首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
The midgut epithelium of Nicoletia phytophila is composed of columnar digestive cells and regenerative cells that form regenerative nests. The cytoplasm of midgut epithelial cells shows typical regionalization in organelle distribution. Two types of regenerative cells have been distinguished: cells which are able to divide intensively and cells which differentiate. Spot desmosomes have been observed between neighboring regenerative cells. The occurrence of intercellular junctions is discussed. The midgut epithelium degenerates both in an apoptotic and necrotic way. Necrosis proceeds during each molting period (cyclic manner), while apoptosis occurs between each molting, when the midgut epithelium is responsible for e.g. digestion. These processes of epithelium degeneration are described at the ultrastructural level. Our studies not only add new information about fine structure of the midgut epithelium of N. phytophila, but contribute to resolving the relationships within the Zygentoma. There are no doubts about the very close sister position of Nicoletiidae and Ateluridae. The midgut epithelium characters confirm their close relationship. However we do not recommend classifying the atelurid genera only within Nicoletiidae: Nicoletiinae.  相似文献   

2.
We exposed midgut cells from primary cultures of Heliothis virescens larvae to cell-free previously used medium, the Vaughn X and HyQ SFtrade mark media used for serum-free culture of insect cell lines which do not support H. virescens midgut cells, and to toxin from Bacillus thuringiensis. A statistically significant increase in the percent of dying cells was counted in cell populations in Vaughn X medium. Use of the TUNEL method to detect apoptosis indicated a low rate (7.2%) of apoptosis in control cultures grown in Heliothis medium, an increase to approximately 20% in previously used and HyQ SFtrade mark media, and to approximately 45% of cells remaining after exposure to and initial destruction by B. thuringiensis toxin. Apoptotic nuclei were predominant (approximately 6%) in mature columnar cells in control cultures. Approximately 1% of goblet, stem, and differentiating cells were apoptotic. However, apoptosis rose to 12% in stem and differentiating cells exposed to used and unsuitable medium. B. thuringiensis exposure to toxin for 2-3 days resulted in visible membrane damage and necrosis, causing the death of 84% of the cells as measured by both the TUNEL and Annexin methods. Some of the columnar cells and stem and differentiating cells that remained also contained apoptotic nuclei. Stem and differentiating cells normally replace dying mature cells in the midgut. Thus, exposure of cultures of H. virescens midgut cells to adverse environments such as unsuitable or poisonous media appeared to induce down-regulation of the cell populations by apoptosis.  相似文献   

3.
The endodermal region of the digestive system in the freshwater shrimp Neocaridina heteropoda (Crustacea, Malacostraca) consists of a tube-shaped intestine and large hepatopancreas, which is formed by numerous blind-ended tubules. The precise structure and ultrastructure of these regions were presented in our previous studies, while here we focused on the cell death processes and their effect on the functioning of the midgut. We used transmission electron microscopy, light and confocal microscopes to describe and detect cell death, while a quantitative assessment of cells with depolarized mitochondria helped us to establish whether there is the relationship between cell death and the inactivation of mitochondria. Three types of the cell death were observed in the intestine and hepatopancreas–apoptosis, necrosis and autophagy. No differences were observed in the course of these processes in males and females and or in the intestine and hepatopancreas of the shrimp that were examined. Our studies revealed that apoptosis, necrosis and autophagy only involves the fully developed cells of the midgut epithelium that have contact with the midgut lumen–D-cells in the intestine and B- and F-cells in hepatopancreas, while E-cells (midgut stem cells) did not die. A distinct correlation between the accumulation of E-cells and the activation of apoptosis was detected in the anterior region of the intestine, while necrosis was an accidental process. Degenerating organelles, mainly mitochondria were neutralized and eventually, the activation of cell death was prevented in the entire epithelium due to autophagy. Therefore, we state that autophagy plays a role of the survival factor.  相似文献   

