首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 914 毫秒
1.
Rapid actions of progesterone on granulosa cells   总被引:6,自引:0,他引:6  
Peluso JJ 《Steroids》2004,69(8-9):579-583
Ovarian granulosa cells are responsive to progesterone but do not express the nuclear progesterone receptor. In an attempt to identify a receptor for progesterone (P4) in granulosa cells (GCs), an antibody built against the ligand binding site of the P4 receptor (i.e. C-262) was used. This antibody detected a 60 kDa protein in GCs as well as spontaneously immortalized granulosa cells (SIGCs). This C-262 detectable protein localizes to the plasma membrane and binds P4. Importantly, this C-262 detectable protein appears to be involved in mediating P4's biological actions. This is based on the findings that C-262 1) blocks P4's ability to inhibit mitogen-induced mitosis and apoptosis and 2) FITC-BSA-conjugated P4 binding to granulosa cells. A C-262 detectable protein was isolated using a C-262 affinity column and sequenced. This analysis identified an unnamed protein referred to as RDA288 that was found in the rat genome (Accession number: XM216160). A nearly identical unnamed protein was found in a cDNA library of mouse lung (Accession number: AK004678). Whether RDA288 functions as a membrane receptor for P4 remains to be determined.  相似文献   

2.
Progesterone (P(4)) inhibits granulosa cell apoptosis in a steroid-specific, dose-dependent manner, but these cells do not express the classic nuclear P(4) receptor. It has been proposed that P(4) mediates its action through a 60-kDa protein that functions as a membrane receptor. The present studies were designed to determine the P(4) binding characteristics of this protein. Western blot analysis using an antibody that recognizes the P(4) binding site of the nuclear P(4) receptor (C-262) confirmed that the 60-kDa protein was localized to the plasma membrane of both granulosa cells and spontaneously immortalized granulosa cells (SIGCs). To determine whether this protein binds P(4), proteins were immunoprecipitated with the C-262 antibody, electrophoresed, transferred to nitrocellulose, and probed with a horseradish peroxidase-labeled P(4) in the presence or absence of nonlabeled P(4). This study demonstrated that the 60-kDa protein specifically binds P(4). Scatchard plot analysis revealed that (3)H-P(4) binds to a single site (i.e., single protein), which is relatively abundant (200 pmol/mg) with a K(d) of 360 nM. (3)H-P(4) binding was not reduced by dexamethasone, mifepristone (RU 486), or onapristone (ZK98299). Further studies with SIGCs showed that P(4) inhibited apoptosis and mitogen-activated protein kinase kinase (MEK) activity, and maintained calcium homeostasis. These studies taken together support the concept that the 60-kDa P(4) binding protein functions as a low-affinity, high-capacity membrane receptor for P(4).  相似文献   

3.
Progesterone (P4) inhibits both granulosa cells and spontaneously immortalized granulosa cells (SIGCs) from undergoing apoptosis. P4 does so through a plasma membrane-initiated event. It appears that P4's membrane-initiated actions are mediated by a 60-kDa P4 binding protein (P4BP), which is detected by an antibody directed against the ligand binding domain of the nuclear P4 receptor (i.e., C-262). Immunohistochemical analysis revealed that a C-262-detectable protein was first observed in the periphery of a few granulosa cells within early antral-stage follicles. In nonatretic antral follicles, this protein was detected at the periphery of virtually all granulosa cells. In contrast, granulosa cells of atretic follicles lost the distinct peripheral localization of this C-262-detectable protein. This reduction in the membrane localization was also observed by Western blot analysis. To assess the temporal changes in this 60-kDa P4BP during apoptosis, studies were conducted using SIGCs. That this 60-kDa protein is important in mediating P4's action was confirmed by the observation that C-262 but not IgG attenuated P4's antiapoptotic action. Interestingly, the membrane localization of this 60-kDa P4BP was maintained but the ability of P4 to prevent apoptosis was lost within 20 min of initiating the apoptotic cascade. In addition, Erk-1 and -2 phosphorylation (i.e., activity) increased within 20 min of P4 withdrawal. Further, P4 suppressed the increase in the Erk-1 phosphorylation if administered within 5 but not 20 min of initiating the apoptotic cascade. Moreover, the mitogen-activated protein kinase kinase (MEK) inhibitor, PD98059, reduced the percentage of SIGCs undergoing apoptosis in the absence of P4. Because MEK phosphorylates Erk, these observations suggests that 1) the increase in Erk-1 activity is an important part of the apoptotic cascade, 2) P4 promotes granulosa cell viability by modulating the activity of Erk-1, and 3) P4 becomes "uncoupled" from its antiapoptotic signal transduction mechanism within 20 min of initiating apoptosis, even though the membrane localization of the 60-kDa P4BP is maintained.  相似文献   

