首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Journal of Plant Research - The timing of the transition between developmental phases is a critical determinant of plant form. In the moss Physcomitrella patens, the transition from protonema to...  相似文献   

2.
3.
In Arabidopsis thaliana the ANGUSTIFOLIA (AN) gene regulates the width of leaves by controlling the diffuse growth of leaf cells in the medio‐lateral direction. In the genome of the moss Physcomitrella patens, we found two normal ANs (PpAN1‐1 and 1‐2). Both PpAN1 genes complemented the A. thaliana an‐1 mutant phenotypes. An analysis of spatiotemporal promoter activity of each PpAN1 gene, using transgenic lines that contained each PpAN1‐promoter– uidA (GUS) gene, showed that both promoters are mainly active in the stems of haploid gametophores and in the middle to basal region of the young sporophyte that develops into the seta and foot. Analyses of the knockout lines for PpAN1‐1 and PpAN1‐2 genes suggested that these genes have partially redundant functions and regulate gametophore height by controlling diffuse cell growth in gametophore stems. In addition, the seta and foot were shorter and thicker in diploid sporophytes, suggesting that cell elongation was reduced in the longitudinal direction, whereas no defects were detected in tip‐growing protonemata. These results indicate that both PpAN1 genes in P. patens function in diffuse growth of the haploid and diploid generations but not in tip growth. To visualize microtubule distribution in gametophore cells of P. patens, transformed lines expressing P. patens α‐tubulin fused to sGFP were generated. Contrary to expectations, the orientation of microtubules in the tips of gametophores in the PpAN1‐1/1‐2 double‐knockout lines was unchanged. The relationships among diffuse cell growth, cortical microtubules and AN proteins are discussed.  相似文献   

4.
Physcomitrella patens, belonging to bryopsida, is a basal lineage of land plants. To gain insight into the diversification of the two-component system (TCS), which is widely conserved from prokaryotes to eukaryotes, we compiled TCS-associated genes by employing P. patens genome databases. The moss has a set of His-kinases (HKs), including homologs of the cytokinin- and ethylene-receptors in seed plants. In addition, it has a number of coding-sequences specifying unique HKs. We found evidence that a putative cytokinin-receptor HK in P. patans serves as a sensor for this hormone, and that the HK activity of a putative ethylene-receptor homolog is regulated by ethylene, as observed for Arabidopsis thaliana.  相似文献   

5.
6.
7.
Having diverged from the lineage that lead to flowering plants shortly after plants have established on land, mosses, which share fundamental processes with flowering plants but underwent little morphological changes by comparison with the fossil records, can be considered as an evolutionary informative place. Hence, they are especially useful for the study of developmental evolution and adaption to life on land. The transition to land exposed early plants to harsh physical conditions that resulted in key physiological and developmental changes. MicroRNAs (miRNAs) are an important class of small RNAs (sRNAs) that act as master regulators of development and stress in flowering plants. In recent years several groups have been engaged in the cloning of sRNAs from the model moss Physcomitrella patens. These studies have revealed a wealth of miRNAs, including novel and conserved ones, creating a unique opportunity to broaden our understanding of miRNA functions in land plants and their contribution to the latter??s evolution. Here we review the current knowledge of moss miRNAs and suggest approaches for their functional analysis in P. patens.  相似文献   

8.
The moss Physcomitrella patens is unique among plant models for the high frequency with which targeted transgene insertion occurs via homologous recombination. Transgene integration is believed to utilize existing machinery for the detection and repair of DNA double-strand breaks (DSBs). We undertook targeted knockout of the Physcomitrella genes encoding components of the principal sensor of DNA DSBs, the MRN complex. Loss of function of PpMRE11 or PpRAD50 strongly and specifically inhibited gene targeting, whilst rates of untargeted transgene integration were relatively unaffected. In contrast, disruption of the PpNBS1 gene retained the wild-type capacity to integrate transforming DNA efficiently at homologous loci. Analysis of the kinetics of DNA-DSB repair in wild-type and mutant plants by single-nucleus agarose gel electrophoresis revealed that bleomycin-induced fragmentation of genomic DNA was repaired at approximately equal rates in each genotype, although both the Ppmre11 and Pprad50 mutants exhibited severely restricted growth and development and enhanced sensitivity to UV-B and bleomycin-induced DNA damage, compared with wild-type and Ppnbs1 plants. This implies that while extensive DNA repair can occur in the absence of a functional MRN complex; this is unsupervised in nature and results in the accumulation of deleterious mutations incompatible with normal growth and development.  相似文献   