4.
Apoptotic cells are cleared by phagocytosis during development, homeostasis, and pathology. However, it is still unclear how necrotic cells are removed. We compared the phagocytic uptake by macrophages of variants of L929sA murine fibrosarcoma cells induced to die by tumor necrosis factor-induced necrosis or by Fas-mediated apoptosis. We show that apoptotic and necrotic cells are recognized and phagocytosed by macrophages, whereas living cells are not. In both cases, phagocytosis occurred through a phosphatidylserine-dependent mechanism, suggesting that externalization of phosphatidylserine is a general trigger for clearance by macrophages. However, uptake of apoptotic cells was more efficient both quantitatively and kinetically than phagocytosis of necrotic cells. Electron microscopy showed clear morphological differences in the mechanisms used by macrophages to engulf necrotic and apoptotic cells. Apoptotic cells were taken up as condensed membrane-bound particles of various sizes rather than as whole cells, whereas necrotic cells were internalized only as small cellular particles after loss of membrane integrity. Uptake of neither apoptotic nor necrotic L929 cells by macrophages modulated the expression of proinflammatory cytokines by the phagocytes.  相似文献   

5.
Ookinetes are motile invasive stages of the malaria parasite that enter the midgut epithelium of the mosquito vector via an intracellular route. Ookinetes often migrate through multiple adjacent midgut epithelial cells, which subsequently undergo apoptosis/necrosis and are extruded from the midgut epithelium into the midgut lumen. Hundreds of ookinetes may simultaneously invade the midgut epithelium, causing destruction of an appreciable proportion of the total number of midgut epithelial cells. However, there is little evidence that ookinete invasion of the midgut epithelium per se is detrimental to the survival of the mosquito vector implying that efficient mechanisms exist to restore the damaged midgut epithelium following malaria parasite infection. Proliferation and differentiation of precursor stem cells could replace the midgut epithelial cells destroyed and lost as a consequence of ookinete invasion. Although the existence of so-called "regenerative" cells within the mosquito midgut epithelium has long been recognized, there has been no previously published evidence for proliferation/differentiation of these putative precursor midgut epithelial cells in mature adult female mosquitoes. In the current study, examination of Giemsa-stained histological sections from Anopheles stephensi mosquito midguts infected with the human malaria parasite Plasmodium falciparum provided morphological evidence that regenerative cells undergo division and subsequent differentiation into normal columnar midgut epithelial cells. Furthermore, the number of these putatively proliferating/differentiating regenerative cells was significantly higher in P. falciparum-infected compared to uninfected mosquitoes, and was positively correlated with both the level of malaria parasite infection and midgut epithelial cell destruction. The loss of invaded midgut epithelial cells associated with intracellular migration by ookinetes, therefore, appears to trigger, and to be compensated by, proliferative regeneration of the mosquito midgut epithelium.  相似文献   

6.
Ookinetes are motile invasive stages of the malaria parasite that enter the midgut epithelium of the mosquito vector via an intracellular route. Ookinetes often migrate through multiple adjacent midgut epithelial cells, which subsequently undergo apoptosis/necrosis and are extruded from the midgut epithelium into the midgut lumen. Hundreds of ookinetes may simultaneously invade the midgut epithelium, causing destruction of an appreciable proportion of the total number of midgut epithelial cells. However, there is little evidence that ookinete invasion of the midgut epithelium per se is detrimental to the survival of the mosquito vector implying that efficient mechanisms exist to restore the damaged midgut epithelium following malaria parasite infection. Proliferation and differentiation of precursor stem cells could replace the midgut epithelial cells destroyed and lost as a consequence of ookinete invasion. Although the existence of so-called “regenerative” cells within the mosquito midgut epithelium has long been recognized, there has been no previously published evidence for proliferation/differentiation of these putative precursor midgut epithelial cells in mature adult female mosquitoes. In the current study, examination of Giemsa-stained histological sections from Anopheles stephensi mosquito midguts infected with the human malaria parasite Plasmodium falciparum provided morphological evidence that regenerative cells undergo division and subsequent differentiation into normal columnar midgut epithelial cells. Furthermore, the number of these putatively proliferating/differentiating regenerative cells was significantly higher in P. falciparum-infected compared to uninfected mosquitoes, and was positively correlated with both the level of malaria parasite infection and midgut epithelial cell destruction. The loss of invaded midgut epithelial cells associated with intracellular migration by ookinetes, therefore, appears to trigger, and to be compensated by, proliferative regeneration of the mosquito midgut epithelium.  相似文献   

