-fold higher affinity toward CYP83B1 than toward CYP83A1. Both enzymes also metabolize the phenylalanine- and tyrosine-derived aldoximes. Enzyme kinetic comparisons of CYP83A1 and CYP83B1 show that indole-3-acetaldoxime is the physiological substrate for CYP83B1 but not for CYP83A1. Instead, CYP83A1 catalyzes the initial conversion of aldoximes to thiohydroximates in the synthesis of glucosinolates not derived from tryptophan. The two closely related CYP83 subfamily members therefore are not redundant. The presence of putative auxin responsive cis-acting elements in the CYP83B1 promoter but not in the CYP83A1 promoter supports the suggestion that CYP83B1 has evolved to selectively metabolize a tryptophan-derived aldoxime intermediate shared with the pathway of auxin biosynthesis in Arabidopsis.  相似文献   

2.
Zang YX  Kim JH  Park YD  Kim DH  Hong SB 《BMB reports》2008,41(6):472-478
Three Arabidopsis cDNAs, MAM1, CYP79F1, and CYP83A1, required for aliphatic glucosinolate biosynthesis were introduced into Chinese cabbage by Agrobacterium tumefaciens-mediated transformation. The transgenic lines overexpressing MAM1 or CYP83A1 showed wild-type phenotypes. However, all the lines overexpressing CYP79F1 displayed phenotypes different from wild type with respect to the stem thickness as well as leaf width and shape. Glucosinolate contents of the transgenic plants were compared with those of wild type. In the MAM1 line M1-1, accumulation of aliphatic glucosinolates gluconapin and glucobrassicanapin significantly increased. In the CYP83A1 line A1-1, all the aliphatic glucosinolate levels were increased, and the levels of gluconapin and glucobrassicanapin were elevated by 4.5 and 2 fold, respectively. The three CYP79F1 transgenic lines exhibited dissimilar glucosinolate profiles. The F1-1 line accumulated higher levels of gluconapoleiferin, glucobrassicin, and 4-methoxy glucobrassicin. However, F1-2 and F1-3 lines demonstrated a decrease in the levels of gluconapin and glucobrassicanapin and an increased level of 4-hydroxy glucobrassicin.  相似文献   

3.
CYP83B1 from Arabidopsis thaliana has been identified as the oxime-metabolizing enzyme in the biosynthetic pathway of glucosinolates. Biosynthetically active microsomes isolated from Sinapis alba converted p-hydroxyphenylacetaldoxime and cysteine into S-alkylated p-hydroxyphenylacetothiohydroximate, S-(p-hydroxyphenylacetohydroximoyl)-l-cysteine, the next proposed intermediate in the glucosinolate pathway. The production was shown to be dependent on a cytochrome P450 monooxygenase. We searched the genome of A. thaliana for homologues of CYP71E1 (P450ox), the only known oxime-metabolizing enzyme in the biosynthetic pathway of the evolutionarily related cyanogenic glucosides. By a combined use of bioinformatics, published expression data, and knock-out phenotypes, we identified the cytochrome P450 CYP83B1 as the oxime-metabolizing enzyme in the glucosinolate pathway as evidenced by characterization of the recombinant protein expressed in Escherichia coli. The data are consistent with the hypothesis that the oxime-metabolizing enzyme in the cyanogenic pathway (P450ox) was mutated into a "P450mox" that converted oximes into toxic compounds that the plant detoxified into glucosinolates.  相似文献   

4.
A new mutant of Arabidopsis designated bus1-1 (for bushy), which exhibited a bushy phenotype with crinkled leaves and retarded vascularization, was characterized. The phenotype was caused by an En-1 insertion in the gene CYP79F1. The deduced protein belongs to the cytochrome P450 superfamily. Because members of the CYP79 subfamily are believed to catalyze the oxidation of amino acids to aldoximes, the initial step in glucosinolate biosynthesis, we analyzed the level of glucosinolates in a CYP79F1 null mutant (bus1-1f) and in an overexpressing plant. Short-chain glucosinolates derived from methionine were completely lacking in the null mutant and showed increased levels in the overexpressing plant, indicating that CYP79F1 uses short-chain methionine derivatives as substrates. In addition, the concentrations of indole-3-ylmethyl-glucosinolate and the content of the auxin indole-3-acetic acid and its precursor indole-3-acetonitrile were increased in the bus1-1f mutant. Our results demonstrate for the first time that the formation of glucosinolates derived from methionine is mediated by CYP79F1 and that knocking out this cytochrome P450 has profound effects on plant growth and development.  相似文献   