9.
Auxin-induced gene expression is described for a variety of different genes including the SAUR-, Aux/IAA- and GH3-families, members of which have been found in seed plants. The precise function of GH3-like proteins in plant development is not well characterised yet. Mutant analysis in Arabidopsis thaliana indicates a possible role for GH3-like proteins in connecting auxin and light signal transduction. Here, we report the isolation of three different GH3-like homologues from a lower land plant, the moss Physcomitrella patens. Two of the GH3-like homologues were chosen for further characterisation. Both genes are expressed in gametophytic tissues, with expression starting very early in moss development. Knockout plants were generated and analysed. In comparison to white-light growth, cultivation of the wild type and knockout plants under red-light conditions resulted in a delay in gametophytic tissue development. The leafy moss plants displayed an elongated phenotype. Growth delay and elongation were even stronger under far-red light conditions. No obvious differences between wild type and knockout plants could be detected under the examined conditions, indicating functional redundancy of the two genes.  相似文献   

10.
11.
RNA interference in the moss Physcomitrella patens   总被引:8,自引:0,他引:8       下载免费PDF全文
The moss Physcomitrella patens performs efficient homologous recombination, which allows for the study of individual gene function by generating gene disruptions. Yet, if the gene of study is essential, gene disruptions cannot be isolated in the predominantly haploid P. patens. Additionally, disruption of a gene does not always generate observable phenotypes due to redundant functions from related genes. However, RNA interference (RNAi) can provide mutants for both of these situations. We show that RNAi disrupts gene expression in P. patens, adding a significant tool for the study of plant gene function. To assay for RNAi in moss, we constructed a line (NLS-4) expressing a nuclearly localized green fluorescent protein (GFP):beta-glucuronidase (GUS) fusion reporter protein. We targeted the reporter protein with two RNAi constructs, GUS-RNAi and GFP-RNAi, expressed transiently by particle bombardment. Transformed protonemal cells are marked by cobombardment with dsRed2, which diffuses between the nucleus and cytoplasm. Cells transformed with control constructs have nuclear/cytoplasmic red fluorescence and nuclear green fluorescence. In cells transformed with GUS-RNAi or GFP-RNAi constructs, the nuclear green fluorescence was reduced on average 9-fold as soon as 48 h after transformation. Moreover, isolated lines of NLS-4 stably transformed with GUS-RNAi construct have silenced nuclear GFP, indicating that RNAi is propagated stably. Thus, RNAi adds a powerful tool for functional analysis of plant genes in moss.  相似文献   

12.
Plant FtsZ proteins are encoded by two small nuclear gene families (FtsZ1 and FtsZ2) and are involved in chloroplast division. From the moss Physcomitrella patens , four FtsZ proteins, two in each nuclear gene family, have been characterised and described so far. In the recently sequenced P. patens genome, we have now found a fifth fts Z gene. This novel gene has a genomic structure similar to Pp fts Z1-1. According to phylogenetic analysis, the encoded protein is a member of the FtsZ1 family, while PpFtsZ1-2, together with an orthologue from Selaginella moellendorffii , forms a separate clade. Further, this new gene is expressed in different gametophytic tissues and the encoded protein forms filamentous networks in chloroplasts, is found in stromules, and acts in plastid division. Based on all these results, we have renamed the PpFtsZ proteins of family 1 and suggest the existence of a third FtsZ family. No species is known to encode more FtsZ proteins per haploid genome than P. patens .  相似文献   

