首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
J V Gannon  R Greaves  R Iggo    D P Lane 《The EMBO journal》1990,9(5):1595-1602
Point mutations in the p53 gene are the most frequently identified genetic change in human cancer. They convert murine p53 from a tumour suppressor gene into a dominant transforming oncogene able to immortalize primary cells and bring about full transformation in combination with an activated ras gene. In both the human and murine systems the mutations lie in regions of p53 conserved from man to Xenopus. We have developed a monoclonal antibody to p53 designated PAb240 which does not immunoprecipitate wild type p53. A series of different p53 mutants all react more strongly with PAb240 than with PAb246. The PAb240 reactive form of p53 cannot bind to SV40 large T antigen but does bind to HSP70. In contrast, the PAb246 form binds to T antigen but not to HSP70. PAb240 recognizes all forms of p53 when they are denatured. It reacts with all mammalian p53 and chicken p53 in immunoblots. We propose that immunoprecipitation of p53 by PAb240 is diagnostic of mutation in both murine and human systems and suggest that the different point mutations which convert p53 from a recessive to a dominant oncogene exert a common conformational effect on the protein. This conformational change abolishes T antigen binding and promotes self-oligomerization. These results are consistent with a dominant negative model where mutant p53 protein binds to and neutralizes the activity of p53 in the wild type conformation.  相似文献   

2.
3.
Shats I  Milyavsky M  Erez N  Rotter V 《FEBS letters》2003,546(2-3):321-324
Many tumorigenic p53 mutants gain a common antigenic epitope that is recognized by the PAb-240 antibody. Database search identified the presence of this epitope in several other proteins, including several antibodies and the catalytic subunit of mouse telomerase, mTERT. These antibodies may represent a part of the previously demonstrated anti-idiotypic network built around p53. In the present study we demonstrate that the PAb-240 antibody was able to inhibit telomerase activity in extracts from both mouse and human tumor cells. The recognition of mTERT by PAb-240 is demonstrated by Western blotting and by using blocking peptides derived from mTERT. The existence of a shared epitope between mutant p53 and telomerase may suggest that the two proteins contribute to malignant transformation through a common pathway.  相似文献   

4.
Conformational stability of the p53 protein is an absolute necessity for its physiological function as a tumor suppressor. Recent in vitro studies have shown that wild-type p53 is a highly temperature-sensitive protein at the structural and functional levels. Upon heat treatment at 37 degrees C, p53 loses its wild-type (PAb1620(+)) conformation and its ability to bind DNA, but can be stabilized by different classes of ligands. To further investigate the thermal instability of p53, we isolated p53 mutants resistant to heat denaturation. For this purpose, we applied a recently developed random mutagenesis technique called DNA shuffling and screened for p53 variants that could retain reactivity to the native conformation-specific anti-p53 antibody PAb1620 upon thermal treatment. After three rounds of mutagenesis and screening, mutants were isolated with the desired phenotype. The isolated mutants were translated in vitro in either Escherichia coli or rabbit reticulocyte lysate and characterized biochemically. Mutational analysis identified 20 amino acid residues in the core domain of p53 (amino acids 101-120) responsible for the thermostable phenotype. Furthermore, the thermostable mutants could partially protect the PAb1620(+) conformation of tumor-derived p53 mutants from thermal unfolding, providing a novel approach for restoration of wild-type structure and possibly function to a subset of p53 mutants in tumor cells.  相似文献   

5.
The 11-4 p53 cDNA clone failed to transform primary rat fibroblasts when cotransfected with the ras oncogene. Two linker insertion mutations at amino acid 158 or 215 (of 390 amino acids) activated this p53 cDNA for transformation with ras. These mutant cDNAs produced a p53 protein that lacked an epitope, recognized by monoclonal antibody PAb246 (localized at amino acids 88 to 110 in the protein) and preferentially bound to a heat shock protein, hsc70. In rat cells transformed by a genomic p53 clone plus ras, two populations of p53 proteins were detected, PAb246+ and PAb246-, which did or did not bind to this monoclonal antibody, respectively. The PAb246- p53 preferentially associated with hsc70, and this protein had a half-life 4- to 20-fold longer than free p53 (PAb246+). These data suggest a possible functional role for hsc70 in the transformation process. cDNAs for p53 derived from methylcholanthrene-transformed cells transform rat cells in cooperation with the ras oncogene and produce a protein that bound with the heat shock proteins. Recombinant clones produced between a Meth A cDNA and 11-4 were tested for the ability to transform rat cells. A single amino acid substitution at residue 132 was sufficient to activate the 11-4 p53 cDNA for transformation. These studies have identified a region between amino acids 132 and 215 in the p53 protein which, when mutated, can activate the p53 cDNA. These results also call into question what the correct p53 wild-type sequence is and whether a wild-type p53 gene can transform cells in culture.  相似文献   