7.
The epithelium of larval midgut of the greater wax moth, Galleria mellonela, was replaced during the larval-pupal moult. The development of this moth was tentatively divided into 11 stages, from the full-grown larva of last instar to the 4-day-old pupa. The midgut at each stage was observed for (1) overall structure, (2) the position of goblet cells, and (3) the appearance of the yellow body. Light microscopy revealed that cell death in the midgut began in a cocoon-spinning larva (stage II), when pigments in the stemmata started to migrate. Before drastic remodeling started to occur, cytoplasmic projections in the goblet cavities were transformed. The larval midgut changed markedly at stage III, when the pigments left the stemmata. The epithelium of the larval midgut dropped as a whole into the lumen, transforming into the yellow body. Simultaneously, a pupal midgut epithelium developed. Electron microscopy of the columnar cells of a stage III larva showed that microvilli and mitochondria looked normal even though the nucleus with condensed heterochromatin resembled an apoptotic nucleus of vertebrate and higher plant cells. Caspase-3-like protease activity was restricted to the larval midgut and increased in parallel with the formation of the yellow body. The results indicate that the replacement of the larval midgut is facilitated by a typical apoptotic process.  相似文献   

8.
Fine structure of the midgut and degeneration of the midgut epithelium of the scorpionfly Sinopanorpa tincta (Navás) adults were investigated using light microscopy and scanning and transmission electron microscopy. The results show that the tubular midgut lacks gastric caeca and is composed of an outer longitudinal and an inner circular muscle layer, a basal lamina, an epithelium and a lumen from the outside to inside. A peritrophic membrane was not found in the lumen. A mass of nodules was observed on the surface of the basal lamina. Three types of cells were recognized in the epithelium: digestive, secretory, and regenerative cells. The digestive cells contain irregular-shaped infoldings in the basal membrane and two types of microvilli in the apical membrane. The secretory cells are characterized by irregular shape and large quantities of secretory granules in the basal cytoplasm. The regenerative cells are triangular in shape and distributed only in the nodules. The epithelial cells are degenerated through programmed cell-death mechanisms (apoptosis and necrosis). The type, function, and degeneration of the epithelial cells of the midgut are briefly discussed.  相似文献   

9.
The most widely used histochemical marker of apoptosis (in situend labeling, TUNEL) detects both apoptotic and necrotic cells and evaluates only late stages of apoptosis. Hence, a specific and sensitive cellular marker of apoptosis is needed to determine the role of apoptotic death in biology and pathology. The present study describes a novel immunohistochemical procedure for the staining of apoptotic cells using a monoclonal antibody (MAb) to single-stranded DNA. This MAb stained all cells with the morphology typical of apoptosis in etoposide-treated HL-60, MOLT-4, and R9 cell cultures, in which apoptosis was accompanied by high, moderate, and low levels of internucleosomal DNA fragmentation, respectively. TUNEL stained all apoptotic cells in HL-60 cultures, nearly 60% of apoptotic cells in MOLT-4 cultures, and only 14% of apoptotic cells in R9 cultures. Apoptotic R9 cells, which progressed into secondary necrosis, retained MAb staining and became TUNEL-positive. Necrotic cells in MOLT-4 cultures treated with sodium azide were stained by TUNEL, but were negative for MAb staining. All floating cells at a late stage of apoptosis in MDA-MB-468 cultures treated with cisplatin were stained by both MAb and TUNEL. However, among adherent cells in the early stages of apoptosis, MAb stained nearly 20 times more cells than TUNEL. In histological sections of human tumor xenografts, MAb detected clusters of apoptotic cells in viable tumor tissue, but did not stain cells in areas of central ischemic necrosis. In contrast, TUNEL stained nuclei in necrotic areas. Thus, MAb to single-stranded DNA is a specific and sensitive cellular marker of apoptosis, which differentiates between apoptosis and necrosis and detects cells in the early stages of apoptosis.  相似文献   

