首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A cycloheximide-resistant strain of Tetrahymena thermophila, expressing a mutant chx-B gene (Ares and Bruns, Genetics 90:463-474, 1978), displayed very different temperature-dependent growth characteristics than either wild-type cells or another cycloheximide-resistant strain expressing a different mutant gene. Whereas wild-type cells showed an immediate decline in ribosome translocation rates when shifted from 30 to 38 or 40 degrees C, this mutant strain (X-8) showed no such decline. These results directly correlated with the growth rate differences we found for these cells at these temperatures. By genetic analysis, we showed that the phenotype of cycloheximide resistance cosegregated with the ability to grow rapidly at 40 degrees C. Analyses, both direct and indirect, suggested that a number of functional and structural characteristics of the ribosomes from strain X-8 cells are most likely conformationally different from those of wild-type ribosomes.  相似文献   

2.
Genetic analysis of a number of cycloheximide-resistant mutants of Neurospora crassa has shown that resistance is controlled by several genes. Two of these appear to be located on linkage group V. Resistance to the antibiotic is dominant in wild-type-mutant heterokaryons. Two types of cycloheximide-resistant mutants were isolated: one type exhibited colonial morphology only when grown in the presence of cycloheximide and the other type maintained normal morphology even at high concentrations of the antibiotic. Reconstitution experiments with supernatant solutions and 80S monosomes prepared from wild-type and resistant mutant strains indicated that the property of cycloheximide resistance most likely is associated with the ribosomes. No electrophoretic or serological differences were found between the ribosomal proteins of the wild-type and resistant mutants.  相似文献   

3.
Genetic analysis of cycloheximide-resistant mutants has shown that at least three genes control the resistance to cycloheximide in Podospora anserina and that the antibiotic resistance is recessive to sensitivity. In vitro and in vivo studies of protein synthesis indicated that for two mutants cycloheximide resistance is associated with the ribosomes. For one of these mutants, the elongation step in protein biosynthesis is insensitive to cycloheximide over a wide range of concentration. In this mutant the resistance to cycloheximide is a property of the 60S subunit.This work was supported by the Centre National de la Recherche Scientifique ERA No. 485.  相似文献   

4.
Cycloheximide acts at the large subunit of the ribosome to inhibit translation. Here we report that ubiquitin levels are critical for the survival of Saccharomyces cerevisiae cells in the presence of cycloheximide: ubiquitin overexpression confers resistance to cycloheximide, while a reduced ubiquitin level confers sensitivity. Consistent with these findings, ubiquitin is unstable in yeast (t(1/2) = 2 h) and is rapidly depleted upon cycloheximide treatment. Cycloheximide does not noticeably enhance ubiquitin turnover, but serves principally to block ubiquitin synthesis. Cycloheximide also induces UBI4, the polyubiquitin gene. The cycloheximide-resistant phenotype of ubiquitin overexpressors is also characteristic of partial-loss-of-function proteasome mutants. Ubiquitin is stabilized in these mutants, which may account for their cycloheximide resistance. Previous studies have reported that ubiquitin is destabilized in the absence of Ubp6, a proteasome-associated deubiquitinating enzyme, and that ubp6 mutants are hypersensitive to cycloheximide. Consistent with the model that cycloheximide-treated cells are ubiquitin deficient, the cycloheximide sensitivity of ubp6 mutants can be rescued either by ubiquitin overexpression or by mutations in proteasome subunit genes. These results also show that ubiquitin wasting in ubp6 mutants is proteasome mediated. Ubiquitin overexpression rescued cells from additional translational inhibitors such as anisomycin and hygromycin B, suggesting that ubiquitin depletion may constitute a widespread mechanism for the toxicity of translational inhibitors.  相似文献   

5.
The mating reaction in Tetrahymena thermophila includes a starvation period and two distinct cell interactions, co-stimulation and cell pairing, before the cells are cytoplasmically joined as conjugants. A selection procedure for harvesting mutants unable to mate at a restrictive temperature has been developed. A conjugant pair consisting of one cycloheximide-resistant cell and one wild-type cell (cycloheximide-sensitive) was itself sensitive to the drug. By adding cycloheximide and nutrient medium to a cross made at the restrictive and grow. Repetition of the selection procedure enriched for cells unable to conjugate at the restrictive temperature. The selected cells were able to grow at 38 degrees C and could conjugate at 28 degrees C. This procedure may be narrowed to select specifically for cell interaction mutants.  相似文献   