4.
5.
Progesterone (P4) inhibits granulosa cell and spontaneously immortalized granulosa cell (SIGC) apoptosis by regulating membrane-initiated events. However, the nature of the signal transduction pathway that is induced by these membrane-initiated events has not been defined. To gain insights into the P4-regulated signal transduction pathway, mouse granulosa cells and SIGCs were cultured with 8-br-cGMP and P4. In culture, 8-br-cGMP mimicked P4's antiapoptotic actions. Because cGMP activates protein kinase G (PKG), the effect of PKG antagonists on P4-regulated SIGC viability was assessed. P4's antiapoptotic action was attenuated by the PKG inhibitors, Rp-8-pCPT-cGMP, KT5823, the PKG-1alpha-specific inhibitor, DT-3, and a dominant negative PKG-1alpha. Further, the type I isoform of PKG was shown to be expressed by SIGCs and activated by P4. P4's antiapoptotic action was not affected by the PKA inhibitor, KT5720. Collectively, these findings indicate that P4 maintains SIGC viability by activating PKG-1alpha. PKG-1alpha-GFP was shown to localize predominantly to the cytoplasm of SIGCs. To identify potential cytoplasmic targets of PKG-1alpha, SIGCs were cultured for 5 h with P4 in the presence or absence of DT-3. Cell lysates were prepared and subjected to two-dimensional electrophoresis. The resulting gels were sequentially stained with ProQ-Diamond Gel Stain and Coomassie Blue to reveal phosphorylated proteins. The two-dimensional gels revealed one major protein, the phosphorylation status of which was abrogated by DT-3. Mass spectrometric analysis identified this protein as 14-3-3sigma, with 14-3-3sigma being phosphorylated on tyrosine 19, serine 28, serine 69, serine 74, threonine 90, threonine 98, and serine 116. Finally, difopein, a specific 14-3-3 inhibitor, was shown to induce apoptosis even in the presence of serum. These data suggest that 1) P4 regulates the phosphorylation status of 14-3-3sigma through a PKG-dependent pathway and 2) 14-3-3sigma plays a central and essential role in maintaining the viability of SIGCs.  相似文献   

6.
The protein PAIRBP1, which was initially referred to as RDA288, is involved in mediating the antiapoptotic action of progesterone (P4) in spontaneously immortalized granulosa cells (SIGCs). The present studies were designed to assess the expression and function of PAIRBP1 in the different cell types within the immature rat ovary. Western blot analysis detected PAIRBP1 within whole-cell lysates of immature rat ovaries. Equine gonadotropin (eCG) induced a 3-fold increase in ovarian levels of PAIRBP1. Moreover, human chorionic gonadotropin (hCG), given 48 h after eCG, maintained these elevated levels for up to 4 days. Immunohistochemical analysis confirmed this and further demonstrated that interstitial, thecal, and surface epithelial cells also expressed PAIRBP1. The level of PAIRBP1 in these cells was not influenced by gonadotropin treatment. In contrast, eCG stimulated an increase in PAIRBP1 within the granulosa cells of the developing follicles. Treatment with hCG induced ovulation and ultimately the formation of corpora lutea (CL). High levels of PAIRBP1 expression were also observed within the luteal cells. Immunocytochemical studies on living, nonpermeabilized granulosa and luteal cells revealed that some PAIRBP1 localized to the extracellular surface of these cells. The presence of PAIRBP1 on the extracellular surface was consistent with the observation that an antibody to PAIRBP1 attenuated P4's antiapoptotic action in both granulosa and luteal cells. Although the PAIRBP1 antibody attenuated P4's action, it did not reduce the capacity of cells to specifically bind (3)H-P4. Immunoprecipitation with the PAIRBP1 antibody pulled down the membrane P4 binding protein known as progesterone receptor membrane complex-1 (PGRMC1; rat homolog accession number AJ005837). Taken together, these findings suggest that gonadotropins regulate the expression of PAIRBP1 in granulosa and luteal cells and that PAIRBP1 plays an important role in mediating P4's antiapoptotic action in these ovarian cell types. The exact mechanism of PAIRBP1's action remains to be elucidated, but it may involve an interaction with PGRMC1.  相似文献   

