首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
烟草毛状根诱导及其茄尼醇含量初探   总被引:4,自引:0,他引:4  
茄尼醇是合成泛醌类药物的重要中间体.以发根农杆菌(Agrobacterium rhizogenes)W.T15834感染烟草叶片诱导产生毛状根,探讨其茄尼醇含量变化.结果显示,获得的毛状根能在无外源生长调节剂的MS固体和液体培养基上自主生长,但在液体培养基中培养的毛状根生长更迅速,也不会形成愈伤组织.甘露碱检测及PCR结果证实,发根农杆菌Ri质粒的rolB基因已在烟草(Nicotiana tabacum)毛状根基因组中整合并得到表达.用改进的HPLC法测定烟草毛状根中的茄尼醇含量,其结果为对照根(种子萌发产生的幼苗根)的1.12倍,但仍比废弃烟叶中茄尼醇含量低43.2%.  相似文献   

2.
为了提高烟草的烟碱含量,采用发根农杆菌遗传转化和人工染色体加倍技术,进行了烟草毛状根及其多倍体诱导、植株再生及其烟碱含量测定。结果表明,发根农杆菌ATCC15834感染烟草叶片外植体8 d后产生白色毛状根,15 d后所有叶片外植体产生毛状根。毛状根能在无外源激素的MS固体和液体培养基上自主生长。PCR扩增结果显示发根农杆菌Ri质粒的rol B和rol C基因以及冠瘿碱合成酶基因已在烟草毛状根基因组中整合并得到表达。烟草毛状根多倍体诱导的最适条件为0.1%的秋水仙素溶液处理36 h,其多倍体诱导率为64.71%。经秋水仙素加倍的烟草毛状根多倍体植株再生的最适宜培养基为MS+6-BA 2.0 mg/L+NAA0.2 mg/L。与对照(二倍体非转化植株)相比,烟草二倍体毛状根再生植株的顶端优势减弱,腋芽增多,叶片变窄;而烟草毛状根多倍体再生植株茎更粗,节间变短,叶色更深,叶片的宽度和厚度均较对照明显增大。根尖细胞染色体压片观察证实,所获得的烟草毛状根多倍体再生植株为四倍体,其根尖细胞染色体数约为4n=96。盆栽实验表明,烟草二倍体毛状根植株和多倍体毛状根再生植株比对照植株延迟约21 d开花。GC-MS检测表明,烟草毛状根多倍体再生植株的烟碱含量比对照及二倍体毛状根再生植株显著提高,分别约为对照及二倍体毛状根再生植株的6.90倍和4.57倍。  相似文献   

3.
4.
5.
Hairy root cultures of Catharanthus roseus were established by infection of seedlings with Agrobacterium rhizogenes 15834. Approximately 150 transformants from four different. C. roseus cultivars were screened for desirable traits in growth and indole alkaloid production. Five hairy root clones grew well in liquid culture with doubling times similar to those reported for cell suspensions. Fast growing clones had similar morphologies, characterized by thin, straight, and regular branches with thin tips. The levels of key alkaloids, ajmalicine, serpentine, and catharanthine, in these five clones, also compared well with literature data from cell suspensions, yet HPLC and GC-MS data indicate the presence of vindoline in two clones at levels over three orders of magnitude greater than the minute amounts reported in cell culture. These results suggest that further optimization may result in hairy roots as a potential source of vindoline and catharanthine, the two monomers necessary to synthesize that antineoplastic drug, vinblastine. (c) 1993 John Wiley & Sons, Inc.  相似文献   

6.
The activity of L-arginine decarboxylase (EC 4.1.1.19) and L-ornithine decarboxylase (EC 4.1.1.17), polyamine content, and incorporation of arginine and ornithine into polyamines, were determined in mung bean [Vigna radiata (L.) Wilczek] plants subjected to salt (hypertonic) stress (NaCl at 0.51–2.27 MPa). Changes in enzyme activity in response to hypotonic stress were determined as well in several halophytes [Pulicaria undulata (L.), Kostei, Salsola rosmarinus (Ehr.) Solms-Laub, Mesembryanthemum forskahlei Hochst, and Atriplex halimus L.]. NaCl stress, possibly combined with other types of stress that accompanied the experimental conditions, resulted in organ-specific changes in polyamine biosynthesis and content in mung bean plants. The activity of both enzymes was inhibited in salt-stressed leaves. In roots, however, NaCl induced a 2 to 8-fold increase in ornithine decarboxylase activity. Promotion of ornithine decarboxylase in roots could be detected already 2 h after exposure of excised roots to NaCl, and iso-osmotic concentrations of NaCl and KCl resulted in similar changes in the activity of both enzymes. Putrescine level in shoots of salt-stressed mung bean plants increased considerably, but its level in roots decreased. The effect of NaCl stress on spermidine content was similar, but generally more moderate, resulting in an increased putrescine/spermidine ratio in salt-stressed plants. Exposure of plants to NaCl resulted also in organ-specific changes in the incorporation of both arginine and ornithine into putrescine: incorporation was inhibited in leaf discs but promoted in excised roots of salt-stressed mung bean plants. In contrast to mung bean (and several other glycophytes), ornithine and arginine decarboxylase activity in roots of halophytes increased when plants were exposed to tap water or grown in a pre-washed soil—i.e. a hypotonic stress with respect to their natural habitat. NaCl, when present in the enzymatic assay mixture, inhibited arginine and ornithine decarboxylase in curde extracts of mung bean roots, but did not affect the activity of enzymes extracted from roots of the halophyte Pulicaria. Although no distinct separation between NaCl stress and osmotic stress could be made in the present study, the data suggest that changes in polyamines in response to NaCl stress in mung bean plants are coordinated at the organ level: activation of biosynthetic enzymes concomitant with increased putrescine biosynthesis from its precursors in the root system, and accumulation of putrescine in leaves of salt-stressed plants. In addition, hypertonic stress applied to glycophytes and hypotonic stress applied to halophytes both resulted in an increase in the activity of polyamine biosynthetic enzymes in roots.  相似文献   

