首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The beta-amyloid precursor protein (APP)-binding protein Fe65 is involved in APP nuclear signaling and several steps in APP proteolytic processing. In this study, we show that Fe65 stimulates gamma-secretase-mediated liberation of the APP intracellular domain (AICD). The mechanism of Fe65-mediated stimulation of AICD formation appears to be through enhanced production of the carboxyl-terminal fragment substrates of gamma-secretase and direct stimulation of processing by gamma-secretase. The stimulatory capacity of Fe65 is isoform-dependent, as the non-neuronal and a2 isoforms promote APP processing more effectively than the exon 9 inclusive neuronal form of Fe65. Intriguingly, Fe65 stimulation of AICD production appears to be inversely related to pathogenic beta-amyloid production as the Fe65 isoforms profoundly stimulate AICD production and simultaneously decrease Abeta42 production. Despite the capacity of Fe65 to stimulate gamma-secretase-mediated APP proteolysis, it does not rescue the loss of proteolytic function associated with the presenilin-1 familial Alzheimer disease mutations. These data suggest that Fe65 regulation of APP proteolysis may be integrally associated with its nuclear signaling function, as all antecedent proteolytic steps prior to release of Fe65 from the membrane are fostered by the APP-Fe65 interaction.  相似文献   

2.
3.
Neuronal Fe65 is an adapter protein that interacts with the cytoplasmic domain of the beta-amyloid precursor protein (APP). Although the interaction has been reported to occur between the second phosphotyrosine interaction domain of Fe65 and the YENPTY motif in the cytoplasmic domain of APP, the regulatory mechanism and biological function of this interaction remain unknown. We report here that (i) a single amino acid mutation at the Thr-668 residue of APP695, located 14 amino acids toward the amino-terminal end from the (682)YENPTY(687) motif, reduced the interaction between members of the Fe65 family of proteins and APP, whereas interaction of APP with the phosphotyrosine interaction domain of other APP binders such as X11-like and mammalian disabled-1 was not influenced by this mutation; (ii) the phosphorylation of APP at Thr-668 diminished the interaction of APP with Fe65 by causing a conformational change in the cytoplasmic domain that contains the Fe65-binding motif, YENPTY; and (iii) the expression of Fe65 slightly suppressed maturation of APP and decreased production of beta-amyloid (Abeta). Mutation at Thr-668 of APP abolished the effect of Fe65 on APP maturation. This mutation blocked the Fe65-dependent suppression of Abeta production and resulted in the release of increased levels of Abeta in the presence of Fe65. We previously reported that during maturation of APP in neurons, the protein is specifically phosphorylated at Thr-668 and undergoes O-glycosylation. The present results suggest that the phosphorylation of O-glycosylated mature APP at Thr-668 causes a conformational change in its cytoplasmic domain that prevents binding of Fe65 in neurons and may lead to an alteration in the production of Abeta.  相似文献   

4.
5.
6.
7.
Herein we investigated the processing of beta-secretase (BACE), implicated in Alzheimer's disease through processing of beta-amyloid precursor protein (betaAPP), into smaller metabolites. Four products of approximately 34, approximately 12, approximately 8, and approximately 5kDa were identified, none of which were generated autocatalytically. The approximately 34 and approximately 12kDa forms are held together by disulfide bridges. The approximately 34kDa form results from two cleavages: an N-terminal processing at RLPR(45) downward arrow by furin/PC5, and a C-terminal cleavage at SQDD(379) downward arrow by an unknown enzyme that also releases the C-terminal approximately 12kDa product. Microsequencing of the approximately 8 and approximately 5kDa fragments showed that they are the result of processing at VVFD(407) downward arrow and DMED(442) downward arrow, respectively. Mutagenesis of the identified cleavage sites revealed that the mutants D379A, D379L or D379E block the degradation of BACE into the approximately 12kDa product, confirming the importance of Asp(379). Notably, the D379E mutant results in higher betaAPP derived C99 levels. In contrast, D442A or D442E did not affect the production of the approximately 8 or approximately 5kDa products. The levels of the approximately 8 and approximately 5kDa products are significantly lower in the mutant D407A but less so D407E, likely due to the low efficacy of ER exit of the D407A mutant. Indeed, while co-expression of betaAPP with BACE results in enhanced production of Abeta(11-40), the D407A mutant produces mostly Abeta(40).  相似文献   

8.
The bacterial ATPase SecA functions as a monomer in protein translocation   总被引:1,自引:0,他引:1  
The ATPase SecA drives the post-translational translocation of proteins through the SecY channel in the bacterial inner membrane. SecA is a dimer that can dissociate into monomers under certain conditions. To address the functional importance of the monomeric state, we generated an Escherichia coli SecA mutant that is almost completely monomeric (>99%), consistent with predictions from the crystal structure of Bacillus subtilis SecA. In vitro, the monomeric derivative retained significant activity in various assays, and in vivo, it sustained 85% of the growth rate of wild type cells and reduced the accumulation of precursor proteins in the cytoplasm. Disulfide cross-linking in intact cells showed that mutant SecA is monomeric and that even its parental dimeric form is dissociated. Our results suggest that SecA functions as a monomer during protein translocation in vivo.  相似文献   