7.
8.
Yu Y  Li W  Han Z  Luo M  Chang Z  Tan J 《Theriogenology》2003,60(9):1691-1704
The effect of FSH on goat follicular development, granulosa cell apoptosis and steroidogenesis and its mediation by insulin-like growth factor (IGF)-I were studied through both in vivo and in vitro experiments. The FSH treatment was begun on Day 9 after estrus and consisted of injections twice a day for 3 days in decreasing doses (7.5–7.5–5.0–5.0–2.5–2.5 mg). Does in both treatment and control groups were slaughtered for ovaries on Day 12. Granulosa cell apoptosis was detected by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL). Expression of IGF-I and IGF-II mRNA was determined by RT–PCR, while concentrations of progesterone (P4), estradiol (E2), IGF-I and IGF-II were measured by radioimmunoassay (RIA). Following parameters increased significantly (P<0.05) after the FSH treatment: follicle number (5.0±1.5 versus 9.0±2.0 per ovary), the level of E2 (0.1±0.1 ng/ml versus 0.7±0.2 ng/ml), the E2/P4 ratio (0.7±0.4 versus 4.7±3.0) and the concentrations of IGF-I (0.5±0.2 ng/ml versus 119.4±15.1 ng/ml) and IGF-II (0.12±0.03 ng/ml versus 40.9±18.7 ng/ml) in follicular fluid of the medium sized (3–5 mm) follicles and in the ovarian cortex the relative quantity of IGF-I mRNA (0.37±0.17 versus 0.90±0.12 Max OD). In contrast, the ratio of apoptotic granulosa cells in these follicles was reduced significantly (0.53±0.1 versus 0.10±0.01, P<0.05). In large (>5 mm) follicles, however, only the follicle number (2.3±0.7 versus 7.0±1.5 per ovary) and the level of IGF-I (38.4±11.0 ng/ml versus 87.3±13.9 ng/ml) increased significantly (P<0.05), whereas other values did not change. In vitro culture of granulosa cells showed that FSH significantly (P<0.05) enhanced IGF-I production (12.7±2.1 ng/ml versus 26.±21.9 ng/ml) by these cells, and both FSH and IGF-I reduced the ratios of apoptotic cells (from 0.7±0.07 to 0.3±0.1 and 0.2±0.04, respectively) and the effect was additive when both were used together. H89, the PKA pathway inhibitor, blocked the effect of FSH on granulosa cell apoptosis and IGF-I production in vitro. These results indicated that FSH mainly enhanced the development of medium sized follicles in the goat by suppressing the apoptosis of granulosa cells via increasing production of IGF-I and steroids, possibly through the PKA pathway.  相似文献   

9.
《Genomics》2020,112(5):3597-3608
ObjectiveThe objective was to find the role of long-non-coding RNA zinc finger antisense 1 (lncRNA ZFAS1)/microRNA (miR)-129/high-mobility group box protein 1 (HMGB1) axis in polycystic ovary syndrome (PCOS).MethodsOvarian granulosa cells from non-PCOS patients and PCOS patients were collected, and HMGB1, miR-129 and lncRNA ZFAS1 expression were detected. Ovarian granulosa cells were transfected with si-ZFAS1 or miR-129 mimics to verify their roles in P4 and E2 secretion, and the biological functions of ovarian granulosa cells.ResultsLncRNA ZFAS1 and HMGB1 were elevated, while miR-129 was down-regulated in ovarian granulosa cells of PCOS patients. Down-regulated lncRNA ZFAS1 or overexpressed miR-129 could decrease HMGB1 expression, increase P4 and E2 secretion, promote proliferation activity while inhibit apoptosis of ovarian granulosa cells in PCOS.ConclusionLncRNA ZFAS1 could bind to miR-129 to promote HMGB1 expression, thereby affecting the endocrine disturbance, proliferation and apoptosis of ovarian granulosa cells in PCOS.  相似文献   