6.
The tumor suppressor gene p53 has been identified as the most frequent site of genetic alterations in human cancers. Vinyl chloride, a known human carcinogen, has been associated with specific A T transversions at codons 179, 249, and 255 of the p53 gene. The mutations result in amino acid substitutions of His Leu at residue 179, Arg Trp at residue 249, and Ile Phe at residue 255 in highly conserved regions of the DNA-binding core domain of the p53 protein. We previously used molecular dynamics calculations to demonstrate that the latter two mutants contain certain common regions that differ substantially in conformation from the wild-type structure. In order to determine whether these conformational changes are consistent for other p53 mutants, we have now used molecular dynamics to determine the structure of the DNA-binding core domain of the Leu 179 p53 mutant. The results indicate that the Leu 179 mutant differs substantially from the wild-type structure in certain discrete regions that are similar to those noted previously in the other p53 mutants. One of these regions (residues 204–217) contains the epitope for the monoclonal antibody PAb240, which is concealed in the wild-type structure, but accessible in the mutant structure, and another region (residues 94–110) contains the epitope for the monoclonal antibody PAb1620, which is accessible in the wild-type structure, but concealed in the mutant structure. Immunologic analyses of tumor tissue known to contain this mutation confirmed these predicted conformational shifts in the mutant p53 protein.  相似文献   

7.
The cytoskeleton of senescent cells was systematically studied using senescent and young fibroblasts. In the cell senescence, skin fibroblasts extraordinarily produced vimentin in contrast to actin and tubulin, which were down-regulated. Among the focal adhesion proteins, paxillin and c-Src decreased also. Senescent cells developed a long and dense vimentin network, long and thin actin fibers, and numerous small focal contact sites, which contrasted with young cells with short and thick actin stress fibers and prominently large focal adhesions. Noticeably, senescent fibroblasts markedly produced p53 molecules and anchored them to vimentin-cytoskeleton in the cytoplasm. The vimentin-anchored p53 was detected with antibody PAb240 that specifically recognizes a conformation variant of p53. A GFP-tagged wild type p53 cDNA was expressed by transfection and shown also to be retained in the cytoplasm in senescent cells, suggesting that p53 is structurally modified to be recognized by PAb240 and anchored to vimentin filaments. We discuss the correlation of the marked alteration of cytoskeleton and senescent cells diminished proliferation and migration, as well as the significance of cytoskeletal anchorage of tumor suppressor p53.  相似文献   

8.
Irradiation with ultraviolet (UV) triggers programmed cell death (apoptosis) in keratinocytes. This process is believed to protect against skin carcinogenesis since the cells with damaged DNA are selectively removed, limiting the likelihood of the development of a malignant keratinocyte clone. The p53 protein is able to detect mutation-bearing DNA fragments and is thus indispensable for the UV-induced apoptosis in the epidermis. Since age is a risk factor for the development of skin tumors we investigated whether ultraviolet induces apoptosis and p53 activation in senescent keratinocytes. Cultured senescent keratinocytes were irradiated with broad-band ultraviolet, apoptosis was assessed using TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling) technique and the p53 activation pattern was determined with Western blotting and immunofluorescent staining with a panel of anti-p53 antibodies recognising different conformational forms of the protein (PAb 122, PAb 240, DO-7). In senescent keratinocytes arrested in the G1 phase of cell cycle, ultraviolet irradiation (100-2000 J/m2) caused accumulation and nuclear translocation of p53. However, in contrast to young cells where UV induces apoptotic cell death in G1, apoptosis was not detected in senescent cells. There were subtle differences in the p53 activation pattern between senescent keratinocytes and known patterns in young keratinocytes and other cell types. In senescent keratinocytes a constitutional nuclear expression of p53 (conformational form recognized by PAb 240) was present and the p53 induction in response to ultraviolet radiation was rapid. Suppression of apoptosis in senescent keratinocytes may be an important mechanism responsible for enhanced skin carcinogenesis in old age.  相似文献   