6.
N-Methyl-N'-nitro-N-nitrosoguanidine (MNNG) induces cycloheximide-resistant mutations in Saccharomyces cerevisiae, but few, if any, resistant mutants are induced by the acridine mustard ICR-170. Cycloheximide sensitivity in yeast is associated with the ribosome, and treatment with the antibiotic at concentrations of 2 mug/ml results in complete inhibition of protein synthesis. Missense mutations induced by MNNG probably lead to the loss of cycloheximide binding sites on the ribosome, resulting in resistance to the antibiotic without altering the activity of the organelle in protein synthesis. ICR-170, however, induced primarily frameshift mutations that would alter ribosome structural integrity, resulting in cell death rather than resistance. ICR-170 and MNNG are both mutagenic in a system in which base-pair substitution and frameshift mutations can be detected. These results indicate that cycloheximide resistance in S. cerevisiae, like streptomycin and spectinomycin resistance in Escherichia coli, can be induced by base-pair substitution mutagens but not by frameshift mutagens such as ICR-170.  相似文献   

7.
8.
Summary In vitro protein synthesis was used to characterize the antibiotic sensitivity of cytoplasmic ribosomes from wild-type and antibiotic-resistant strains of Chlamydomonas reinhardtii. Cytoplasmic ribosomes from two cycloheximide-resistant mutants, act-1 and act-2, were resistant to the antibiotic in vitro. The alteration effected by the act-1 mutation, which was dominant in diploids, was localized to the large subunit of the cytoplasmic ribosomes, but no ribosomal protein alterations were detected using two-dimensional gel electrophoresis. The act-2 mutation, which was semidominant in diploids, was frequently associated with a charge alteration in the large subunit ribosomal protein (r-protein) cyL38 that segregated independently from the antibiotic-resistant phenotype in crosses.  相似文献   

9.
Cycloheximide is one of the antibiotics that inhibit protein synthesis in most eukaryotic cells. We have found that a yeast, Candida maltosa, is resistant to the drug because it possesses a cycloheximide-resistant ribosome, and we have isolated the gene responsible for this. In this study, we sequenced this gene and found that the gene encodes a protein homologous to the L41 ribosomal protein of Saccharomyces cerevisiae, whose amino acid sequence has already been reported. Two genes for L41 protein, named L41a and L41b, independently present in the genome of S. cerevisiae, were isolated. L41-related genes were also isolated from a few other yeast species. Each of these genes has an intron at the same site of the open reading frame. Comparison of their deduced amino acid sequences and their ability to confer cycloheximide resistance to S. cerevisiae, when introduced in a high-copy-number plasmid, suggested that the 56th amino acid residue of the L41 protein determines the sensitivity of the ribosome to cycloheximide; the amino acid is glutamine in the resistant ribosome, whereas that in the sensitive ribosome is proline. This was confirmed by constructing a cycloheximide-resistant strain of S. cerevisiae having a disrupted L41a gene and an L41b gene with a substitution of the glutamine codon for the proline codon.  相似文献   

10.
Bouvardain is an antitumor drug that inhibits protein synthesis in intact eukaryotic cells and cell-free systems. Our present studies have shown that bouvardin acts at the level of the 80 S ribosome in a site somehow involved with the interaction of EF1 and EF2. Indeed bouvardin inhibits EF1-dependent binding of aminoacyl-tRNA and EF2-dependent translocation of peptidyl-tRNA but does not affect the non-enzymic translocation since this relation does not require EF2. The site of the 80 S ribosome involved in the interaction with bouvardin appears to be independent from the cycloheximide and the cryptopleurine binding sites since yeast mutants resistant to cycloheximide or cryptopleurine are sensitive to bouvardin.  相似文献   

11.
J. H. McCusker  J. E. Haber 《Genetics》1988,119(2):303-315
We describe the isolation and preliminary characterization of a set of pleiotropic mutations resistant to the minimum inhibitory concentration of cycloheximide and screened for ts (temperature-sensitive) growth. These mutations fall into 22 complementation groups of cycloheximide resistant ts lethal mutations (crl). None of the crl mutations appears to be allelic with previously isolated mutations. Fifteen of the CRL loci have been mapped. At the nonpermissive temperature (37°), these mutants arrest late in the cell cycle after several cell divisions. Half of these mutants are also unable to grow at very low temperatures (5°). Although mutants from all of the 22 complementation groups exhibit similar temperature-sensitive phenotypes, an extragenic suppressor of the ts lethality of crl3 does not relieve the ts lethality of most other crl mutants. A second suppressor mutation allows crl10, crl12, and crl14 to grow at 37° but does not suppress the ts lethality of the remaining crl mutants. We also describe two new methods for the enrichment of auxotrophic mutations from a wild-type yeast strain.  相似文献   