10.
The role of protein kinase, in particular cyclic GMP-dependent protein kinase (PKG), in the control of chemotaxis was studied in Tetrahymena thermophila using the membrane-permeable cGMP analogue 8-bromo-cGMP and the NO-generator sodium nitroprusside (SNP) that stimulates cGMP production by activating guanylate cyclase. Stimulation of chemoattraction was observed in the presence of 8-bromo-cGMP and nitroprusside when used in 10–100 μM concentrations in vivo. In vitro stimulation of ciliary membrane PKG activity was observed when using similar concentrations of cGMP or 8-bromo-cGMP to those in the in vivo experiments. In contrast, the protein kinase flavonol inhibitors quercitin and kaempherol block chemoattraction and reduce ciliary membrane PGK activity in vitro. For the inhibition of PKG, the IC-50 s for quercitin and kaempherol are 22 and 19 μM, respectively. The results suggest a modulating function of PKG on adaptory processes in cilia-mediated chemotaxis.

The ciliary membrane-associated PKG was partially characterized. Without added external protein kinase substrate in vitro, an endogenous ciliary membrane kinase activity showed phosphorylation of 55 and 97 kDa Triton-X-100 soluble proteins when analyzed by SDS-PAGE under reducing conditions and with 32P-γ-ATP as phosphorylation donor. Phosphoamino acid analysis of PKG-phosphorylated proteins showed 32P-phosphate labeling of serine and threonine residues. Ciliary membrane-associated PKG was further purified by carboxy-methyl-sephadex-column chromatography. The membrane enzyme was Mg2++-dependent and had a pH optimum at 6.4. The carboxy-methyl-sephadex-eluted PKG was analyzed by electrophoresis on sodium dodecyl sulphate polyacrylamide gels showing a molecular weight of 70–75 kDa.  相似文献   


11.
Using immunohistochemistry and in situ hybridization, we attempted to identify the estrogen receptor (ER) protein and messenger RNA (mRNA) in sheep ovaries during the follicular phase of the estrous cycle. Monoclonal anti-ER antibodies H222 and 1D5 were used for localizing estrogen receptor on ovarian cryo-sections. Labeling for ER was found over the nuclei of surface epithelium, interstitial tissue, and granulosa cells of small as well as large ovarian follicles. In the preantral and small antral follicles, intense nuclear ER labeling was observed in mural granulosa cells and particularly in cumulus/granulosa cells surrounding the oocyte. In the large healthy looking follicles, greater diversity in labeling for ER was observed, which is characterized by mixed populations of granulosa cells expressing positive and more or less negative nuclear labeling. Such a pattern of labeling was particularly evident in follicles showing the signs of atresia. Generally, more intense nuclear staining was localized in granulosa cells proximal to basal membrane. In situ hybridization studies revealed the presence of ER mRNA in ovarian tissue. Autoradiographic visualization localized ER mRNA expression over the granulosa cells of healthy follicles of all sizes. Level of hybridization signal was comparable in mural and cumulus granulosa cells. In atretic follicles, the level of hybridization signal in granulosa cells was comparable to that of healthy follicles. A relatively weaker level of labeling was observed in granulosa cells dispersed in follicular antrum in follicles with advanced atretic lesions. Theca cells expressed a lower level of labeling than granulosa cells. Specificity of labeling for both ER protein and mRNA in ovary was proved by parallel probing the ovine uterus. Ovine ER recognition by both H222 and 1D5 antibodies was also proved by immunoblotting. These studies demonstrate the presence of the estrogen receptor and its messenger RNA in the sheep ovary and suggest an autocrine/paracrine role of estradiol and its receptor in the regulation of ovarian follicle development in sheep. Mol. Reprod. Dev. 48:53–62, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