9.
The cellular phosphoprotein p53 binds tightly and specifically to simian virus 40 T antigen and the 58,000-molecular-weight adenovirus E1b protein. Many human and murine tumor cell lines contain elevated levels of the p53 protein even in the absence of these associated viral proteins. Recently the cloned p53 gene, linked to strong viral promoters, has been shown to complement activated ras genes in transformation of primary rodent cell cultures. Overexpression of the p53 gene alone rescues some primary rodent cell cultures from senescence. We isolated three new monoclonal antibodies to the p53 protein, designated PAb242, PAb246, and PAb248, and mapped the epitopes they recognized on p53 in comparison with other previously isolated antibodies. At least five sterically separate epitopes were defined on murine p53. One of the antibodies, PAb246, recognizes an epitope on p53 that is unstable in the absence of bound simian virus 40 T antigen. This effect is demonstrable in vivo and in newly developed in vitro assays of T-p53 complex formation. Using the panel of anti-p53 antibodies and sensitive immunocytochemical methods, we found that p53 has a predominantly nuclear location in established but not transformed cells as well as in the vast majority of transformed cell lines. Several monoclonal antibodies to p53 showed cross-reactions with non-p53 components in immunocytochemical staining.  相似文献   

10.
Cohen PA  Hupp TR  Lane DP  Daniels DA 《FEBS letters》1999,463(1-2):179-184
In this study, we expressed and purified the p53 mutant encoded by the His175 allele (p53His175) in a baculovirus expression system in order to study the folding and the DNA binding activity of the protein. A two-site ELISA revealed that purified p53His175 protein preferentially displayed a PAb1620 conformation, which appeared to be not sufficient to interact specifically with DNA. The cryptic DNA binding activity of this mutant was then investigated by electrophoretic mobility shift assay in the presence of anti-p53 antibodies, and shown to be refractory to significant activation by PAb421 (a potent allosteric activator of wild-type p53's DNA binding activity). Nevertheless, p53His175 DNA binding was regulated by antibodies targeting the N-terminal region of the protein. Furthermore, while the protein preferentially displayed a PAb1620 conformation, our data suggested the existence of an equilibrium between at least two folding states of the protein (PAb1620 and PAb240 conformations). A model rationalizing the conformation, antibody-interacting ability and DNA binding regulation potential of p53His175 is presented.  相似文献   

11.
12.
An expression vector utilizing the enhancer and promoter region of the simian virus 40 (SV40) DNA regulating a murine p53 cDNA clone was constructed. The vector produced murine p53 protein in monkey cells identified by five different monoclonal antibodies, three of which were specific for the murine form of p53. The murine p53 produced in monkey cells formed an oligomeric protein complex with the SV40 large tumor antigen. A large number of deletion mutations, in-frame linker insertion mutations, and linker insertion mutations resulting in a frameshift mutation were constructed in the cDNA coding portion of the p53 protein expression vector. The wild-type and mutant p53 cDNA vectors were expressed in monkey cells producing the SV40 large T antigen. The conformation and levels of p53 protein and its ability to form protein complexes with the SV40 T antigen were determined by using five different monoclonal antibodies with quite distinct epitope recognition sites. Insertion mutations between amino acid residues 123 and 215 (of a total of 390 amino acids) eliminated the ability of murine p53 to bind to the SV40 large T antigen. Deletion (at amino acids 11 through 33) and insertion mutations (amino acids 222 through 344) located on either side of this T-antigen-binding protein domain produced a murine p53 protein that bound to the SV40 large T antigen. The same five insertion mutations that failed to bind with the SV40 large T antigen also failed to react with a specific monoclonal antibody, PAb246. In contrast, six additional deletion and insertion mutations that produced p53 protein that did bind with T antigen were each recognized by PAb246. The proposed epitope for PAb246 has been mapped adjacent (amino acids 88 through 109) to the T-antigen-binding domain (amino acids 123 through 215) localized by the mutations mapped in this study. Finally, some insertion mutations that produced a protein that failed to bind to the SV40 T antigen appeared to have an enhanced ability to complex with a 68-kilodalton cellular protein in monkey cells.  相似文献   