7.
Polyamines are fundamental molecules of life, and their deep evolutionary history is reflected in extensive biosynthetic diversification. The polyamines putrescine, agmatine, and cadaverine are produced by pyridoxal 5′-phosphate-dependent L-ornithine, L-arginine, and L-lysine decarboxylases (ODC, ADC, LDC), respectively, from both the alanine racemase (AR) and aspartate aminotransferase (AAT) folds. Two homologous forms of AAT-fold decarboxylase are present in bacteria: an ancestral form and a derived, acid-inducible extended form containing an N-terminal fusion to the receiver-like domain of a bacterial response regulator. Only ADC was known from the ancestral form and limited to the Firmicutes phylum, whereas extended forms of ADC, ODC, and LDC are present in Proteobacteria and Firmicutes. Here, we report the discovery of ancestral form ODC, LDC, and bifunctional O/LDC and extend the phylogenetic diversity of functionally characterized ancestral ADC, ODC, and LDC to include phyla Fusobacteria, Caldiserica, Nitrospirae, and Euryarchaeota. Using purified recombinant enzymes, we show that these ancestral forms have a nascent ability to decarboxylate kinetically less preferred amino acid substrates with low efficiency, and that product inhibition primarily affects preferred substrates. We also note a correlation between the presence of ancestral ODC and ornithine/arginine auxotrophy and link this with a known symbiotic dependence on exogenous ornithine produced by species using the arginine deiminase system. Finally, we show that ADC, ODC, and LDC activities emerged independently, in parallel, in the homologous AAT-fold ancestral and extended forms. The emergence of the same ODC, ADC, and LDC activities in the nonhomologous AR-fold suggests that polyamine biosynthesis may be inevitable.  相似文献   

8.
9.
A procedure for the determination of metabolites of the biochemical pathway ornithine to N-methyl-δ1-pyrrolinium salt (N-methylpyrroline) is described. Plant tissue was extracted with 0.5 M HCl and the extract purified on C18-cartridges. Ornithine was reacted with o -phthaldialdehyde, putrescine and N-methylputrescine with dansyl chloride and the products were separated by reversed-phase high-performance liquid chromatography (HPLC). N-methylpyrroline was determined by cation-exchange HPLC without derivatization. The metabolites in the roots of tobacco ( Nicotiana ) species with different nicotine-producing capacities were determined. Furthermore, the specific activities of the enzymes ornithine decarboxylase (EC 4.1.1.17), putrescine N-methyltransferase (EC 2.1.1.53) and N-methylputrescine oxidase were determined. Both the metabolite pools and the enzyme activities were correlated with the different nicotine-producing capacities of the different tobacco species.  相似文献   

10.
In Phaseolus mungo seeds, polyamine content increased during early germination, being maximum after 24 hr; and the arginine decarboxylase showed a peak after 18 hr. During nodule initiation and growth two peaks of polyamine contents were noted-the first being 2 weeks after nodule initiation and a second one after 5 weeks. Arginine decarboxylase activity also followed the same pattern. In the roots the polyamine concentration as well as arginine decarboxylase increased up to week 2 after sowing followed by a gradual decrease. Estimation of RNA, DNA and protein contents showed a pattern similar to that of the polyamines.  相似文献   

11.
Several hairy root cultures of Nicotiana tabacum varieties, carrying two direct repeats of a bacterial lysine decarboxylase (ldc) gene controlled by the cauliflower mosaic virus (CaMV) 35S promoter expressed LDC activity up to 1 pkat/mg protein. Such activity was, for example, sufficient to increase cadaverine levels of the best line SR3/1-K1,2 from ca. 50 g (control cultures) to about 700 g/g dry mass. Some of the overproduced cadaverine of this line was used for the formation of anabasine, as shown by a 3-fold increase of this alkaloid. In transgenic lines with lower LDC activity the changes of cadaverine and anabasine levels were correspondingly lower and sometimes hardly distinguishable from controls. Feeding of lysine to root cultures, even to those with low LDC activity, greatly enhanced cadaverine and anabasine livels, while the amino acid had no or very little effect on controls and LDC-negative lines.  相似文献   