10.
Programmed cell death (PCD) is crucial in body restructuring during metamorphosis of holometabolous insects (those that have a pupal stage between the final larval and adult stages). Besides apoptosis, an increasing body of evidence indicates that in several insect species programmed autophagy also plays a key role in these developmental processes. We have recently characterized the midgut replacement process in Heliothis virescens larva, during the prepupal phase, responsible for the formation of a new pupal midgut. We found that the elimination of the old larval midgut epithelium is obtained by a combination of apoptotic and autophagic events. In particular, autophagic PCD completely digests decaying tissues, and provides nutrients that are rapidly absorbed by the newly formed epithelium, which is apparently functional at this early stage. The presence of both apoptosis and autophagy in the replacement of midgut cells in Lepidoptera offers the opportunity to investigate the functional peculiarities of these PCD modalities and if they share any molecular mechanism, which may account for possible cross-talk between them.  相似文献   

11.
As apoptosis and necrosis are known to exist during experimental goiter development and involution, we studied them in ten Tunisian multinodular endemic goiters, five of them having received a chronic excess of iodine during six months. Apoptotic thyrocyte nuclei have been counted on hematoxylin-eosin stained semi-thin sections. Using immunoperoxidase on paraffin sections, bcl-2 and bax immunoreactivities have been evidenced, and CD34 positive microvessels counted; ultra-thin sections have also been observed. After six months of iodine overload, apoptotic thyrocytes were ten times more numerous; CD34 positive endothelial cells were diminished by one half bcl-2 immunoreactivity disappeared in thyrocytes and a bax one appeared in thyroid follicular and endothelial cells. Presence of numerous apoptotic follicular and endothelial cells was confirmed using electron microscopy. Chronic iodine excess induces apoptosis and necrosis of thyroid follicular and endothelial cells, leading to thyroglobulin accumulation in connective tissue.  相似文献   

12.
Apoptosis of mesothelial cells has been demonstrated in vitro but not in vivo. To identify apoptotic pleural cells as mesothelial, we used cytokeratin as a marker and found a striking spheroid, aggregated appearance of cytokeratin in apparently apoptotic mesothelial cells. In in vitro studies, we found that the aggregated cytokeratin pattern correlated with apoptosis in primary mesothelial cells from mice, rabbits, and humans and was not seen with necrosis. In in vivo studies in mice, we then used this cytokeratin pattern to identify and quantitate apoptotic mesothelial cells. Apoptotic mesothelial cells were best harvested by pleural lavage, indicating that they were loosely adherent or nonadherent. Instillation of RPMI 1640 medium or wollastonite for 24 h induced apoptosis in 0.1 +/- 0. 1 (SE) and 1.0 +/- 0.7%, respectively, of all mesothelial cells recovered, whereas instillation of known apoptotic stimuli, crocidolite asbestos (25 microg) for 24 h or actinomycin D plus murine tumor necrosis factor-alpha for 12 h, induced apoptosis in 5. 1 +/- 0.5 and 22.4 +/- 4.5%, respectively (significantly greater than in control experiments, P < 0.05). By analysis of cytokeratin staining, mesothelial cell apoptosis has been confirmed in vivo.  相似文献   