13.
Newly synthesized simian virus 40 large tumor antigen (T Ag) slowly forms a stable complex with the host tumor antigen, "p53." By the use of immunological and temporal separations and inhibition of aggregation and processing by A locus mutation, we have distinguished specific steps in the reaction sequence leading to formation of the rapidly sedimenting oligomeric complex. The monoclonal antibody PAb101 bound only a fraction of the total soluble pulse-labeled T Ag bound by antitumor serum. After a chase, all T Ag had matured to the form recognized by PAb101. All p53 in the mouse line SVA31E7 was precipitated by the T Ag-specific monoclonal antibody PAb101, even after a short pulse, and is therefore entirely bound to mature T Ag. The p53-specific monoclonal antibody PAb122 precipitates nearly all of the mature T Ag recognized by PAb101, except A locus mutant T Ag, synthesized at the nonpermissive temperature. A locus mutation inhibited entry of newly synthesized T Ag into the oligomeric greater than 28S complex of T Ag and p53.  相似文献   

14.
Guanylyl cyclase C (GCC) is the receptor for the gastrointestinal hormones, guanylin, and uroguanylin, in addition to the bacterial heat-stable enterotoxins, which are one of the major causes of watery diarrhea the world over. GCC is expressed in intestinal cells, colorectal tumor tissue and tumors originating from metastasis of the colorectal carcinoma. We have earlier generated a monoclonal antibody to human GCC, GCC:B10, which was useful for the immunohistochemical localization of the receptor in the rat intestine (Nandi A et al., 1997, J Cell Biochem 66:500-511), and identified its epitope to a 63-amino acid stretch in the intracellular domain of GCC. In view of the potential that this antibody has for the identification of colorectal tumors, we have characterized the epitope for GCC:B10 in this study. Overlapping peptide synthesis indicated that the epitope was contained in the sequence HIPPENIFPLE. This sequence was unique to GCC, and despite a short stretch of homology with serum amyloid protein and pertussis toxin, no cross reactivity was detected. The core epitope was delineated using a random hexameric phage display library, and two categories of sequences were identified, containing either a single, or two adjacent proline residues. No sequence identified by phage display was identical to the epitope present in GCC, indicating that phage sequences represented mimotopes of the native epitope. Alignment of these sequences with HIPPENIFPLE suggested duplication of the recognition motif, which was confirmed by peptide synthesis. These studies allowed us not only to define the requirements of epitope recognition by GCC:B10 monoclonal antibody, but also to describe a novel means of epitope recognition involving topological mimicry and probable duplication of the cognate epitope in the native guanylyl cyclase C receptor sequence.  相似文献   

15.
Several mutant, but not wild-type, p53 proteins form complexes with hsp72/73 heat shock-related proteins in simian virus 40-transformed monkey COS cells. We carried out a detailed biochemical and structural mapping analysis of p53 and report here that p53-hsp72/73 complex formation showed considerable structural specificity. Such complexes were remarkably stable, but unlike analogous complexes formed between p53 and simian virus 40 T antigen, they did not form in in vitro association assays. p53-hsp72/73 complex formation in vivo appears to be dependent on aspects of mutant p53 protein conformation. However, absence of the conformation-sensitive epitope recognized by monoclonal antibody PAb 246 was not reliably diagnostic of such complexes, nor was p53-hsp72173 binding reliably diagnostic of oncogenic activation.  相似文献   

16.
17.
In the post-genomic era, validation of candidate gene targets frequently requires proteinbased strategies. Phage display is a powerful tool to define protein-protein interactions by generating peptide binders against target antigens. Epitope phage display libraries have the potential to enrich coding exon sequences from human genomic loci. We evaluated genomic and cDNA phage display strategies to identify genes in the 5q31 Interleukin gene cluster and to enrich cell surface receptor tyrosine kinase genes from a breast cancer cDNA library. A genomic display library containing 2 x 106 clones with exon-sized inserts was selected with antibodies specific for human Interleukin-4 (IL-4) and Interleukin-13. The library was enriched significantly after two selection rounds and DNA sequencing revealed unique clones. One clone matched a cognate IL-4 epitope; however, the majority of clone insert sequences corresponded to E. coli genomic DNA. These bacterial sequences act as 'mimotopes' (mimetic sequences of the true epitope), correspond to open reading frames, generate displayed peptides, and compete for binding during phage selection. The specificity of these mimotopes for IL-4 was confirmed by competition ELISA. Other E. coli mimotopes were generated using additional antibodies. Mimotopes for a receptor tyrosine kinase gene were also selected using a breast cancer SKBR-3 cDNA phage display library, screened against an anti-erbB2 monoclonal antibody. Identification of mimotopes in genomic and cDNA phage libraries is essential for phage display-based protein validation assays and two-hybrid phage approaches that examine protein-protein interactions. The predominance of E. coli mimotopes suggests that the E. coli genome may be useful to generate peptide diversity biased towards protein coding sequences.ABBREVIATIONS USED: IL, interleukin; ELISA, enzyme linked immunoabsorbant assay; PBS, phospho-buffered saline; cfu, colony forming units.  相似文献   

