首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
TNF-related apoptosis-inducing ligand (TRAIL) is a member of the TNF superfamily of cytokines that induces apoptosis in a variety of cancer cells. The results presented in this study demonstrate that introduction of the human TRAIL gene into TRAIL-sensitive tumor cells using an adenoviral vector leads to the rapid production and expression of TRAIL protein, and subsequent death of the tumor cells. Tumor cell death was mediated by an apoptotic mechanism, as evidenced by the activation of caspase-8, cleavage of poly(ADP-ribose) polymerase, binding of annexin V, and inhibition by caspase inhibitor zVAD-fmk. These results define a novel method of using TRAIL as an antitumor therapeutic, and suggest the potential use for an adenovirus-encoding TRAIL as a method of gene therapy for numerous cancer types in vivo.  相似文献   

2.
CpG-containing oligodeoxynucleotides (CpG ODN) have broad-ranging immunostimulatory effects, including the generation of antitumor immune responses. Analysis of different CpG ODN have identified two classes: CpG-A ODN, which stimulate high levels of IFN-alpha production from plasmacytoid dendritic cells and weakly activate B cells, and CpG-B ODN, which strongly activate B cells but stimulate low production of IFN-alpha from plasmacytoid dendritic cells. Previously, we observed that CpG-B ODN (2006) induces TRAIL/Apo-2 ligand (Apo-2L)-mediated killing of tumor cells by CD14(+) PBMC. In this study, we extend our investigation of CpG ODN-induced TRAIL/Apo-2L expression and activity in PBMC to include CpG-A ODN. Of the two classes, IFN-alpha production and TRAIL/Apo-2L-mediated killing of tumor cells was greatest with CpG-A ODN. Surprisingly, CD3(+), CD14(+), CD19(+), and CD56(+) PBMC expressed high levels of TRAIL/Apo-2L following CpG-A ODN stimulation. When isolated, the CD19(+) PBMC (B cells) were able to kill tumor cells in a TRAIL/Apo-2L-dependent manner. As with CD14(+) PBMC, CD19(+) sorted B cells were capable of up-regulating TRAIL/Apo-2L expression when stimulated with IFN-alpha alone. Interestingly, agonist anti-CD40 mAb further enhanced the IFN-alpha-induced TRAIL/Apo-2L expression on CD19(+) B cells. These results are the first to demonstrate human B cell-mediated killing of tumor cells in a TRAIL/Apo-2L-dependent fashion.  相似文献   

3.
Induction of necrotic tumor cell death by TRAIL/Apo-2L   总被引:4,自引:0,他引:4  
A great deal of enthusiasm is being generated for TRAIL (TNF-related apoptosis-inducing ligand)/Apo-2L as a tumor therapeutic agent because it is cytotoxic to a variety of tumor cell types but not normal cells. Moreover, it is well documented that TRAIL/Apo-2L-induced tumor cell death is a caspase-dependent apoptotic process. Through the use of a transfected cell line expressing murine TRAIL/Apo-2L and a recombinant adenovirus encoding the murine TRAIL/Apo-2L cDNA (Ad5-mTRAIL) against two murine tumor cell lines [TRAMP-C2 (prostate adenocarcinoma) and Renca (renal adenocarcinoma)], we found that mTRAIL/Apo-2L also can kill tumor cells by inducing necrosis. Specifically, we observed the default method of mTRAIL/Apo-2L-induced death in TRAMP-C2 cells was via a necrotic process, characterized by the complete lack of an annexin V+/PI population, SAPK/JNK phosphorylation, caspase activation, Bid cleavage, or cytochrome c release. Moreover, the inclusion of zVAD-fmk, an inhibitor of caspase activation, markedly enhanced mTRAIL/Apo-2L-mediated killing of TRAMP-C2. In contrast, apoptosis was induced in TRAMP-C2 using TNF, as measured by the criteria listed above, as was Renca by mTRAIL/Apo-2L. These results demonstrate the natural occurrence of both TRAIL/Apo-2L-induced apoptotic and necrotic signaling mechanisms within tumor cells.  相似文献   