12.
Affinity-purified rat ovarian lutropin (LH) receptor is a single 90 kDa polypeptide which binds to immobilized lectins, indicating that the receptor is a glycoprotein [Keinänen, Kellokumpu, Metsikkö & Rajaniemi (1987) J. Biol. Chem. 262, 7920-7926]. In the present study the glycoprotein nature of the rat ovarian LH receptor was investigated in order to determine the contribution of the glycan moiety to receptor''s size and hormone-binding properties. Treatment of the 125I-labelled purified LH receptor with neuraminidase and peptide N-glycosidase F resulted in a decrease in size of LH receptor from 90 kDa to 79 kDa and 62 kDa respectively, as assessed by SDS/polyacrylamide-gel electrophoresis. Endo-alpha-N-acetylgalactosaminidase treatment did not affect the electrophoretic mobility of the intact or neuraminidase-treated LH receptor. Subjecting the membrane-bound LH receptor to similar enzymic treatments followed by ligand blotting showed that the 79 kDa and 62 kDa forms are capable of specific hormone binding. Furthermore, intact and peptide N-glycosidase F-treated membranes bound 125I-labelled human choriogonadotropin with similar affinities. These data suggest that molecular mass of the polypeptide backbone of the LH receptor is 62 kDa. The receptor contains N-glycosidically linked oligosaccharide chains with terminal sialic acid residues, with little or no O-linked oligosaccharide. N-Linked carbohydrate is not required for specific high-affinity hormone binding.  相似文献   

13.
14.
15.
The aim of our experiments was to study the influence of genistein [tyrosine kinase (TK) inhibitor with estrogenic activity] and lavendustin A (TK inhibitor without estrogenic activity) on female reproductive processes in domestic animals in vitro. It was found that genistein (0.001–1 μg/ml) increased IGF-I release by cultured bovine and porcine granulosa cells, but decreased its secretion by rabbit granulosa cells (0.01–10 μg/ml). Genistein stimulated progesterone secretion by bovine and rabbit granulosa cells (at 0.01–10 μg/ml), estradiol output by rabbit granulosa cells (at 1 μg/ml) and porcine ovarian follicles (at 10 μg/ml), as well as cAMP production by bovine (at 0.001–1 μg/ml) and rabbit (at 1 μg/ml) granulosa cells. No effects of genistein (at 10 μg/ml) on PGF-2 alpha and progesterone release by porcine ovarian follicles were observed. Genistein significantly (P < 0.05) stimulated the reinitiation and completion of nuclear maturation of porcine oocytes (at 5 μg/ml), as well as the preimplantation development of rabbit zygotes (at 1 μg/ml). Lavendustin A (0.001–1 μg/ml) increased IGF-I release by bovine (but not by porcine) granulosa cells, cAMP release by bovine granulosa cells, and PGF-2 alpha output by porcine ovarian follicles (at 10 μg/ml). Lavendustin (at 1 μg/ml) had no significant effect on IGF-I release by porcine granulosa cells, on estradiol and cAMP output by rabbit granulosa cells, or on progesterone secretion by porcine follicles (at 10 μg/ml). Inhibitory actions of lavendustin (at 10 μg/ml) on estradiol secretion by porcine follicles were also found. Furthermore, lavendustin, like genistein, promoted the reinitiation and completion of meiosis in porcine oocytes. The present study demonstrates a predominantly stimulatory effect of TK inhibition on endocrine and generative processes in domestic animals. The majority of these effects are similar for both compounds, indirectly suggesting that their action is due to tyrosine kinase inhibition and protein kinase A-stimulation, rather than estrogenic activity.  相似文献   

16.
Almost all ovarian follicles undergo atresia during follicular development. However, the number of corpora lutea roughly equals the number of preovulatory follicles in the ovary. Because apoptosis is the cellular mechanism behind follicle and luteal cell demise, this suggests a change in apoptosis susceptibility during the periovulatory period. Sex steroids are important regulators of follicular cell survival and apoptosis. The aim of the present work was to study the role of progesterone receptor-mediated effects in the regulation of granulosa cell apoptosis. The levels of internucleosomal DNA fragmentation were evaluated in rat granulosa cells before and after induction of the nuclear progesterone receptor, using hCG treatment to eCG-primed rats to mimic the naturally occurring LH surge. Granulosa cells isolated from hCG-treated rats showed a several-fold increase in the expression of progesterone receptor mRNA and a 47% decrease (P < 0.01) in DNA fragmentation after 24 h incubation in serum-free medium compared to granulosa cells isolated from rats treated with eCG only. The effect of hCG treatment in vivo was dose-dependently reversed in vitro by addition of antiprogestins (Org 31710 or RU 486) to the culture medium, demonstrated by increased DNA fragmentation as well as increased caspase-3 activity. Addition of antiprogestins to granulosa cells isolated from immature or eCG-treated rats did not result in increased DNA fragmentation. The results suggest that progesterone receptor-mediated effects are involved in regulating the susceptibility to apoptosis in LH receptor-stimulated preovulatory rat granulosa cells.  相似文献   