13.
PtdIns‐4,5‐bisphosphate is a lipid messenger of eukaryotic cells that plays a critical role in processes such as cytoskeleton organization, intracellular vesicular trafficking, secretion, cell motility, regulation of ion channels and nuclear signalling pathways. The enzymes responsible for the synthesis of PtdIns(4,5)P2 are phosphatidylinositol phosphate kinases (PIPKs). The moss Physcomitrella patens contains two PIPKs, PpPIPK1 and PpPIPK2. To study their physiological role, both genes were disrupted by targeted homologous recombination and as a result mutant plants with lower PtdIns(4,5)P2 levels were obtained. A strong phenotype for pipk1, but not for pipk2 single knockout lines, was obtained. The pipk1 knockout lines were impaired in rhizoid and caulonemal cell elongation, whereas pipk1‐2 double knockout lines showed dramatic defects in protonemal and gametophore morphology manifested by the absence of rapidly elongating caulonemal cells in the protonemal tissue, leafy gametophores with very short rhizoids, and loss of sporophyte production. pipk1 complemented by overexpression of PpPIPK1 fully restored the wild‐type phenotype whereas overexpression of the inactive PpPIPK1E885A did not. Overexpression of PpPIPK2 in the pipk1‐2 double knockout did not restore the wild‐type phenotype demonstrating that PpPIPK1 and PpPIPK2 are not functionally redundant. In vivo imaging of the cytoskeleton network revealed that the shortened caulonemal cells in the pipk1 mutants was the result of the absence of the apicobasal gradient of cortical F‐actin cables normally observed in wild‐type caulonemal cells. Our data indicate that both PpPIPKs play a crucial role in the development of the moss P. patens, and particularly in the regulation of tip growth.  相似文献   

14.
15.
When BRK1, a member of the Wave/SCAR complex, is deleted in Physcomitrella patens (Deltabrk1), we report a striking reduction of filament growth resulting in smaller and fewer cells with misplaced cross walls compared with the normal protonemal cells. Using an inducible green fluorescent protein-talin to detect actin in living tissue, a characteristic broad accumulation of actin is observed at the tip of wild-type apical cells, whereas in Deltabrk1, smaller, more distinct foci of actin are present. Insertion of brk1-yfp into Deltabrk1 rescues the mutant phenotype and results in BRK1 being localized only in the tip of apical cells, the exclusive site of cell extension and division in the filament. Like BRK1, ARPC4 and At RABA4d are normally localized at the tip of apical cells and their localization is correlated with rapid tip growth in filaments. However, neither marker accumulates in apical cells of Deltabrk1 filaments. Although the Deltabrk1 phenotypes in protonema are severe, the leafy shoots or gametophores are normally shaped but stunted. These and other results suggest that BRK1 functions directly or indirectly in the selective accumulation/stabilization of actin and other proteins required for polar cell growth of filaments but not for the basic structure of the gametophore.  相似文献   

16.
Efficient gene targeting in the moss Physcomitrella patens   总被引:16,自引:2,他引:16  
The moss Physcomitrella patens is used as a genetic model system to study plant development, taking advantage of the fact that the haploid gametophyte dominates in its life cycle. Transformation experiments designed to target three single-copy genomic loci were performed to determine the efficiency of gene targeting in this plant. Mean transformation rates were 10-fold higher with the targeting vectors and molecular evidence for the integration of exogenous DNA into each targeted locus by homologous recombination is provided. The efficiency of gene targeting determined in these experiments is above 90%, which is in the range of that observed in yeast and several orders of magnitude higher than previous reports of gene targeting in plants. Thus, gene knock-out and allele replacement approaches are directly accessible to study plant development in the moss Physcomitrella patens . Moreover, efficient gene targeting has so far only been observed in lower eukaryotes such as protozoa, yeasts and filamentous fungi, and, as shown here the first example from the plant kingdom is a haplobiontic moss. This suggests a possible correlation between efficient gene targeting and haplo-phase in eukaryotes.  相似文献   

