首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The pattern of onset and general rate of cranial ossification are compared in two marsupials, Monodelphis domestica (Didelphidae) and Macropus eugenii (Macropodidae). In both species a similar suite of bones is present at birth, specifically those surrounding the oral cavity and the exoccipital, and in both postnatal events follow a similar course. The facial skeleton matures more rapidly than the neurocranium, which is characterized by an extended period of ossification. Most dermal bones begin ossification before most endochondral bones. Endochondral bones of the neurocranium are particularly extended in both the period of onset of ossification and the rate of ossification. These data confirm suggestions that morphology at birth is conservative in marsupials and we hypothesize that the pattern of cranial osteogenesis is related to two distinct demands. Bones that are accelerated in marsupials are correlated with a number of functional adaptations including head movements during migration, attachment to the teat, and suckling. However, the very slow osteogenesis of the neurocranium is probably correlated with the very extended period of neurogenesis. Marsupials appear to be derived relative to both monotreme and placental mammals in the precocious ossification of the bones surrounding the oral cavity, but share with monotremes an extended period of neurocranial osteogenesis. © 1993 Wiley-Liss, Inc.  相似文献   

2.
Data on the relative sequence of ossification of postcranial elements for eight therian mammals (Myotis lucifugus, Homo sapiens, Rattus norvegicus, Mus musculus, Mesocricetus auratus, Cavia porcellus, Didelphis albiventris, and Sminthopsis macroura) and three outgroups (Chelydra serpentina, Alligator mississippiensis, and Lacerta vivipara) were taken from the literature. For each species, a matrix was constructed in which the relative timing of the onset of ossification in 24 elements was summarized. This resulted in 276 event pairs (characters) for each species. Thirty-three (33.3)% of the characters examined are uniform across all taxa, 16.3% are variable but uninformative in the phylogeny, and 50.4% potentially deliver diagnostic features for clades of two or more taxa. In all species examined, the clavicle is the first bone to appear. Placentalia is not unequivocally diagnosed by the state of any event pair, while Marsupialia has the largest amount of autapomorphies with 18. The acceleration in the timing of ossification of the scapula in relation to the hindlimb in marsupials is most probably causally correlated to movements after birth and during early phases of pre-weaning life. Marsupials are almost unique among amniotes in that the earliest onset of ossification of at least one element among carpals and among tarsals is simultaneous. Three parsimony analyses, each one with a different reptilian taxon as outgroup, were performed using event pairs as characters. In all cases, results were incongruent with the phylogeny of the studied taxa.  相似文献   

3.
The integration of craniofacial elements during developmentin mammals is studiedin a phylogenetic approach. Developmentalseries of four metatherian (marsupial) and five Eutherian (placental)taxa are examined, and the sequence of emergence of major charactersof the central nervous system, the cranial skeleton and thecranial musculature is reconstructed. These sequences are transformedinto a series of characters that are then mapped onto the phylogenyof the taxa. This phylogenetic approach makes it possible todistinguish between characters thatare uniform across all mammals,and those that differentiate marsupials and placentals. Themost significant difference between the two groups involvesthe relative timing of the developmentof the central nervoussystem and the somatic system. The central nervous system differentiatesfar in advance of the bones and muscles of the head in eutherians.In metatherians, somatic elements, particularly of the face,are accelerated. Additional other differences between the twogroups of mammals are discussed. Many elements, however, areunchanged, and develop in a consistent relation despite overallshifts in development. These data are used to test several hypotheseson the ways that cranial development in mammals is integrated.  相似文献   