9.
10.
11.
Kalinin, a recently characterized novel protein component of anchoring filaments, has been shown to be involved in keratinocyte attachment to culture substrates and to dermis in vivo, and to exist in keratinocyte-conditioned culture medium in two heterotrimeric forms of 440 and 400 kDa (Rousselle, P., Lunstrum, G.P., Keene, D.R., and Burgeson, R.E. (1991) J. Cell Biol. 114, 567-576). This study demonstrates that kalinin is initially synthesized in a cell-associated form estimated to be 460 kDa. By second dimension reduced electrophoresis, V8 protease digestion, and immunoblot analysis, we demonstrate that the cell form contains nonidentical subunits of 200, 155, and 140 kDa. The 440-kDa medium form is derived from the cell form by extracellular processing of the 200-kDa subunit to 165 kDa, a step which also occurs in skin organ culture. The 400-kDa form is derived from the 440-kDa form by extracellular processing of the 155 kDa-subunit to 105 kDa. The cell form is secreted by keratinocytes, deposited onto culture substratum, and is the form which facilitates attachment and adhesion of growing and spreading keratinocytes. It is also the form initially synthesized in skin organ culture. Kalinin purified from tissue, which appears to facilitate epithelial-mesenchymal cohesion in vivo, is closely related to the 400-kDa medium form purified from culture.  相似文献   

12.
Cell migration is known to be triggered by constituents of the extracellular matrix such as fibronectin and by soluble mediators commonly summarized as motogens. Many growth factors such as the epidermal growth factor (EGF) have been shown to act as motogens. Recently, the secretory N-terminal portion of the beta-amyloid precursor protein (sAPP) has been identified as a keratinocyte growth factor. Hence, in this study we analysed whether sAPP stimulates also keratinocyte migration employing the stroboscopic cell motility assay. The migration velocity as well as the frequency of lamellipodia protrusion and ruffle formation were increased about two-fold thus corresponding to the effect of EGF. Using a newly developed beta1-integrin migration track assay we observed that sAPP increased the proportion of migrating keratinocytes and their directional persistence. sAPP appeared to operate synergistically with fibronectin with respect to its motogenic effect. Using a modified Boyden chamber assay we showed that sAPP besides its chemokinetic effect functions as a chemoattractant. Like EGF, sAPP exerted its motogenic effect through the activation of Rac kinase but the receptor for sAPP appears to be distinct. The results suggest that sAPP operates as a motogen in the human epidermis, where it may participate in the regulation of reepithelialization during wound healing.  相似文献   

13.
In a forward genetic screen for interaction with mitochondrial iron carrier proteins in Saccharomyces cerevisiae, a hypomorphic mutation of the essential DRE2 gene was found to confer lethality when combined with Δmrs3 and Δmrs4. The dre2 mutant or Dre2-depleted cells were deficient in cytosolic Fe/S cluster protein activities while maintaining mitochondrial Fe/S clusters. The Dre2 amino acid sequence was evolutionarily conserved, and cysteine motifs (CX2CXC and twin CX2C) in human and yeast proteins were perfectly aligned. The human Dre2 homolog (implicated in blocking apoptosis and called CIAPIN1 or anamorsin) was able to complement the nonviability of a Δdre2 deletion strain. The Dre2 protein with triple hemagglutinin tag was located in the cytoplasm and in the mitochondrial intermembrane space. Yeast Dre2 overexpressed and purified from bacteria was brown and exhibited signature absorption and electron paramagnetic resonance spectra, indicating the presence of both [2Fe-2S] and [4Fe-4S] clusters. Thus, Dre2 is an essential conserved Fe/S cluster protein implicated in extramitochondrial Fe/S cluster assembly, similar to other components of the so-called CIA (cytoplasmic Fe/S cluster assembly) pathway although partially localized to the mitochondrial intermembrane space.  相似文献   

14.
FE65 is an adaptor protein that interacts with the cytoplasmic tail of the amyloid precursor protein (APP). In cultured non-neuronal cells, the formation of the FE65-APP complex is a key element for the modulation of APP processing, signalling and beta-amyloid (Abeta) production. The functions of FE65 in vivo, including its role in the metabolism of neuronal APP, remain to be investigated. In this study, transgenic mice expressing human FE65 were generated and crossbred with APP transgenic mice, known to develop Abeta deposits at 6 months of age. Compared with APP mice, APP/FE65 double transgenic mice exhibited a lower Abeta accumulation in the cerebral cortex as demonstrated by immunohistochemistry and immunoassay, and a lower level of APP-CTFs. The reduced accumulation of Abeta in APP/FE65 double transgenics, compared with APP mice, could be linked to the low Abeta42 level observed at 4 months of age and to the lower APP-CTFs levels. The present work provides evidence that FE65 plays a role in the regulation of APP processing in an in vivo model.  相似文献   