18.
Epitope mapping with mono- or polyclonal antibodies has so far been done either by dissecting the antigens into overlapping polypeptides in the form of recombinantly expressed fusion proteins, or by synthesizing overlapping short peptides, or by a combination of both methods. Here, we report an alternative method which involves the generation of random gene fragments of approximately 50–200 by in length and cloning these into the 5 terminus of the protein III gene of fd phages. Selection for phages that bind a given monoclonal antibody and sequencing the DNA inserts of immunopositive phages yields derived amino acid sequences containing the desired epitope. A monoclonal antibody (mAb 215) directed against the largest subunit of Drosophila RNA polymerase II (RPB215) was used to map the corresponding epitope in a fUSE5 phage display library made of random DNA fragments from plasmid DNA containing the entire gene. After a single round of panning with this phage library, bacterial colonies were obtained which produced fd phages displaying the mAb 215 epitope. Sequencing of single-stranded phage DNA from a number of positive colonies (recognized by the antibody on colony immunoblots) resulted in overlapping sequences all containing the 15mer epitope determined by mapping with synthetic peptides. Similarly, we have localized the epitopes recognized by a mouse monoclonal antibody directed against the human p53 protein, and by a mouse monoclonal antibody directed against the human cytokeratin 19 protein. Identification of positive colonies after the panning procedure depends on the detection system used (colony immunoblot or ELISA) and there appear to be some restrictions to the use of linker-encoded amino acids for optimal presentation of epitopes. A comparison with epitope mapping by synthetic peptides shows that the phage display method allows one to map linear epitopes down to a size only slightly larger than the true epitope. In general, our phage display method is faster, easier, and cheaper than the construction of overlapping fusion proteins or the use of synthetic peptides, especially in cases where the antigen is a large polypeptide such as the 215 kDa subunit of eukaryotic RNA polymerase II.  相似文献   

19.
Discovering peptide ligands using epitope libraries.   总被引:9,自引:0,他引:9  
Epitope libraries are large collections of peptides. Each peptide is displayed on the surface of a bacteriophage particle and is encoded by a randomly mutated region of the phage genome, thus associating each unique peptide with the DNA molecule encoding it. Antibodies and other binding proteins are used to select specifically for rare, phage-bearing peptide ligands; sequencing of the corresponding viral DNA will reveal their amino acid sequences. Relatively high-affinity peptides for a variety of peptide- and non-peptide-binding ligates have been affinity-isolated from epitope libraries. This technology has been used to map epitopes on proteins and to find peptide mimics for non-peptide-binding ligates. The current challenge lies in developing epitope library technology so that tight-binding peptide ligands can be detected for a wider variety of ligates, including those that recognize folded proteins. Should this be accomplished, many powerful applications can be envisioned in the areas of drug design and the development of diagnostic markers and vaccines.  相似文献   

20.
K Ory  Y Legros  C Auguin    T Soussi 《The EMBO journal》1994,13(15):3496-3504
In an effort to correlate the biological activity of the p53 protein with its conformation, we analysed 14 p53 mutants representative of the most frequently observed protein alterations in human cancers, at codons 175, 248 and 273 (22% of all mutations thus far reported), all three of which contained a CpG dinucleotide. Strikingly, most of the mutants at codons 248 and 273 did not display any change in their conformation, as probed by monoclonal antibodies PAb240 and PAb1620 or by binding to hsp70 protein. For all 14 mutants tested, we found a strict correlation between the transactivation properties of p53, tested either on RGC sequences or using the WAF-1 promoter, and inhibition of cell proliferation. All these mutants showed nuclear localization. Several mutants, present at a low incidence in human tumours, displayed wild-type activity in all our assays, suggesting that the presence of a mutation is not strictly correlated with p53 protein inactivation in tumours. Further analysis of nine thus far undescribed p53 mutants at codon 175 revealed a wild-type or mutant behaviour. All these results suggest that the occurrence of a mutation is dependent on two criteria: (i) the mutability of a given codon, such as those containing a CpG dinucleotide; (ii) the resulting amino acids, eventually leading to synthesis of a p53 conferring a growth advantage on the cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号