5.
Glucosinolates are natural products in cruciferous plants, including Arabidopsis thaliana. CYP79A1 is the cytochrome P450 catalysing the conversion of tyrosine to p-hydroxyphenylacetaldoxime in the biosynthesis of the cyanogenic glucoside dhurrin in sorghum. Both glucosinolates and cyanogenic glucosides have oximes as intermediates. Expression of CYP79A1 in A. thaliana results in the production of high levels of the tyrosine-derived glucosinolate p-hydroxybenzylglucosinolate, which is not a natural constituent of A. thaliana. This provides further evidence that the enzymes have low substrate specificity with respect to the side chain. The ability of the cyanogenic CYP79A1 to integrate itself into the glucosinolate pathway has important implications for an evolutionary relationship between cyanogenic glucosides and glucosinolates, and for the possibility of genetic engineering of novel glucosinolates.  相似文献   

6.
Auxins are growth regulators involved in virtually all aspects of plant development. However, little is known about how plants synthesize these essential compounds. We propose that the level of indole-3-acetic acid is regulated by the flux of indole-3-acetaldoxime through a cytochrome P450, CYP83B1, to the glucosinolate pathway. A T-DNA insertion in the CYP83B1 gene leads to plants with a phenotype that suggests severe auxin overproduction, whereas CYP83B1 overexpression leads to loss of apical dominance typical of auxin deficit. CYP83B1 N-hydroxylates indole-3-acetaldoxime to the corresponding aci-nitro compound, 1-aci-nitro-2-indolyl-ethane, with a K(m) of 3 microM and a turnover number of 53 min(-1). The aci-nitro compound formed reacts non-enzymatically with thiol compounds to produce an N-alkyl-thiohydroximate adduct, the committed precursor of glucosinolates. Thus, indole-3-acetaldoxime is the metabolic branch point between the primary auxin indole-3-acetic acid and indole glucosinolate biosynthesis in Arabidopsis.  相似文献   

7.
Glucosinolates are natural plant products that function in the defense toward herbivores and pathogens. Plant defense is regulated by multiple signal transduction pathways in which salicylic acid (SA), jasmonic acid, and ethylene function as signaling molecules. Glucosinolate content was analyzed in Arabidopsis wild-type plants in response to single or combinatorial treatments with methyljasmonate (MeJA), 2,6-dichloro-isonicotinic acid, ethylene, and 2,4-dichloro-phenoxyacetic acid, or by wounding. In addition, several signal transduction mutants and the SA-depleted transgenic NahG line were analyzed. In parallel, expression of glucosinolate biosynthetic genes of the CYP79 gene family and the UDPG:thiohydroximate glucosyltransferase was monitored. After MeJA treatment, the amount of indole glucosinolates increased 3- to 4-fold, and the corresponding Trp-metabolizing genes CYP79B2 and CYP79B3 were both highly induced. Specifically, the indole glucosinolate N-methoxy-indol-3-ylmethylglucosinolate accumulated 10-fold in response to MeJA treatment, whereas 4-methoxy-indol-3-ylmethylglucosinolate accumulated 1.5-fold in response to 2,6-dichloro-isonicotinic acid. In general, few changes were seen for the levels of aliphatic glucosinolates, although increases in the levels of 8-methylthiooctyl glucosinolate and 8-methylsulfinyloctyl glucosinolate were observed, particularly after MeJA treatments. The findings were supported by the composition of glucosinolates in the coronatine-insensitive mutant coi1, the ctr1 mutant displaying constitutive triple response, and the SA-overproducing mpk4 and cpr1 mutants. The present data indicate that different indole glucosinolate methoxylating enzymes are induced by the jasmonate and the SA signal transduction pathways, whereas the aliphatic glucosinolates appear to be primarily genetically and not environmentally controlled. Thus, different defense pathways activate subsets of biosynthetic enzymes, leading to the accumulation of specific glucosinolates.  相似文献   