12.
Thymidylate synthetase mutants of Xanthomonas maltophilia ATCC 13270 were isolated on a solid minimal medium containing 50 mg/l thymidine and a high concentration of trimethoprim (500 mg/l). It was found that a high concentration of trimethoprim was required to prevent background growth of the wild-type strain. The isolated mutants could grow on thymidine or dTMP at a concentration of 50 mg/l while they were unable to grow on 1000 mg/l thymine or 50 mg/l deoxyridine. Thymidylate synthetase activity was assayed in the wild-type cells and in the mutant cells but only the wild-type cells contained measurable enzyme activity.  相似文献   

13.
Adaptation of Microcystis aeruginosa (Cyanobacteria) to resist the herbicide glyphosate was analysed by using an experimental model. Growth of wild-type, glyphosate-sensitive (Gs) cells was inhibited when they were cultured with 120 ppm glyphosate, but after further incubation for several weeks, occasionally the growth of rare cells resistant (Gr) to the herbicide was found. A fluctuation analysis was carried out to distinguish between resistant cells arising from rare spontaneous mutations and resistant cells arising from other mechanisms of adaptation. Resistant cells arose by rare spontaneous mutations prior to the addition of glyphosate, with a rate ranging from 3.1 × 10−7 to 3.6 × 10−7 mutants per cell per generation in two strains of M. aeruginosa; the frequency of the Gr allele ranged from 6.14 × 10−4 to 6.54 × 10−4. The Gr mutants are slightly elliptical in outline, whereas the Gs cells are spherical. Since Gr mutants have a diminished growth rate, they may be maintained in uncontaminated waters as the result of a balance between new resistants arising from spontaneous mutation and resistants eliminated by natural selection. Thus, rare spontaneous pre-selective mutations may allow the survival of M. aeruginosa in glyphosate-polluted waters via Gr clone selection.  相似文献   

14.
Cycloheximide resistance of Physarum polycephalum.   总被引:1,自引:0,他引:1       下载免费PDF全文
In the presence of cycloheximide, wild-type plasmodia of Physarum polycephalum exhibit an immediate decrease in deoxyribonucleic acid synthesis, a reduction in the incorporation of [3H]thymidine into thymidine triphosphate, and an increase in the level of thymidine triphosphate, as well as a decrease in protein synthesis. In this study, we have utilized a cycloheximide-resistant (Cycr) amoebic strain selected from a population of cells mutagenized with nitrosoguanidine. Segregation data indicate that the resistance is due to a single mutation. We have used this Cycr mutant to construct Cycr plasmodial strains. Ribosomes isolated from such Cycr plasmodia showed resistance to cycloheximide in vitro, in contrast to ribosomes isolated from wild-type plasmodia. The Cycr plasmodia showed none of the cycloheximide-induced biochemical effects. Plasmodia heterozygous for the resistance marker were sensitive to cycloheximide with regard to growth but showed an intermediate response in the biochemical parameters. Heterokaryons formed by fusion of various proportions of the sensitive and resistant plasmodia showed a resistance with regard to both growth and biochemical parameters which was directly related to the fraction of Cycr plasmodia present in the heterokaryons. The data are consistent with the hypothesis that the effects of cycloheximide on deoxyribonucleic acid synthesis and nucleoside metabolism are secondary to the effect of the drug on protein synthesis in this organism.  相似文献   

15.
A cycloheximide-resistant mutant of Tetrahymena pyriformis   总被引:13,自引:0,他引:13  
A mutant of Tetrahymena pyriformis, syngen 1, resistant to cycloheximide was obtained after mutagenesis (with N-methyl-N′-nitro-N-nitrosoguanidine) followed by a cross (to obtain macro-nuclear expression of the mutant phenotype). A genetic analysis has shown that cycloheximide resistance in the mutant strain is due to a dominant nuclear allele, designated chx-1. Heterozygotes (chx-1/chx+) are initially resistant but segregate stable, sensitive cell lines during vegetative growth, demonstrating that allelic exclusion occurs with this determinant, as with many others in syngen 1. This feature, coupled with the selective advantage conferred by the chx-1 allele in the presence of cycloheximide, makes this mutation a useful genetic tool. A strain homozygous for the chx-1 allele exhibits an exponential growth rate identical to that of the wild type in proteose peptone-yeast extract medium in the absence of cycloheximide. In 10 μg/ml of the drug, the resistant cells grow at a somewhat lower rate, after an initial lag and adaptation to the presence of the drug. This concentration causes complete inhibition of growth and eventual lysis of wild-type cells. The cellular basis for cycloheximide resistance and adaptation in the mutant is presently under investigation.  相似文献   