4.
Heterochronic changes in the rate or timing of development underpin many evolutionary transformations. In particular, the onset and rate of bone development have been the focus of many studies across large clades. In contrast, the termination of bone growth, as estimated by suture closure, has been studied far less frequently, although a few recent studies have shown this to represent a variable, although poorly understood, aspect of developmental evolution. Here, we examine suture closure patterns across 25 species of carnivoran mammals, ranging from social‐insectivores to hypercarnivores, to assess variation in suture closure across taxa, identify heterochronic shifts in a phylogenetic framework and elucidate the relationship between suture closure timing and ecology. Our results show that heterochronic shifts in suture closure are widespread across Carnivora, with several shifts identified for most major clades. Carnivorans differ from patterns identified for other mammalian clades in showing high variability of palatal suture closure, no correlation between size and level of suture closure, and little phylogenetic signal outside of musteloids. Results further suggest a strong influence of feeding ecology on suture closure pattern. Most of the species with high numbers of heterochronic shifts, such as the walrus and the aardwolf, feed on invertebrates, and these taxa also showed high frequency of closure of the mandibular symphysis, a state that is relatively rare among mammals. Overall, caniforms displayed more heterochronic shifts than feliforms, suggesting that evolutionary changes in suture closure may reflect the lower diversity of cranial morphology in feliforms.  相似文献   

5.
We provide here unique data on elephant skeletal ontogeny. We focus on the sequence of cranial and post-cranial ossification events during growth in the African elephant (Loxodonta africana). Previous analyses on ossification sequences in mammals have focused on monotremes, marsupials, boreoeutherian and xenarthran placentals. Here, we add data on ossification sequences in an afrotherian. We use two different methods to quantify sequence heterochrony: the sequence method and event-paring/Parsimov. Compared with other placentals, elephants show late ossifications of the basicranium, manual and pedal phalanges, and early ossifications of the ischium and metacarpals. Moreover, ossification in elephants starts very early and progresses rapidly. Specifically, the elephant exhibits the same percentage of bones showing an ossification centre at the end of the first third of its gestation period as the mouse and hamster have close to birth. Elephants show a number of features of their ossification patterns that differ from those of other placental mammals. The pattern of the initiation of the ossification evident in the African elephant underscores a possible correlation between the timing of ossification onset and gestation time throughout mammals.  相似文献   

6.
Heterochrony, the temporal shifting of developmental events relative to each other, requires a degree of autonomy among those processes or structures. Modularity, the division of larger structures or processes into autonomous sets of internally integrated units, is often discussed in relation to the concept of heterochrony. However, the relationship between the developmental modules derived from studies of heterochrony and evolutionary modules, which should be of adaptive importance and relate to the genotype-phenotype map, has not been explicitly studied. I analyzed a series of sectioned and whole cleared-and-stained embryological and neonatal specimens, supplemented with published ontogenetic data, to test the hypothesis that bones within the same phenotypic modules, as determined by morphometric analysis, are developmentally integrated and will display coordinated heterochronic shifts across taxa. Modularity was analyzed in cranial bone ossification sequences of 12 therian mammals. A dataset of 12-18 developmental events was used to assess if modularity in developmental sequences corresponds to six phenotypic modules, derived from a recent morphometric analysis of cranial modularity in mammals. Kendall's tau was used to measure rank correlations, with randomization tests for significance. If modularity in developmental sequences corresponds to observed phenotypic modules, bones within a single phenotypic module should show integration of developmental timing, maintaining the same timing of ossification relative to each other, despite differences in overall ossification sequences across taxa. Analyses did not find any significant conservation of developmental timing within the six phenotypic modules, meaning that bones that are highly integrated in adult morphology are not significantly integrated in developmental timing.  相似文献   

7.
Previous analyses of how mammals vary in their ossification sequences have focused on monotremes, marsupials, and boreoeutherian placentals. Here, we focus on the sequence of cranial and postcranial ossification events during growth in the xenarthran skull and skeleton, including armadillos, anteaters, and sloths. We use two different methods to quantify sequence heterochrony: sequence analysis of variance (ANOVA) and event‐paring/Parsimov. Our results indicate that Parsimov is conservative and does not detect clear heterochronic shifts between xenarthran and boreoeutherian placentals. Sequence‐ANOVA performs better, but both methods exhibit sensitivity to the artifactual accumulation of ties. By controlling for ties and taking into account results that the methods have in common, our analysis suggests that xenarthrans significantly differ from other placentals by a late ossification of the sternum and an early ossification of the phalanges and pubis. We interpret these differences as showing that heterochrony plays a role in the skeletal development of xenarthrans, a change from previous studies that have emphasized the developmental homogeneity of the skeleton across placental mammals.  相似文献   