8.
The two multifunctional cytochrome P450 enzymes, CYP79A1 and CYP71E1, involved in the biosynthesis of the cyanogenic glucoside dhurrin in Sorghum bicolor (L.) Moench have been characterized with respect to substrate specificity and cofactor requirements using reconstituted, recombinant enzymes and sorghum microsomes. CYP79A1 has a very high substrate specificity, tyrosine being the only substrate found. CYP71E1 has less stringent substrate requirements and metabolizes aromatic oximes efficiently, whereas aliphatic oximes are slowly metabolized. Neither CYP79A1 nor CYP71E1 catalyze the metabolism of a range of different herbicides. The reported resistance of sorghum to bentazon is therefore not linked to the presence of CYP79A1 or CYP71E1. NADPH is a much better cofactor than NADH although NADH does support the entire catalytic cycle of both P450 enzymes. Km and Vmax values for NADPH when supporting CYP71E1 activity are 0.013 mM and 111 nmol/mg protein/s. For NADH, the corresponding values are 0. 3 mM and 42 nmol/mg protein/s. CYP79A1 is a fairly stable enzyme. In contrast, CYP71E1 is labile and prone to rapid denaturation at room temperature. CYP71E1 is isolated in the low spin form. CYP71E1 catalyzes an unusual dehydration reaction of an oxime to the corresponding nitrile which subsequently is C-hydroxylated. The oxime forms a peculiar reverse Type I spectrum, whereas the nitrile forms a Type I spectrum. Several compounds which do not serve as substrates formed Type I substrate binding spectra with the two P450 enzymes.  相似文献   

9.
Glucosinolates are natural plant products known as flavor compounds, cancer-preventing agents, and biopesticides. We report cloning and characterization of the cytochrome P450 CYP79B2 from Arabidopsis. Heterologous expression of CYP79B2 in Escherichia coli shows that CYP79B2 catalyzes the conversion of tryptophan to indole-3-acetaldoxime. Recombinant CYP79B2 has a K(m) of 21 microm and a V(max) of 7.78 nmol/h/ml culture. Inhibitor studies show that CYP79B2 is different from a previously described enzyme activity that converts tryptophan to indole-3-acetaldoxime (Ludwig-Müller, J. , and Hilgenberg, W. (1990) Phytochemistry, 29, 1397-1400). CYP79B2 is wound-inducible and expressed in leaves, stem, flowers, and roots, with the highest expression in roots. Arabidopsis overexpressing CYP79B2 has increased levels of indole glucosinolates, which strongly indicates that CYP79B2 is involved in indole glucosinolate biosynthesis. Our data show that oxime production by CYP79s is not restricted to those amino acids that are precursors for cyanogenic glucosides. Our data are consistent with the hypothesis that indole glucosinolates have evolved from cyanogenesis. Indole-3-acetaldoxime is a precursor of the plant hormone indole-3-acetic acid, which suggests that CYP79B2 might function in biosynthesis of indole-3-acetic acid. Identification of CYP79B2 provides an important tool for modification of the indole glucosinolate content to improve nutritional value and pest resistance.  相似文献   

10.
Cytochromes P450 of the CYP79 family catalyze the conversion of amino acids to oximes in the biosynthesis of glucosinolates, a group of natural plant products known to be involved in plant defense and as a source of flavor compounds, cancer-preventing agents and bioherbicides. We report a detailed biochemical analysis of the substrate specificity and kinetics of CYP79F1 and CYP79F2, two cytochromes P450 involved in the biosynthesis of aliphatic glucosinolates in Arabidopsis thaliana. Using recombinant CYP79F1 and CYP79F2 expressed in Escherichia coli and Saccharomyces cerevisiae, respectively, we show that CYP79F1 metabolizes mono- to hexahomomethionine, resulting in both short- and long-chain aliphatic glucosinolates. In contrast, CYP79F2 exclusively metabolizes long-chain elongated penta- and hexahomomethionines. CYP79F1 and CYP79F2 are spatially and developmentally regulated, with different gene expression patterns. CYP79F2 is highly expressed in hypocotyl and roots, whereas CYP79F1 is strongly expressed in cotyledons, rosette leaves, stems, and siliques. A transposon-tagged CYP79F1 knockout mutant completely lacks short-chain aliphatic glucosinolates, but has an increased level of long-chain aliphatic glucosinolates, especially in leaves and seeds. The level of long-chain aliphatic glucosinolates in a transposon-tagged CYP79F2 knockout mutant is substantially reduced, whereas the level of short-chain aliphatic glucosinolates is not affected. Biochemical characterization of CYP79F1 and CYP79F2, and gene expression analysis, combined with glucosinolate profiling of knockout mutants demonstrate the functional role of these enzymes. This provides valuable insights into the metabolic network leading to the biosynthesis of aliphatic glucosinolates, and into metabolic engineering of altered aliphatic glucosinolate profiles to improve nutritional value and pest resistance.  相似文献   