13.
Estrous cycle in mammals includes marked epithelial changes in reproductive tract, regulated by sex steroid hormones. In the present work we studied the activation of caspases and apoptotic pattern in uterine epithelial cells during proestrus and estrus, and the effect of mating in this process. In addition, we investigated the role of seminal vesicle secretions on apoptosis of uterine epithelia. Apoptotic index was evaluated by TUNEL assay, caspases‐8, ‐9, and ‐3 activation was detected by Western blot and active caspase‐3 expression was detected by immunohistochemistry. Our results show that mating during proestrus and estrus transition induced changes in the apoptotic pattern of uterine luminal epithelium during estrus, characterized by a delay in the onset of apoptosis as compared with that observed in nonmated rats. No differences in the apoptotic pattern in the glandular epithelium between mated and nonmated rats were observed. Seminal vesicle secretions inhibited luminal epithelium apoptosis, while no changes in glandular epithelium apoptosis were observed. We also demonstrate that activation of caspases‐8, ‐9, and ‐3 occurred in both mated and nonmated rats. Active caspase‐3 was detected in the luminal and glandular epithelium in both nonmated and mated rats. The overall results indicate that mating delays but does not prevent the cellular death of the rat uterine luminal epithelium and seminal vesicle secretions are involved in this delay. Finally, the activation of both the mitochondrial and the membrane receptor pathways of cell death are implicated in the molecular mechanism of uterine apoptosis. Mol. Reprod. Dev. 76: 564–572, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

14.
15.
Midgut epithelium in Filientomon takanawanum is composed of epithelial cells and single, sporadic regenerative cells. In 80% of analyzed specimens midgut epithelial cells, as fat body and gonads, are infected with rickettsia-like microorganism. In non-infected specimens young and completely differentiated epithelial cells are distinguished among epithelial cells. Characteristic for midgut epithelial cells regionalization in organelles distribution is not observed. Autophagy is the sporadic process, but if the cytoplasm of epithelium cells possesses numerous spherites and sporadic autophagosomes, the apoptosis begins. Necrosis is observed sporadically.In the midgut epithelium cells of about 80% of analyzed specimens rickettsia-like microorganisms are observed. The more rickettsia-like microorganisms occur in the cytoplasm, the more autophagosomes are formed, and the process of apoptosis proceeds intensively.  相似文献   

16.
Summary The types of cell death in the midgut epithelium of the worker honey bee during the larva-to-pupa transformation were analyzed by light and electron microscopes. The metamorphosis begins with an increase in the number of autophagic vacuoles in larval epithelial cells and terminates with lytic destruction of the whole intestinal epithelium. Apoptosis seems to be independent of cell age, but important in fashioning of the new organ. Even in the cells in the regenerative nests of the larval epithelium, from which the pupal epithelium develops, apoptotic death occurs. Single apoptotic cells are eliminated gradually from the primary multilayer tissue until the monolayer pupal epithelium is formed. Some of the apoptotic cells are endocytosed by sister epithelial cells.  相似文献   

17.
Apoptotic cells undergo a number of changes to prepare for phagocytosis; most occur during the execution phase of apoptosis, when dying cells undergo shrinkage and/or fragmentation into apoptotic bodies and express phagocytic markers on their surface. Although events during the execution phase are important to prepare corpses for phagocytosis, the mechanisms that control most execution phase events are unknown. To understand regulation of execution events we focused on Rho kinase (ROCK), because one isoform of ROCK, ROCK-I, is constitutively activated by caspases during execution. Using apoptotic PC12 cells as a model, we find that inhibition of ROCK activity during apoptosis decreases surface expression of GlcNAc, a carbohydrate known to function as a phagocytic marker. In addition, inhibition of ROCK blocks Golgi fragmentation in apoptotic cells, and constitutively active ROCK induces Golgi fragmentation in the absence of apoptosis. Importantly, PC12 cells dying in the presence of a ROCK inhibitor are less efficiently phagocytized than those dying without the inhibitor. These data highlight the role of ROCK in multiple processes in the execution phase of apoptosis, and suggest that ROCK plays an important role in controlling the outcome of apoptosis, that is, preparation of corpses for phagocytosis.  相似文献   