8.
Postcranial ossification sequences in 24 therian mammals and three outgroup taxa were obtained using clear staining and computed tomography to test the hypothesis that the marsupial forelimb is developmentally accelerated, and to assess patterns of therian postcranial ossification. Sequence rank variation of individual bones, phylogenetic analysis, and algorithm-based heterochrony optimization using event pairs were employed. Phylogenetic analysis only recovers Marsupialia, Australidelphia, and Eulipotyphla. Little heterochrony is found within marsupials and placentals. However, heterochrony was observed between marsupials and placentals, relating to late ossification in hind limb long bones and early ossification of the anterior axial skeleton. Also, ossification rank position of marsupial forelimb and shoulder girdle elements is more conservative than that of placentals; in placentals the hind limb area is more conservative. The differing ossification patterns in marsupials can be explained with a combination of muscular strain and energy allocation constraints, both resulting from the requirement of active movement of the altricial marsupial neonates toward the teat. Peramelemorphs, which are comparatively passive at birth and include species with relatively derived forelimbs, differ little from other marsupials in ossification sequence. This suggests that ossification heterochrony in marsupials is not directly related to diversity constraints on the marsupial forelimb and shoulder girdle.  相似文献   

9.
Data documenting skeletal development in rodents, the most species-rich ‘order’ of mammals, are at present restricted to a few model species, a shortcoming that hinders exploration of the morphological and ecological diversification of the group. In this study we provide the most comprehensive sampling of rodent ossification sequences to date, with the aim of exploring whether heterochrony is ubiquitous in rodent evolution at the onset of skeletal formation. The onset of ossification in 17 cranial elements and 24 postcranial elements was examined for eight muroid and caviomorph rodent species. New data are provided for two non-model species. For one of these, the African striped mouse, Rhabdomys pumilio, sampling was extended by studying 53 autopodial elements and examining intraspecific variation. The Parsimov method of studying sequence heterochrony was used to explore the role that changes in developmental timing play in early skeletal formation. Few heterochronies were found to diagnose the muroid and caviomorph clades, suggesting conserved patterning in skeletal development. Mechanisms leading to the generation of the wide range of morphological diversity encapsulated within Rodentia may be restricted to later periods in development than those studied in this work. Documentation of skeletogenesis in Rhabdomys indicates that intraspecifc variation in ossification sequence pattern is present, though not extensive. Our study suggests that sequence heterochrony is neither pivotal nor prevalent during early skeletal formation in rodents.  相似文献   

10.
Goswami A 《PloS one》2007,2(10):e995
Studies of morphological integration provide valuable information on the correlated evolution of traits and its relationship to long-term patterns of morphological evolution. Thus far, studies of morphological integration in mammals have focused on placentals and have demonstrated that similarity in integration is broadly correlated with phylogenetic distance and dietary similarity. Detailed studies have also demonstrated a significant correlation between developmental relationships among structures and adult morphological integration. However, these studies have not yet been applied to marsupial taxa, which differ greatly from placentals in reproductive strategy and cranial development and could provide the diversity necessary to assess the relationships among phylogeny, ecology, development, and cranial integration. This study presents analyses of morphological integration in 20 species of australodelphian marsupials, and shows that phylogeny is significantly correlated with similarity of morphological integration in most clades. Size-related correlations have a significant affect on results, particularly in Peramelia, which shows a striking decrease in similarity of integration among species when size is removed. Diet is not significantly correlated with similarity of integration in any marsupial clade. These results show that marsupials differ markedly from placental mammals in the relationships of cranial integration, phylogeny, and diet, which may be related to the accelerated development of the masticatory apparatus in marsupials.  相似文献   