11.
The Arabidopsis ref2 mutant was identified in a screen for plants having altered fluorescence under UV light. Characterization of the ref2 mutants showed that they contained reduced levels of a number of phenylpropanoid pathway-derived products: sinapoylmalate in leaves, sinapoylcholine in seeds, and syringyl lignin in stems. Surprisingly, positional cloning of the REF2 locus revealed that it encodes CYP83A1, a cytochrome P450 sharing a high degree of similarity to CYP83B1, an enzyme involved in glucosinolate biosynthesis. Upon further investigation, ref2 mutants were found to have reduced levels of all aliphatic glucosinolates and increased levels of indole-derived glucosinolates in their leaves. These results show that CYP83A1 is involved in the biosynthesis of both short-chain and long-chain aliphatic glucosinolates and suggest a novel metabolic link between glucosinolate biosynthesis, a secondary biosynthetic pathway found only in plants in the order Capparales, and phenylpropanoid metabolism, a pathway found in all plants and considered essential to the survival of terrestrial plant species.  相似文献   

12.
Indole glucosinolates (IG) play important roles in plant defense, plant-insect interactions, and stress responses in plants. In an attempt to metabolically engineer the IG pathway flux in Chinese cabbage, three important Arabidopsis cDNAs, CYP79B2, CYP79B3, and CYP83B1, were introduced into Chinese cabbage by Agrobacterium-mediated transformation. Overexpression of CYP79B3 or CYP83B1 did not affect IG accumulation levels, and overexpression of CYP79B2 or CYP79B3 prevented the transformed callus from being regenerated, displaying the phenotype of indole-3-acetic acid (IAA) overproduction. However, when CYP83B1 was overexpressed together with CYP79B2 and/or CYP79B3, the transformed calli were regenerated into whole plants that accumulated higher levels of glucobrassicin, 4-hydroxy glucobrassicin, and 4-methoxy glu-cobrassicin than wild-type controls. This result suggests that the flux in Chinese cabbage is predominantly channeled into IAA biosynthesis so that coordinate expression of the two consecutive enzymes is needed to divert the flux into IG biosynthesis. With regard to IG accumulation, overexpression of all three cDNAs was no better than overexpression of the two cDNAs. The content of neoglucobrassicin remained unchanged in all transgenic plants. Although glucobrassicin was most directly affected by overexpression of the transgenes, elevated levels of the parent IG, glucobrassicin, were not always accompanied by increases in 4-hydroxy and 4-methoxy glucobrassicin. However, one transgenic line producing about 8-fold increased glucobrassicin also accumulated at least 2.5 fold more 4-hydroxy and 4-methoxy glucobrassicin. This implies that a large glucobrassicin pool exceeding some threshold level drives the flux into the side chain modification pathway. Aliphatic glucosinolate content was not affected in any of the transgenic plants.  相似文献   

13.
14.
Indole glucosinolates, derived from the amino acid Trp, are plant secondary metabolites that mediate numerous biological interactions between cruciferous plants and their natural enemies, such as herbivorous insects, pathogens, and other pests. While the genes and enzymes involved in the Arabidopsis thaliana core biosynthetic pathway, leading to indol-3-yl-methyl glucosinolate (I3M), have been identified and characterized, the genes and gene products responsible for modification reactions of the indole ring are largely unknown. Here, we combine the analysis of Arabidopsis mutant lines with a bioengineering approach to clarify which genes are involved in the remaining biosynthetic steps in indole glucosinolate modification. We engineered the indole glucosinolate biosynthesis pathway into Nicotiana benthamiana, showing that it is possible to produce indole glucosinolates in a noncruciferous plant. Building upon this setup, we demonstrate that all members of a small gene subfamily of cytochrome P450 monooxygenases, CYP81Fs, are capable of carrying out hydroxylation reactions of the glucosinolate indole ring, leading from I3M to 4-hydroxy-indol-3-yl-methyl and/or 1-hydroxy-indol-3-yl-methyl glucosinolate intermediates, and that these hydroxy intermediates are converted to 4-methoxy-indol-3-yl-methyl and 1-methoxy-indol-3-yl-methyl glucosinolates by either of two family 2 O-methyltransferases, termed indole glucosinolate methyltransferase 1 (IGMT1) and IGMT2.  相似文献   