4.
Tumor necrosis factor related apoptosis inducing ligand (TRAIL) belongs to the Tumor necrosis factor (TNF) family of death-inducing ligands, and signaling downstream of TRAIL ligation to its receptor(s) remains to be fully elucidated. Components of the death-inducing signaling complex (DISC) and TRAIL signaling downstream of receptor activation were examined in TRAIL - sensitive and -resistant models of human rhabdomyosarcoma (RMS). TRAIL ligation induced DISC formation in TRAIL-sensitive (RD, Rh18, Rh30) and TRAIL-resistant RMS (Rh28, Rh36, Rh41), with recruitment of FADD and procaspase-8. In RD cells, overexpression of dominant-negative FADD (DNFADD) completely abolished TRAIL-induced cell death in contrast to dominant-negative caspase- 8 (DNC8), which only partially inhibited TRAIL-induced apoptosis, growth inhibition, or loss in clonogenic survival. DNC8 did not inhibit the cleavage of Bid or the activation of Bax. Overexpression of Bcl-2 or Bcl-xL inhibited TRAIL-induced apoptosis, growth inhibition, and loss in clonogenic survival. Bcl-2 and Bcl-xL, but not DNC8, inhibited TRAIL-induced Bax activation. Bcl-xL did not inhibit the early activation of caspase-8 (<4 h) but inhibited cleavage of Bid, suggesting that Bid is cleaved downstream of the mitochondria, independent of caspase-8. Exogenous addition of sphingosine also induced activation of Bax via a caspase-8-and Bid-independent mechanism. Further, inhibition of sphingosine kinase completely protected cells from TRAIL-induced apoptosis. Data demonstrate that in RMS cells, the TRAIL signaling pathway circumvents caspase-8 activation of Bid upstream of the mitochondria and that TRAIL acts at the level of the mitochondria via a mechanism that may involve components of the sphingomyelin cycle.  相似文献   

5.
TNF-related apoptosis-inducing ligand (TRAIL), a member of the TNF superfamily, induces apoptosis in susceptible cells, which can be both malignant and nontransformed. Despite homologies among the death ligands, there are great differences between the TRAIL system on the one hand and the TNF and CD95 systems on the other hand. In particular, TRAIL-induced apoptosis differs between rodents and man. Studies on animal models of autoimmune diseases suggested an influence of TRAIL on T cell growth and effector functions. Because we previously demonstrated that TRAIL does not induce apoptosis in human (auto)antigen-specific T cells, we now asked whether TRAIL exhibits other immunoregulatory properties in these cells. Active TRAIL inhibited calcium influx through store-operated calcium release-activated calcium channels, IFN-gamma/IL-4 production, and proliferation. These effects were independent of APC, Ag specificity, and Th differentiation, and no differences were detected between healthy donors and multiple sclerosis patients. TRAIL affected neither the expression of the cell cycling inhibitor p27(Kip1) nor the capacity of T cells to produce IL-2 upon Ag rechallenge, indicating that signaling via TRAIL receptor does not induce T cell anergy. Instead, the TRAIL-induced hypoproliferation could be attributed to the down-regulation of the cyclin-dependent kinase 4, indicating a G(1) arrest of the cell cycle. Thus, although it does not contribute to mechanisms of peripheral T cell tolerance such as clonal anergy or deletion by apoptosis, TRAIL can directly inhibit activation of human T cells via blockade of calcium influx.  相似文献   