11.
Postcranial ossification sequences in 24 therian mammals and three outgroup taxa were obtained using clear staining and computed tomography to test the hypothesis that the marsupial forelimb is developmentally accelerated, and to assess patterns of therian postcranial ossification. Sequence rank variation of individual bones, phylogenetic analysis, and algorithm-based heterochrony optimization using event pairs were employed. Phylogenetic analysis only recovers Marsupialia, Australidelphia, and Eulipotyphla. Little heterochrony is found within marsupials and placentals. However, heterochrony was observed between marsupials and placentals, relating to late ossification in hind limb long bones and early ossification of the anterior axial skeleton. Also, ossification rank position of marsupial forelimb and shoulder girdle elements is more conservative than that of placentals; in placentals the hind limb area is more conservative. The differing ossification patterns in marsupials can be explained with a combination of muscular strain and energy allocation constraints, both resulting from the requirement of active movement of the altricial marsupial neonates toward the teat. Peramelemorphs, which are comparatively passive at birth and include species with relatively derived forelimbs, differ little from other marsupials in ossification sequence. This suggests that ossification heterochrony in marsupials is not directly related to diversity constraints on the marsupial forelimb and shoulder girdle.  相似文献   

12.
Scincid lizards exhibit a variety of limb anatomies which reflect the functional requirements of different modes of life. Besides surface dwellers which show neither body elongation nor limb reduction, there are numerous examples that can be arranged as increasingly serpentiform taxa moving in sand, humus or leaf litter. We explored the question of whether limb reduction and body elongation in skinks are linked to heterochronic shifts in the ossification sequences. The study material comprises skinks showing four different morphotypes: Liopholis whitii, Lerista bougainvillii, Hemiergis peronii and Saiphos equalis. Results showed that (i) scincid lizards with limb reductions exhibit an earlier onset of ossification in the cervical vertebrae, and (ii) ossification starts earlier in the pectoral girdle (scapula and coracoid) and pelvic girdle (ilium, ischium and pubis) relative to the timing of the onset in elements of the forelimbs and hind limbs. Furthermore, they show (iii) an earlier strengthening of the premaxilla, which first completes the anterior part of the dorsal cranial roof, and (iv) an earlier onset of ossification in the forelimb elements than in the equivalent elements of the hind limbs. The species showing the least limb reduction (L. bougainvillii) had the greatest developmental similarity to the normally proportioned surface-dwelling species (L. whitii). S. equalis, as the morphotype with the greatest deviation from the normally proportioned, pentadactyle form, varies the most from L. whitii. The heterochronic shifts in the ossification sequences are linked to a shift in the emphasis from limbed locomotion to trunk locomotion in the species with body elongation and/or limb reduction.  相似文献   

13.
Most anurans have a biphasic life cycle, which includes metamorphosis from a tadpole stage to an adult frog. This process involves extensive transformations of the cranial skeleton, which have been of long‐standing interest with respect to anuran skeletal evolution and taxonomy. In this study, large‐scale patterns of anuran skeletal ossification are assessed by collecting the most comprehensive data set on anuran cranial ossification to date from the literature, including data for 45 anuran and one caudate outgroup species. Ossification sequences were translated into event‐pair matrices for explorative phylogenetic analysis and phylogenetically informed parsimony search for heterochrony using the Parsimov algorithm. Rank variability of single bones across species was also analysed. Little phylogenetic signal was retrieved from a parsimony‐based phylogenetic analysis of event‐pairs, and only a few species that are generally agreed to be closely related are placed close to each other (e.g. some Pipidae and Costata). Parsimov analysis revealed some clade‐specific heterochrony in anuran clades of varying inclusiveness. Our results show that relating heterochronic changes in anuran cranial ontogeny to parameters such as direct development or miniaturization is problematic because of the high evolvability of cranial ossification sequences. Rank variation analysis suggests that anuran cranial bones are highly variable in their sequence positioning, possibly because tadpole and adult cranial morphology do not co‐evolve. Elements which are lost in some species ossify at the end of the sequence, providing evidence for the notion that failure of anuran cranial elements to ossify is due to processes of paedomorphosis.  相似文献   