15.
SecA, the ATPase of Sec translocase, mediates the post-translational translocation of preprotein through the protein-conducting channel SecYEG in the bacterial inner membrane. Here we report the structures of Escherichia coli Sec intermediates during preprotein translocation as visualized by electron microscopy to probe the oligomeric states of SecA during this process. We found that the translocase holoenzyme is symmetrically assembled by SecA and SecYEG on proteoliposomes, whereas the translocation intermediate 31 (I31) becomes asymmetric because of the presence of preprotein. Moreover, SecA is a dimer in these two translocation complexes. This work also shows surface topological changes in the components of translocation intermediates by immunogold labeling. The channel entry for preprotein translocation was found at the center of the I31 structures. Our results indicate that the presence of preprotein introduces asymmetry into translocation intermediates, while SecA remains dimeric during the translocation process.  相似文献   

16.
FE65, a neural adaptor protein, interacts with amyloid beta-protein precursor (APP) and is known to regulate amyloid beta generation from APP. FE65 also associates with nuclear proteins; however, its physiological function in the nucleus remains unclear. A fixed population of cytoplasmic FE65 is tethered to membranes by binding APP. This membrane-tethered FE65 is liberated from membranes by APP phosphorylation, which is facilitated by a stress-activated protein kinase in sorbitol-treated cells. Here we show that liberated FE65, which is distinct from "virgin" FE65 in the cytoplasm, translocates into the nucleus and accumulates in the nuclear matrix forming a patched structure. Targeting of FE65 into the nuclear matrix was suppressed by the APP intracellular domain fragment, which is generated by consecutive cleavages of APP. Thus, nuclear translocation of FE65 is under the regulation of APP. In the nucleus, FE65 induced gammaH2AX, which plays an important role in DNA repair as a cellular response by stress-damaged cells. These observations suggest that APP-regulated FE65 plays an important role in the early stress response of cells and that FE65 deregulated from APP induces apoptosis.  相似文献   

17.
The presenilin (PS)-dependent site 3 (S3) cleavage of Notch liberates its intracellular domain (NICD), which is required for Notch signaling. The similar γ-secretase cleavage of the β-amyloid precursor protein (βAPP) results in the secretion of amyloid β-peptide (Aβ). However, little is known about the corresponding C-terminal cleavage product (CTFγ). We have now identified CTFγ in brain tissue, in living cells, as well as in an in vitro system. Generation of CTFγ is facilitated by PSs, since a dominant-negative mutation of PS as well as a PS gene knock out prevents its production. Moreover, γ-secretase inhibitors, including one that is known to bind to PS, also block CTFγ generation. Sequence analysis revealed that CTFγ is produced by a novel γ-secretase cut, which occurs at a site corresponding to the S3 cleavage of Notch.  相似文献   

18.
Amyloid-beta, the peptide that deposits as senile plaques in Alzheimer's disease, is derived from the amyloid precursor protein (APP) by a gamma secretase-mediated intramembranous cleavage. In addition to amyloid-beta, this cleavage produces a carboxyl-terminal intracellular fragment which has an unknown function. The carboxyl-terminal domain of APP interacts in the cytoplasm with an adapter protein, Fe65. We demonstrate by laser scanning confocal microscopy that a gamma secretase generated APP carboxyl-terminal domain, tagged with green fluorescent protein (GFP), translocates to the nucleus in a manner dependent upon stabilization by the adapter protein Fe65; APP which has been mutated to block interactions with Fe65 cannot be detected in the nucleus. The APP-CT domain continues to interact with Fe65 in the nucleus, as determined by both colocalization and fluorescence resonance energy transfer (FRET). Visualization of the APP-CT-Fe65 complex in the nucleus may serve as a readout for processes that modify gamma secretase release of APP-CT.  相似文献   

19.
Cleavage and release of membrane protein ectodomains, a regulated process that affects many cell surface proteins, remains largely uncharacterized. To investigate whether cell surface proteins are cleaved through a shared mechanism or through multiple independent mechanisms, we mutagenized Chinese hamster ovary (CHO) cells and selected clones that were unable to cleave membrane-anchored transforming growth factor alpha (TGF-alpha). The defect in TGF-alpha cleavage in these clones is most apparent upon cell treatment with the protein kinase C (PKC) activator PMA, which stimulates TGF-alpha cleavage in wild-type cells. The mutant clones do not have defects in TFG-alpha expression, transport to the cell surface or turnover. Concomitant with the loss of TGF-alpha cleavage, these clones have lost the ability to cleave many structurally unrelated membrane proteins in response to PMA. These proteins include beta-amyloid precursor protein (beta-APP), whose cleavage into a secreted form avoids conversion into the amyloidogenic peptide A beta, and a group of cell surface proteins whose release into the medium is stimulated by PMA in wild type CHO cells but not in mutants. The mutations prevent cleavage by PKC- dependent as well as PKC-independent mechanisms, and thus affect an essential component that functions downstream of these various signaling mechanisms. We propose that regulated cleavage and secretion of membrane protein ectodomains is mediated by a common system whose components respond to multiple activators and act on susceptible proteins of diverse structure and function.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号