6.
Immunostimulatory oligodeoxynucleotides (ODN) containing the CpG motif are being tested as immune adjuvants in many disease settings. Of the human PBMC examined, plasmacytoid dendritic cells (pDC) are a major source of type I IFN upon stimulation with CpG ODN. IFNs have numerous immunostimulatory effects, including the induction of TNF-related apoptosis-inducing ligand (TRAIL)/Apo-2L on monocytes, NK cells, and T cells. Importantly, IFN has also been linked to antitumor responses. Thus, we tested whether CpG ODN stimulation of PBMC led to TRAIL/Apo-2L-induced tumor cell death. When PBMC were stimulated with CpG ODN, TRAIL/Apo-2L-dependent tumor cell death was observed. Further examination of CpG ODN-stimulated PBMC revealed that TRAIL/Apo-2L expression was limited to CD14(+) cells, which, when depleted, led to a loss of the TRAIL/Apo-2L-mediated tumor cell killing. Moreover, pDC depletion also abolished the TRAIL/Apo-2L-mediated killing of tumor cell targets. Analysis of the pDC showed IFN-alpha production after CpG ODN stimulation. Finally, inclusion of neutralizing IFN-alpha antiserum with the PBMC during CpG ODN stimulation abrogated TRAIL/Apo-2L-mediated tumor cell killing. These results define a mechanism by which CpG ODN induces TRAIL/Apo-2L-dependent killing of tumor cells by CD14(+) PBMC, in which CpG ODN-activated pDC produce IFN-alpha that stimulates CD14(+) PBMC to express functional TRAIL/Apo-2L.  相似文献   

7.
8.
9.
Human TRAIL can efficiently kill tumor cells in vitro and kill human tumor xenografts in mice with little effect on normal mouse cells or tissues. The effects of TRAIL on normal human tissues have not been described. In this study, we report that endothelial cells (EC), isolated from human umbilical veins or human dermal microvessels, express death domain-containing TRAIL-R1 and -R2. Incubation with TRAIL for 15 h causes approximately 30% of cultured EC to die, as assessed by propidium iodide uptake. Death is apoptotic, as assessed by Annexin V staining, 4',6'-diamidino-2-phenylindole staining, and DNA fragment ELISA. EC death is increased by cotreatment with cycloheximide but significantly reduced by caspase inhibitors or transduced dominant-negative Fas-associated death domain protein. In surviving cells, TRAIL activates NF-kappaB, induces expression of E-selectin, ICAM-1, and IL-8, and promotes adhesion of leukocytes. Injection of TRAIL into human skin xenografts promotes focal EC injury accompanied by limited neutrophil infiltration. These data suggest that TRAIL is an inducer of tissue injury in humans, an outcome that may influence antitumor therapy with TRAIL.  相似文献   

10.
Adult T-cell leukemia (ATL), a CD4+-T-cell malignancy caused by human T-cell leukemia virus type 1 (HTLV-1), is difficult to cure, and novel treatments are urgently needed. Apo2 ligand (Apo2L; also tumor necrosis factor-related apoptosis-inducing ligand [TRAIL]) has been implicated in antitumor therapy. We found that HTLV-1-infected T-cell lines and primary ATL cells were more resistant to Apo2L-induced apoptosis than uninfected cells. Interestingly, HTLV-1-infected T-cell lines and primary ATL cells constitutively expressed Apo2L mRNA. Inducible expression of the viral oncoprotein Tax in a T-cell line up-regulated Apo2L mRNA. Analysis of the Apo2L promoter revealed that this gene is activated by Tax via the activation of NF-kappaB. The sensitivity to Apo2L was not correlated with expression levels of Apo2L receptors, intracellular regulators of apoptosis (FLICE-inhibitory protein and active Akt). NF-kappaB plays a crucial role in the pathogenesis and survival of ATL cells. The resistance to Apo2L-induced apoptosis was reversed by N-acetyl-L-leucinyl-L-leucinyl-lLnorleucinal (LLnL), an NF-kappaB inhibitor. LLnL significantly induced the Apo2L receptors DR4 and DR5. Our results suggest that the constitutive activation of NF-kappaB is essential for Apo2L gene induction and protection against Apo2L-induced apoptosis and that suppression of NF-kappaB may be a useful adjunct in clinical use of Apo2L against ATL.  相似文献   

11.
Endostatin induces endothelial cell apoptosis   总被引:135,自引:0,他引:135  
Endostatin, a carboxyl-terminal fragment of collagen XVIII, has been shown to regress tumors in mice. In this study, we have analyzed the mechanism of endostatin action on endothelial cells and nonendothelial cells. Endostatin treatment of cow pulmonary artery endothelial cells caused apoptosis, as demonstrated by three methods, annexin V-fluorescein isothiocyanate staining, caspase 3, and terminal deoxynucleotidyl transferase-mediated dUTP nick-end-labeling assay. Moreover, addition of endostatin led to a marked reduction of the Bcl-2 and Bcl-XL anti-apoptotic protein, whereas Bax protein levels were unaffected. These effects were not seen in several nonendothelial cells. Collectively, these findings provide important mechanistic insight into endostatin action.  相似文献   