15.
植物激素与芥子油苷在生物合成上的相互作用   总被引:1,自引:0,他引:1  
植物激素在植物的生长发育中起着关键性作用,芥子油苷是一类重要的次生代谢物质。植物激素与芥子油苷之间存在复杂的相互作用。生长素与吲哚类芥子油苷在生物合成上存在着相互作用。植物防卫信号分子与芥子油苷之间也存在相互作用,茉莉酸强烈诱导吲哚类芥子油苷生物合成相关基因CYP7982和CYP7983的表达,从而诱导吲哚-3-甲基芥子油苷和N-甲氧吲哚-3-甲基芥子油苷等吲哚类芥子油苷的生成,水杨酸和乙烯则能轻度诱导4-甲氧吲哚-3-甲基芥子油苷的生成。植物防卫信号转导途径相互作用以精细调节不同种类吲哚类芥子油苷的生成。  相似文献   

16.
17.
18.
Glucosinolates are natural plant products that have received rising attention due to their role in interactions between pests and crop plants and as chemical protectors against cancer. Glucosinolates are derived from amino acids and have aldoximes as intermediates. We report that cytochrome P450 CYP79F1 catalyzes aldoxime formation in the biosynthesis of aliphatic glucosinolates in Arabidopsis thaliana. Using recombinant CYP79F1 functionally expressed in Escherichia coli, we show that both dihomomethionine and trihomomethionine are metabolized by CYP79F1 resulting in the formation of 5-methylthiopentanaldoxime and 6-methylthiohexanaldoxime, respectively. 5-methylthiopentanaldoxime is the precursor of the major glucosinolates in leaves of A. thaliana, i.e. 4-methylthiobutylglucosinolate and 4-methylsulfinylbutylglucosinolate, and a variety of other glucosinolates in Brassica sp. Transgenic A. thaliana with cosuppression of CYP79F1 have a reduced content of aliphatic glucosinolates and a highly increased level of dihomomethionine and trihomomethionine. The transgenic plants have a morphological phenotype showing loss of apical dominance and formation of multiple axillary shoots. Our data provide the first evidence that a cytochrome P450 catalyzes the N-hydroxylation of chain-elongated methionine homologues to the corresponding aldoximes in the biosynthesis of aliphatic glucosinolates.  相似文献   

19.
Indole glucosinolates (IG), a group of secondary metabolites found almost extensively in the order Brassicales, play an important role in the interaction between plant and insect or microorganism. In order to explore the possibility of IG metabolic engineering in Chinese cabbage hairy roots, three Arabidopsis cDNAs CYP79B2, CYP79B3, and CYP83B1 combined with rolABC were introduced into Chinese cabbage by Agrobacterium-mediated transformation. Overexpression of CYP79B2, CYP79B3, or CYP83B1 alone did not affect the accumulation levels of IG in transgenic hairy roots. However, when CYP83B1 was overexpressed together with CYP79B2 and/or CYP79B3, some of the transgenic hairy roots accumulated higher levels of glucobrassicin (GBC) or 4-methoxy glucobrassicin (4-OMeGBC) than control hairy root line carrying rolABC vector. With regard to the IG accumulation, overexpression of all three cDNAs showed no better than overexpression of both cDNAs. Both 4-OMeGBC and neoglucobrassicin (neo-GBC) were found to be the main components of IG that comprise about 90% of total IG in all types of Chinese cabbage hairy root lines. In transgenic hairy root lines rB3B1-8 and rB2B1B3-5, 4-OMeGBC increased to 2 and 1.5-fold, while neo-GBC decreased to 0.5 and 0.6-fold, respectively. This suggests that an increased production of 4-OMeGBC causes a reduction of neo-GBC level since the two types derive from a common precursor GBC. However, in terms of the total IG level, the transgenic hairy roots did not show significant differences from controls.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号