17.
Cell biological, structural, and genetic approaches have demonstrated the presence of arabinogalactan proteins (AGPs) in the moss Physcomitrella patens and provided evidence for their function in cell expansion and specifically in the extension of apical tip-growing cells. Inhibitor studies indicated that apical cell expansion in P. patens is blocked by synthetic AGP binding beta-glucosyl Yariv reagent (betaGlcYR). The anti-(1-->5)-alpha-L-arabinan monoclonal antibody LM6 binds to some AGPs in P. patens, to all plasma membranes, and to the cell wall surface at the most apical region of growing protonemal filaments. Moreover, LM6 labeling of cell walls at the tips of apical cells of P. patens was abolished in the presence of betaGlcYR, suggesting that the localized movement of AGPs from the plasma membrane to the cell wall is a component of the mechanism of tip growth. Biochemical and bioinformatic analyses were used to identify seven P. patens ESTs encoding putative AGP core proteins from homology with Arabidopsis thaliana, Brassica napus, and Oryza sativa sequences and from peptide fragments isolated from betaGlcYR-precipitated AGPs. Gene knockout by homologous recombination of one of these genes, P. patens AGP1, encoding a classical AGP core protein, resulted in reduced cell lengths in protonemal filaments, indicating a role for AGP1 in apical cell expansion in P. patens.  相似文献   

18.
The serine/threonine protein kinase 3-phosphoinositide-dependent protein kinase 1 (PDK1) is a highly conserved eukaryotic kinase that is a central regulator of many AGC kinase subfamily members. Through its regulation of AGC kinases, PDK1 controls many basic cellular processes, from translation to cell survival. While many of these PDK1-regulated processes are conserved across kingdoms, it is not well understood how PDK1 may have evolved within kingdoms. In order to better understand PDK1 evolution within plants, we have isolated and characterized the PDK1 gene from the moss Physcomitrella patens (PpPDK1), a nonvascular representative of early land plants. PpPDK1 is similar to other plant PDK1s in that it can functionally complement a yeast PDK1 knockout line. However, unlike PDK1 from other plants, the P. patens PDK1 protein does not bind phospholipids due to a lack of the lipid-binding pleckstrin homology domain, which is used for lipid-mediated regulation of PDK1 activity. Sequence analysis of several PDK1 proteins suggests that lipid regulation of PDK1 may not commonly occur in algae and nonvascular land plants. PpPDK1 can phosphorylate AGC kinase substrates from tomato (Solanum lycopersicum) and P. patens at the predicted PDK1 phosphorylation site, indicating that the PpPDK1 substrate phosphorylation site is conserved with higher plants. We have also identified residues within the PpPDK1 kinase domain that affect kinase activity and show that a mutant with highly reduced kinase activity can still confer cell viability in both yeast and P. patens. These studies lay the foundation for further analysis of the evolution of PDK1 within plants.  相似文献   

19.
20.
The phosphoinositide signalling pathway is important in plant responses to extracellular and intracellular signals. To elucidate the physiological functions of phosphoinositide-specific phopspholipase C, PI-PLC, targeted knockout mutants of PpPLC1, a gene encoding a PI-PLC from the moss Physcomitrella patens, were generated via homologous recombination. Protonemal filaments of the plc1 lines show a dramatic reduction in gametophore formation relative to wild type: this was accompanied by a loss of sensitivity to cytokinin. Moreover, plc1 appeared paler than the wild type, the result of an altered differentiation of chloroplasts and reduced chlorophyll levels compared with wild type filaments. In addition, the protonemal filaments of plc1 have a strongly reduced ability to grow negatively gravitropically in the dark. These effects imply a significant role for PpPLC1 in cytokinin signalling and gravitropism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号