12.
A component of a traditional Thai condiment, 1'-acetoxychavicol acetate (ACA), is a natural compound, and it is obtained from rhizomes of the ethno-medicinal plant Languas galanga (Zingiberaceae). Our previous studies showed that ACA dramatically inhibited cellular growth of multiple myeloma cells in vivo and in vitro through the induction of apoptosis in association with the activation of caspase-8, inactivation of NF-kappaB, and down-regulation of anti-apoptotic proteins. Subsequently, we investigated the detailed apoptotic pathway of ACA and further demonstrated that ACA up-regulates the expression of both TNF-related apoptosis-inducing ligand/Apo2 ligand (TRAIL/Apo2L) and TRAIL receptor death receptor 5 (DR5). In addition, TRAIL/R-Fc chimera neutralizes the ACA-induced apoptosis. These results suggest that the death signaling of TRAIL is involved in the ACA-induced apoptosis of myeloma cells, and provide a rationale for the induction of TRAIL/Apo2L by ACA, which could potentially be used as a novel therapeutic agent in patients with multiple myeloma.  相似文献   

13.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a cytokine that can trigger apoptosis in many types of human cancer cells via engagement of its two pro-apoptotic receptors TRAIL-R1 (DR4) and TRAIL-R2 (DR5). TRAIL can also activate several other signaling pathways such as activation of stress kinases, canonical NF-κB signaling and necroptosis. Though both receptors are ubiquitously expressed, their relative participation in TRAIL-induced signaling is still largely unknown. To analyze TRAIL receptor-specific signaling, we prepared Strep-tagged, trimerized variants of recombinant human TRAIL with high affinity for either DR4 or DR5 receptor. Using these receptor-specific ligands, we examined the contribution of individual pro-apoptotic receptors to TRAIL-induced signaling pathways. We found that in TRAIL-resistant colorectal HT-29 cells but not in pancreatic PANC-1 cancer cells, DISC formation and initial caspase-8 processing proceeds comparably via both DR4- and DR5-activated signaling. TRAIL-induced apoptosis, enhanced by the inhibitor of the Bcl-2 family ABT-737, or by the translation inhibitor homoharringtonine, proceeded in both cell lines predominantly via the DR5 receptor. ShRNA-mediated downregulation of DR4 or DR5 receptors in HT-29 cells also pointed to a stronger contribution of DR5 in TRAIL-induced apoptosis. In contrast to apoptosis, necroptotic signaling was activated similarly by both DR4- or DR5-specific ligands. Activation of auxiliary signaling pathways involving NF-κB or stress kinases proceeded under apoptotic conditions mainly in a DR5-dependent manner, while these signaling pathways were during necroptosis similarly activated by either of these ligands. Our study provides the first systematic insight into DR4 ?/DR5-specific signaling in colorectal and pancreatic cancer cells.  相似文献   

14.
TRAIL (APO-2L) is a newly identified member of the TNF family and induces apoptosis in cancer cells without affecting most non-neoplastic cells, both in vitro and in vivo. Our study focused on the expression and function of TRAIL and its receptors in renal cell carcinoma (RCC) cell lines of all major histological types. Here, we demonstrate that all RCC cell lines express TRAIL as well as the death-inducing receptors TRAIL-R1 (DR4) and TRAIL-R2 (Killer/DR5). Exposure to TRAIL induced apoptosis in 10 of 16 RCC cell lines. Remarkably, five of six TRAIL-resistant RCC cell lines exhibited high levels of TRAIL expression. Topotecan, a novel topoisomerase I inhibitor, induced upregulation of TRAIL-R2 as well as downregulation of TRAIL. Neutralization of TRAIL with recombinant soluble TRAIL-R1-Fc and TRAIL-R2-Fc failed to inhibit topotecan-induced apoptosis indicating that topotecan-induced cell death can occur in a TRAIL-independent fashion. However, exposure to topotecan resulted in an enhancement of TRAIL-induced apoptosis in all primarily TRAIL-resistant RCC cell lines. This synergistic effect of cotreatment with Topotecan and TRAIL may provide the basis for a new therapeutic approach to induce apoptosis in otherwise unresponsive RCC.  相似文献   