17.
18.
Although the role of the TGF beta superfamily members in the regulation of ovarian folliculogenesis has been extensively studied, their involvement in follicular atresia is not well understood. In the present study, we have demonstrated for the first time that Nodal, a member of the TGF beta superfamily, is involved in promoting follicular atresia as evidenced by the following: 1) colocalization of Nodal and its type I receptor Activin receptor-like kinase 7 (ALK7) proteins in the granulosa cells was only observed in atretic antral follicles, whereas they were present in theca cells and granulosa cells of healthy follicles, respectively; 2) addition of recombinant Nodal or overexpression of Nodal by adenoviral infection induced apoptosis of otherwise healthy granulosa cells; 3) constitutively active ALK7 (ALK7-ca) overexpression mimicked the function of Nodal in the induction of granulosa cell apoptosis. Furthermore, overexpression of Nodal or ALK7-ca increased phosphorylation and nuclear translocation of Smad2, decreased X-linked inhibitor of apoptotic proteins (Xiap) expression at both mRNA and protein level and phospho-Akt content, as well as triggered mitochondrial release of death proteins Smac/DIABLO, Omi/HtrA2, and cytochrome c in the granulosa cells. Dominant-negative Smad2 significantly attenuated ALK7-ca-induced down-regulation of Xiap and thus rescued granulosa cells from undergoing apoptosis. In addition, whereas up-regulation of Xiap significantly attenuated ALK7-ca-induced apoptosis, down-regulation of Xiap sensitized granulosa cells to ALK7-ca-induced apoptosis. Furthermore, ALK7-ca-induced apoptosis was significantly attenuated by forced expression of activated Akt, and Akt rescued granulosa cells from undergoing apoptosis via proteasome-mediated ALK7 degradation. Taken together, Nodal plays an atretogenic role in the ovary where it induces granulosa cell apoptosis through activation of Smad2, down-regulation of the key survival molecules Xiap and phospho-Akt, as well as the activation of mitochondrial death pathway.  相似文献   

19.
Epidermal growth factor (EGF) and transforming growth factor alpha (TGF-) are structurally related growth factors that exert their biological actions by binding to the same cell-surface receptor, EGF receptor. However, in chicken cells, human EGF binds with approximately 100-fold lower affinity than human TGF-. In a previous study, we localized EGF/TGF- receptor immunohistochemically in the granulosa and theca of the developing follicles of laying hens. We have also shown that TGF- binds to cell-surface receptors of the granulosa cells. The present study characterizes the nature of the EGF/TGF- receptor. Immunoprecipitation of receptor proteins from cultured granulosa cells with an anti-EGF receptor antibody (12E) shows the expression of a 170-kDa receptor protein. The expression of the receptor protein decreases with follicular enlargement between the F3 and F1. Incubation of the cells with [125I]TGF- followed by crosslinking with bis(sulphosuccinimidyl)suberate showed that TGF- binds a similar (170 kDa) receptor protein immunoprecipitated with the 12E anti-EGF receptor antibody. The binding of TGF- to granulosa cells caused receptor protein oligomerization, yielding the monomeric (170 kDa) and dimeric (340 kDa) protein forms. Oligomerization seemed to favour the formation of the dimeric rather than the monomeric form. Culturing granulosa cells with luteinizing hormone or follicle-stimulating hormone increased the expression of both monomer and dimer forms of the receptor proteins compared with the control. Western blotting analysis with anti-phosphotyrosine antibody revealed that the lysates of TGF--stimulated cells express phosphotyrosine-containing receptor proteins of 170 kDa and 340 kDa. The results show that chicken granulosa cells express the 170-kDa EGF=TGF- receptor protein, which dimerizes on binding to TGF-, suggesting that the receptor protein may be involved in the signal transduction of TGF- actions in the chicken granulosa cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号