14.
The development of the chondrocranium and the relative timing of ossification of the osteocranium is described in the teleost fish Betta splendens from a large series of cleared and differentially stained specimens. General trends in ossification patterns are examined from developmental, phylogenetic, and functional contexts. As in many other vertebrates, dermal bones form before cartilage bones. Ossification sequence conforms to functional need in a very general way, but there are many inconsistencies in the details of order. For example, some bones that are directly involved in feeding ossify no earlier than bones more indirectly involved. Comparisons of ossification sequence within specific cranial regions are made among Betta splendens, Oryzias latipes (Atherinomorpha), and Barbus barbus (Ostariophysi) within a phylogenetic framework. Many evolutionary changes in relative sequence of ossification are evident within regions among these taxa, yet many other sequences are conserved. The logistic difficulty of comparing entire cranial ossification sequences (vs. regional sequences) makes evident the need for new methods for identifying and quantifying sequence changes. Intraspecific variation in order of ossification is described for the first time in teleost fishes. To the extent that ossification sequence varies intraspecifically, conclusions drawn from previous interspecific comparisons are compromised. Understanding the importance of changes in ossification order within and among taxa will require experimental, functional, and evolutionary work. © 1996 Wiley-Liss, Inc.  相似文献   

15.
We have recently demonstrated that placental mammalian species such as pig and dog express a novel proapoptotic protease, caspase-15, whereas mouse and humans lack this enzyme. Here we investigated the evolutionary fate of the caspase-15 gene in different mammalian lineages by analyzing whole-genome shotgun sequences of 30 mammalian species for the presence of caspase-15 orthologs. Caspase-15 gene sequences were found in representatives of all major mammalian clades except for the superorders Afrotheria (tenrec, rock hyrax, and elephant) and Euarchontoglires (rodents, rabbit, tree shrew, and primates), which either lacked any caspase-15-like sequences or contained mutated remnants of the caspase-15 gene. Polymerase chain reaction screenings confirmed the results of the database searches and showed that the caspase-15 gene is expressed not only in various placental mammals but also in the marsupial, Monodelphis domestica. The observed species distribution implies that caspase-15 has originated in an early ancestor of modern mammals and has been conserved, over more than 180 Myr, in marsupials and many placental mammals, whereas it was independently lost in 2 phylogenetically distant clades of placental mammals, that is, Afrotheria and Euarchontoglires. Our data suggest that the inactivation of the caspase-15 gene was not counteracted by, and may even have been driven by, evolutionary constraints in these clades, and therefore, caution against the uncritical use of gene absence for the inference of phylogenetic relationships.  相似文献   

16.
Consensus on placental mammal phylogeny is fairly recent compared to that for vertebrates as a whole. A stable phylogenetic hypothesis enables investigation into the possibility that placental clades differ from one another in terms of their development. Here, we focus on the sequence of skeletal ossification as a possible source of developmental distinctiveness in “northern” (Laurasiatheria and Euarchontoglires) versus “southern” (Afrotheria and Xenarthra) placental clades. We contribute data on cranial and postcranial ossification events during growth in Afrotheria, including elephants, hyraxes, golden moles, tenrecs, sengis, and aardvarks. We use three different techniques to quantify sequence heterochrony: continuous method, sequence‐ANOVA (analysis of variance) and event‐paring/Parsimov. We show that afrotherians significantly differ from other placentals by an early ossification of the orbitosphenoid and caudal vertebrae. Our analysis also suggests that both southern placental groups show a greater degree of developmental variability; however, they rarely seem to vary in the same direction, especially regarding the shifts that differ statistically. The latter observation is inconsistent with the Atlantogenata hypothesis in which afrotherians are considered as the sister clade of xenarthrans. Interestingly, ancestral nodes for Laurasiatheria and Euarchontoglires show very similar trends and our results suggest that developmental homogeneity in some ossification sequences may be restricted to northern placental mammals (Boreoeutheria).  相似文献   

17.
Mammals display a broad spectrum of limb specializations coupled with different locomotor strategies and habitat occupation. This anatomical diversity reflects different patterns of development and growth, including the timing of epiphyseal growth plate closure in the long bones of the skeleton. We investigated the sequence of union in 15 growth plates in the limbs of about 400 specimens, representing 58 mammalian species: 34 placentals, 23 marsupials and one monotreme. We found a common general pattern of growth plate closure sequence, but one that is universal neither between species nor in higher‐order taxa. Locomotor habitat has no detectable correlation with the growth plate closure sequence, but observed patterns indicate that growth plate closure sequence is determined more strongly through phylogenetic factors. For example, the girdle elements (acetabulum and coracoid process) always ossify first in marsupials, whereas the distal humerus is fused before the girdle elements in some placentals. We also found that heterochronic shifts (changes in timing) in the growth plate closure sequence of marsupials occur with a higher rate than in placentals. This presents a contrast with the more limited variation in timing and morphospace occupation typical for marsupial development. Moreover, unlike placentals, marsupials maintain many epiphyses separated throughout life. However, as complete union of all epiphyseal growth plates is recorded in monotremes, the marsupial condition might represent the derived state.  相似文献   