15.
Apo2L/TRAIL stimulates cancer cell death through the proapoptotic receptors DR4 and DR5, but the determinants of tumor susceptibility to this ligand are not fully defined. mRNA expression of the peptidyl O-glycosyltransferase GALNT14 correlated with Apo2L/TRAIL sensitivity in pancreatic carcinoma, non-small-cell lung carcinoma and melanoma cell lines, and up to 30% of samples from various human malignancies showed GALNT14 overexpression. RNA interference of GALNT14 reduced cellular Apo2L/TRAIL sensitivity, whereas overexpression increased responsiveness. Biochemical analysis of DR5 identified several ectodomain O-(N-acetyl galactosamine-galactose-sialic acid) structures. Sequence comparison predicted conserved extracellular DR4 and DR5 O-glycosylation sites; progressive mutation of the DR5 sites attenuated apoptotic signaling. O-glycosylation promoted ligand-stimulated clustering of DR4 and DR5, which mediated recruitment and activation of the apoptosis-initiating protease caspase-8. These results uncover a new link between death-receptor O-glycosylation and apoptotic signaling, providing potential predictive biomarkers for Apo2L/TRAIL-based cancer therapy.  相似文献   

16.
In the present study, we investigate the anti-cancer activity and mechanism of caudatin, the C-21 steroidal glycosides, on human hepatoma cell line HepG2. The MTT assay and flow cytometry were used to evaluate HepG2 cell proliferation and cell cycle. Annexin-V/PI and DAPI staining were used to investigate cell apoptosis. Western blotting analysis was used to evaluate the expression levels of proteins. It is found that caudatin inhibits HepG2 cell growth and induces of G0/G1 phase arrest in a dose dependent manner, which is associated with a decreased in the expression of cyclinD1 and increased the levels of p21 and p53. HepG2 cells dealing with caudatin showed typical characteristics of apoptosis. Western blotting analysis indicated that the levels of Bcl-2 were down-regulated after caudatin treatment, whereas the expression of Bax was up-regulated. Furthermore, caudatin-induced apoptosis was accompanied by activation of caspase-3, -9, and poly(ADP-Ribose) Polymerase (PARP). Treatment with caudatin also induced phosphorylation of extracellular-signal regulating kinase (ERK) and c-Jun N-terminal kinase (JNK). These results demonstrate that caudatin inhibits cell proliferation via DNA synthesis reduction and induces caspase-dependent apoptosis in HepG2 cell. Activation of ERK and JNK may be involved in caudatin-induced hepatoma cell apoptosis.  相似文献   

17.
The novel synthetic retinoid, CD437, shows potent anti-tumor activity in a range of different cancer cell lines and now serves as a prototype for development of new retinoid related molecules (RRMs). The purpose of this study was to examine the effect and cellular targets of CD437 in the human metastatic melanoma cell lines FEMX-1 and WM239. We showed that treatment with CD437 led to cell cycle arrest and induced apoptosis through both the extrinsic- and intrinsic pathways (caspase 8, -9 and PARP cleavage) in both cell lines. Interestingly, apoptosis was induced independently of DNA-fragmentation in FEMX-1 cells, and appeared partially caspase-independent in the WM239 cells. Additionally, up-regulation of CHOP mRNA and cathepsin D protein expression, following retinoid treatment, suggests involvement of the endoplasmatic reticulum (ER) and lysosomes, respectively. Combination of suboptimal concentrations of CD437 and lexatumumab, a TRAIL death receptor-2 agonist, resulted in synergistic reduction of viable cells, along with increased PARP cleavage. These results indicate that CD437 has a strong anti-neoplastic effect alone and in combination with lexatumumab in melanoma cell lines.  相似文献   