18.
为揭示褐飞虱Niloparvata lugens Stl若虫在发育过程中中肠的凋亡细胞,使用末端脱氧核苷酸转移酶介导的dUTP-生物素断端标记法(TUNEL)进行中肠组织切片检测,结果表明,1~5龄若虫中肠分别存在2%~5%的凋亡细胞。利用4′,6-二脒基-2-苯基吲哚二盐酸(DAPI)染色法检测表明,存在Ⅰ,Ⅱa和Ⅱb期凋亡的细胞核,其特征包括染色体浓缩、边缘化及细胞核碎裂。透射电子显微镜检测结果表明,早期凋亡的细胞呈现染色质浓缩、边缘化特征,晚期凋亡的细胞出现细胞核碎裂、形成凋亡小体及细胞质空泡化等。本研究揭示了在正常发育过程中褐飞虱若虫中肠有少量的细胞发生了凋亡。通过人工干预的方式调控中肠细胞的凋亡进程有可能使之成为防治该水稻害虫的新靶标。  相似文献   

19.
Activated immune cells secrete proinflammatory cytokines such as tumor necrosis factor alpha (TNF-alpha), interferon–gamma (IFN-gamma) and Fas ligand (FasL) and these cytokines have been reported to induce apoptosis in numerous cell types. Apoptotic cell death has been associated with the progression of numerous autoimmune diseases. Proinflammatory cytokines are reportedly involved in apoptosis in the salivary glands of patients with Sjögren’s syndrome (SS); an autoimmune disorder characterized by the destruction of salivary and lachrymal glands. In this study, we used the HSG cell line to determine if exposure to proinflammatory cytokines induces apoptosis in human salivary gland cells. In addition, we identified the mediators controlling the apoptotic process in response to TNF alpha and IFN gamma. TNF-alpha and IFN-gamma induced apoptosis in HSG cells and resulted in the activation of caspase 8 and the “death receptor” pathway. We further determined that caspase 9 and the “mitochondrial” pathway was also activated. Induction of the intrinsic and extrinsic pathways in HSG cells resulted in substrate cleavage by effector caspases, in particular the cleavage of alpha II spectrin, an autoantigen in Sjögren’s syndrome. Our results suggest that HSG cells provide a model system to study processes regulating proinflammatory cytokine-induced apoptotic cell death.  相似文献   

20.
Hong JR  Lin TL  Yang JY  Hsu YL  Wu JL 《Journal of virology》1999,73(6):5056-5063
Morphologically, apoptotic cells are characterized by highly condensed membrane blebbing and formation of apoptotic bodies. Recently, we reported that apoptosis precedes necrosis in a fish cell line infected with infectious pancreatic necrosis virus (IPNV). In the present study, we tested the possibility that nontypical apoptosis is a component of IPNV-induced fish cell death. A variant type of green fluorescent protein (EGFP) was expressed in a fish cell line such that EGFP served as a protein marker for visualizing dynamic apoptotic cell morphological changes and for tracing membrane integrity changes during IPNV infection. Direct morphological changes were visualized by fluorescence microscopy by EGFP in living cells infected with IPNV. The nontypical apoptotic morphological change stage occurred during the pre-late stage (6 to 7 h postinfection). Nontypical apoptotic features, including highly condensed membrane blebbing, occurred during the middle apoptotic stage. At the pre-late apoptotic stage, membrane vesicles quickly formed, blebbed, and were finally pinched off from the cell membrane. At the same time, at this pre-late apoptotic stage, apoptotic cells formed unique small holes in their membranes that ranged from 0.39 to 0.78 micrometer according to examination by scanning electron microscopy and immunoelectron microscopy. Quantitation of the intra- and extracellular release of EGFP by CHSE-214-EGFP cells after IPNV infection was done by Western blotting and fluorometry. Membrane integrity was quickly lost during the late apoptotic stage (after 8 h postinfection), and morphological change and membrane integrity loss could be prevented and blocked by treatment with apoptosis inhibitors such as cycloheximide, genistein, and EDTA before IPNV infection. Together, these findings show the apoptotic features at the onset of pathology in host cells (early and middle apoptotic stages), followed secondarily by nontypical apoptosis (pre-late apoptotic stage) and then by postapoptotic necrosis (late apoptotic stage), of a fish cell line. Our results demonstrate that nontypical apoptosis is a component of IPNV-induced fish cell death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号