18.
Abstract:  New petrosal bones, assigned to Pucadelphys and Andinodelphys , from the Lower Paleocene of Tiupampa, Bolivia, are described. These remains provide new information on the anatomy of the ear region of these taxa. The re-examination of characters from the petrosal and basicranium shed light on the phylogenetic relationships of the three Tiupampan genera known from complete cranial remains (i.e. Mayulestes , Pucadelphys and Andinodelphys ). The combination of dental, general cranial and basicranial characters led to two alternative hypotheses. The first is that borhyaenoids (including Mayulestes ) are nested within Notometatheria. Pucadelphyds (i.e. Pucadelphys and Andinodelphys ) are the sister group of a clade comprising MHNC 8369 (one isolated petrosal from Tiupampa) and Marsupialia. The second favours the paraphyly of 'borhyaenoids' (i.e. the exclusion of Mayulestes from borhyaenoids) and the polyphyly of 'Notometatheria'. In this case, Mayulestes and borhyaenids represent the stem group of a clade including Asiatic, American and Australian metatherians. This analysis of combined datasets (dental, general cranial and basicranial) highlighted contradictory information in the dental and cranial characters, serving to emphasize that in a large anatomical complex like an entire skull mosaic evolution of the characters is likely.  相似文献   

19.
The mammalian skull has been studied as several separate functional components for decades, but the study of modularity is a more recent, integrative approach toward quantitative examination of independent subsets of highly correlated traits, or modules. Although most studies of modularity focus on developmental and genetic systems, phenotypic modules have been noted in many diverse morphological structures. However, few studies have provided empirical data for comparing modules across higher taxonomic levels, limiting the ability to assess the broader evolutionary significance of modularity. This study uses 18-32 three-dimensional cranial landmarks to analyze phenotypic modularity in 106 mammalian species and demonstrates that cranial modularity is generally conserved in the evolution of therian mammals (marsupials and placentals) but differs between therians and monotremes, the two extant subclasses of Mammalia. Within therians, cluster analyses identify six distinct modules, but only three modules display significant integration in all species. Monotremes display only two highly integrated modules. Specific hypotheses of functional and developmental influences on cranial bones were tested. Theoretical correlation matrices for bones were constructed on the basis of shared function, tissue origin, or mode of ossification, and all three of these models are significantly correlated with observed correlation matrices for the mammalian cranium.  相似文献   

20.
We report the isolation and characterization of cDNA clones of expressed, functional major histocompatibility complex class-I ( Mhc-I) genes from two species of monotremes: the duck-billed platypus and the short-beaked echidna. The cDNA clones were isolated from libraries constructed from spleen RNA, clearly establishing their expression in at least this one peripheral lymphoid organ. From the presence of conserved amino acid residues, it appears the expressed sequences encode molecules that likely function as classical Mhc-I. These clones were isolated using monotreme Mhc-I processed pseudogenes as probes. These processed pseudogenes were isolated from genomic DNA and, based on their structure, are likely independently derived in the platypus and echidna. When all the monotreme sequences were included in phylogenetic analyses, we found no apparent orthologous relationships between the platypus and echidna Mhc-I. Analyses that included a large number of Mhc-I sequences from other taxa support a separate monotreme Mhc-I clade, basal to a therian Mhc-I clade that is comprised of sequences from marsupial and placental mammals. The phylogenies also support the hypothesis that Mhc-I genes of placental mammals, marsupials, and monotremes are derived from three separate lineages of Mhc-I genes, best explained by two rounds of duplications and deletions. The first round would have occurred prior to the divergence of monotremes and therians, and the second prior to the divergence of marsupials and placental mammals. The sequences described here represent the first reported functional monotreme Mhc-I, as well as the first processed pseudogenes of any type from monotremes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号