18.
The tumor necrosis factor (TNF) related apoptosis-inducing ligand (TRAIL or Apo2L) and its receptors are members of the tumor necrosis factor superfamily. TRAIL triggers apoptosis by binding to its two proapoptotic receptors DR4 and DR5, a process which is negatively regulated by binding of TRAIL to its two decoy receptors TRID and TRUNDD. Here, we show that TRAIL effectively induces apoptosis in H460 human non-small-cell lung carcinoma cells via cleavage of caspases 8, 9, 7, 3, and BID, release of cytochrome c from the mitochondria, and cleavage of poly (ADP-ribose) polymerase (PARP). However, overexpression of Bcl2 blocked TRAIL-induced apoptosis in H460 cells, which correlated with the Bcl2 protein levels. Importantly, the release of cytochrome c and cleavage of caspase 7 triggered by TRAIL were considerably blocked in Bcl2 overexpressing cells as compared to vector control cells. Moreover, inhibition of TRAIL-mediated cytochrome c release and caspase 7 activation by Bcl2 correlated with the inability of PARP to be cleaved and the inability of the Bcl2 transfectants to undergo apoptosis. Thus, these results suggest that Bcl2 can serve an anti-apoptotic function during TRAIL-dependent apoptosis by inhibiting the release of cytochrome c and activation of caspase 7, thereby blocking caspase 7-dependent cleavage of cellular substrates.  相似文献   

19.
All human melanoma cell lines (assessed by annexin V and TUNEL assays) were resistant to apoptosis induction by TRAIL/Apo2L protein. TRAIL/Apo2L activated caspase-8 and caspase-3, but subsequent apoptotic events such as poly(ADP-ribose) polymerase cleavage and DNA fragmentation were not observed. To probe the molecular mechanisms of cellular resistance to apoptosis, melanoma cell lines were analyzed for expression of apoptosis regulators (apoptotic protease-associated factor-1, FLIP, caspase-8, caspase-9, caspase-3, cellular inhibitor of apoptosis, Bcl-2, or Bax); no correlation was observed. TRAIL/Apo2L was induced in melanoma cell lines by IFN-beta and had been correlated with apoptosis induction. Because IFN-beta induced other gene products that have been associated with apoptosis, it was postulated that one or more IFN-stimulated genes might sensitize cells to TRAIL/Apo2L. Melanoma cell lines were treated with IFN-beta for 16-24 h before treatment with TRAIL/Apo2L. Regardless of their sensitivity to either cytokine alone, >30% of cells underwent apoptosis in response to the combined treatment. Induction of apoptosis by IFN-beta and TRAIL/Apo2L in combination correlated with synergistic activation of caspase-9, a decrease in mitochondrial potential, and cleavage of poly(ADP-ribose) polymerase. Cleavage of X-linked inhibitor of apoptosis following IFN-beta and TRAIL/Apo2L treatment was observed in sensitive WM9, A375, or WM3211 cells but not in resistant WM35 or WM164 cells. Thus, in vitro IFN-beta and TRAIL/Apo2L combination treatment had more potent apoptotic and anti-growth effects when compared with either cytokine alone in melanoma cells lines.  相似文献   

20.
The goals of this study were to determine whether the Fas-dependent apoptosis pathway is active in the lungs of patients with the acute respiratory distress syndrome (ARDS), and whether this pathway can contribute to lung epithelial injury. We found that soluble Fas ligand (sFasL) is present in bronchoalveolar lavage (BAL) fluid of patients before and after the onset of ARDS. The BAL concentration of sFasL at the onset of ARDS was significantly higher in patients who died. BAL from patients with ARDS induced apoptosis of distal lung epithelial cells, which express Fas, and this effect was inhibited by blocking the Fas/FasL system using three different strategies: anti-FasL mAb, anti-Fas mAb, and a Fas-Ig fusion protein. In contrast, BAL from patients at risk for ARDS had no effect on distal lung epithelial cell apoptosis. These data indicate that sFasL is released in the airspaces of patients with acute lung injury and suggest that activation of the Fas/FasL system contributes to the severe epithelial damage that occurs in ARDS. These data provide the first evidence that FasL can be released as a biologically active, death-inducing mediator capable of inducing apoptosis of cells of the distal pulmonary epithelium during acute lung injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号