16.
Synchronous plasmodia of cycloheximide-sensitive and cycloheximide-resistant strains of Physarum polycephalum were labelled with 3[H]-deoxyadenosine in pulse and pulse-chase experiments in presence and absence of cycloheximide. The replication products were studied with alkaline sucrose gradient sedimentation analysis. We show that the action of cycloheximide on DNA replication in Physarum is mediated through the ribosome, since the ribosomally located resistance also makes the plasmodial DNA replication refractile to the action of cycloheximide. Cycloheximide caused inhibition of three stages in DNA replication in the wild type: first, the formation of primary replication units ("Okazaki" size fragments), secondly, the ligation of primary units into secondary ("Replicon" size) units and thirdly, the ligation of secondary units into mature DNA.  相似文献   

17.
This work reports the isolation and preliminary characterization ofNicotiana plumbaginifolia mutants resistant to methylammonium.Nicotiana plumbaginifolia plants cannot grow on low levels of nitrate in the presence of methylammonium. Methylammonium is not used as a nitrogen source, although it can be efficiently taken up byNicotiana plumbaginifolia cells and converted into methylglutamine, an analog of glutamine. Glutamine is known to repress the expression of the enzymes that mediate the first two steps in the nitrate assimilatory pathway, nitrate reductase (NR) and nitrite reductase (NiR). Methylammonium has therefore been used, in combination with low concentrations of nitrate, as a selective agent in order to screen for mutants in which the nitrate pathway is de-repressed. Eleven semi-dominant mutants, all belonging to the same complementation group, were identified. The mutant showing the highest resistance to methylammonium was not affected either in the utilization of ammonium, accumulation of methylammonium or in glutamine synthase activity. A series of experiments showed that utilization of nitrite by the wild-type and the mutant was comparable, in the presence or the absence of methylammonium, thus suggesting that the mutation specifically affected nitrate transport or reduction. Although NR mRNA levels were less repressed by methylammonium treatment of the wild-type than the mutant, NR activities of the mutant remained comparable with or without methylammonium, leading to the hypothesis that modified expression of NR is probably not responsible for resistance to methylammonium. Methylammonium inhibited nitrate uptake in the wild-type but had only a limited effect in the mutant. The implications of these results are discussed.  相似文献   

18.
DNA gyrase, an essential enzyme that regulates DNA topology in bacteria, is the target of fluoroquinolones. Three fluoroquinolone-resistant mutants derived from one strain of Clostridium perfringens had amino acid substitutions of glycine 81 to cysteine, aspartic acid 87 to tyrosine, or both, in α-helix-4 of gyrase A. The gyrase mutations affected the growth kinetics of mutants differently when the mutants were exposed to increasing concentrations of gatifloxacin and ciprofloxacin. Fluoroquinolone concentration-dependent effects observed during growth in the exponential and stationary phases depended on the presence of particular gyrA mutations. Introduction of a wild-type gyrA gene into the mutants enhanced their susceptibility to fluoroquinolones and decreased their growth rates proportional to increases in fluoroquinolone concentrations. Amino acid substitutions in α-helix-4 of gyrase A protected C. perfringens from fluoroquinolones, and a strain with two substitutions was the most resistant.  相似文献   

19.
An antibiotic-resistant strain of Saccharomyces cerevisiae was isolated from shochu yeast. Three mutants were used for shochu brewing and gave higher ethanol productivities than the parent. The mutants were resistant to cycloheximide, cerulenin, trichothecin and other organic compounds such as lauric acid. In the presence of 20% (v/v) ethanol, the viability of the mutants was 87–96%, but that of the parent was 77%. Zymolyase treatment for 3 h, decreased the viability of the parent by 44% but that of the mutants only by 11–32%. Thus the higher ethanol productivity of these mutants is related to their high ethanol tolerance and resistance to various organic compounds.  相似文献   

20.
Summary The effects ofpolyhomeotic (ph) mutants in imaginal cells have been studied in a clonal analysis. Clones of cells, homozygous forph, sort-out after a few divisions, probably as a consequence of modified cell affinities. The dorso-ventral margin of the wing has special characteristics that retard this phenomenon. The formation and exclusion of a clone of 8–16 cells affect the polarity of the wild-type neighbour cells and can provoke pattern triplications. The results suggest that a defect in intercellular communication prevents the wild-type cells from maintaining coordinated positional information. The cells react by regenerative growth, and reorganize into a new pattern. The pleiotropic phenotypes ofph mutants are explained according to a common hypothesis aboutph + function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号