12.
Unlike other eukaryotes, which can synthesize polyamines only from ornithine, plants possess an additional pathway from arginine. Occasionally non-enzymatic decarboxylation of ornithine could be detected in Arabidopsis extracts; however, we could not detect ornithine decarboxylase (ODC; EC 4. 1.1.17) enzymatic activity or any activity inhibitory to the ODC assay. There are no intact or degraded ODC sequences in the Arabidopsis genome and no ODC expressed sequence tags. Arabidopsis is therefore the only plant and one of only two eukaryotic organisms (the other being the protozoan Trypanosoma cruzi) that have been demonstrated to lack ODC activity. As ODC is a key enzyme in polyamine biosynthesis, Arabidopsis is reliant on the additional arginine decarboxylase (ADC; EC 4.1.1.9) pathway, found only in plants and some bacteria, to synthesize putrescine. By using site-directed mutants of the Arabidopsis ADC1 and heterologous expression in yeast, we show that ADC, like ODC, is a head-to-tail homodimer with two active sites acting in trans across the interface of the dimer. Amino acids K136 and C524 of Arabidopsis ADC1 are essential for activity and participate in separate active sites. Maximal activity of Arabidopsis ADC1 in yeast requires the presence of general protease genes, and it is likely that dimer formation precedes proteolytic processing of the ADC pre-protein monomer.  相似文献   

13.
Withanla sominifera (Indian ginseng) was transformed by Agrobacterlum rhizogenes.Explants from seedling roots,stems,hypocotyls,cotyledonary nodal segments,cotyledons and young leaves were inoculated with A.rhizogenes strain R1601.Hairy (transformed) roots were induced from cotyledons and leaf explants.The transgenic status of hairy roots was confirmed by polymerase chain reaction using nptll and roIB specific primers and,subsequently,by Southern analysis for the presence of nptll and roIB genes in the genomes of transformed roots.Four clones of hairy roots were established;these differed in their morphology.The doubling time of faster growing cultures was 8-14 d with a fivefold increase in biomass after 28 d compared with cultured,non-transformed seedling roots.MS-based liquid medium was superior for the growth of transformed roots compared with other culture media evaluated (SH,LS and N6),with MS-based medium supplemented with 40 g/L sucrose being optimal for biomass production.Cultured hairy roots synthesized withanolide A,a steroidal lactone of medicinal and therapeutic value.The concentration of withanolide A in transformed roots (157.4 μg/g dry weight) was 2.7-fold more than in non-transformed cultured roots (57.9 μg/g dry weight).  相似文献   

14.
为了探讨利用发根农杆菌遗传转化所产生的毛状根来创新香石竹种质的可能性,本文采用叶盘法,建立了发根农杆菌Agrobacterium rhizogenes对香石竹Dianthus caryophyllus L.叶片外植体的遗传转化及其植株再生体系。结果表明,发根农杆菌ATCC15834感染香石竹幼嫩叶片外植体12 d后,从叶片外植体切口中脉处产生白色毛状根,21 d后约90%的叶片外植体产生毛状根。所获得的无菌毛状根能在无外源激素的MS固体和液体培养基中快速自主生长。PCR扩增和硅胶薄层层析结果显示发根农杆菌Ri质粒的rol B和rol C基因以及冠瘿碱合成酶基因已在香石竹毛状根基因组中整合并得到表达。将毛状根置于MS+6-BA 1.0-3.0 mg/L+NAA 0.1-0.2 mg/L中培养15 d后产生淡黄绿色的疏松愈伤组织。愈伤组织不定芽分化的最适培养基为MS+6-BA 2.0 mg/L+NAA 0.02 mg/L,培养6周后不定芽分化率为100%;平均每个愈伤组织产生30-40个不定芽;将不定芽转至1/2 MS或1/2 MS+0.5 mg/L NAA的培养基中10 d后产生不定根,发育成再生植株。再生植株移植于栽培基质中20 d后,成活率达95%以上。  相似文献   

15.
The short-term polyamine response to inoculation, with tobacco mosaic virus (TMV), of TMV-inoculated NN (hypersensitive) and nn (susceptible) plants of Nicotiana tabacum (L.) cv. Samsun was investigated. Free and conjugated polyamine concentrations, putrescine biosynthesis, evaluated through arginine decarboxylase (ADC) and ornithine decarboxylase (ODC) activities, and putrescine oxidation, via diamine oxidase (DAO) activity, were analysed during the first 24 h from inoculation. Results were compared with those of mock-inoculated control plants. In NN TMV-inoculated plants undergoing the hypersensitive response (HR), free putrescine and spermidine concentrations had increased after 5 h compared with controls; polyamine conjugates also tended to increase compared with controls. In both virus- and mock-inoculated plants, ADC and ODC activities generally increased whereas DAO activity, which was present in controls, was detectable only in traces in inoculated tissues.
In TMV-infected susceptible plants, free putrescine and spermidine concentrations were lower at 5 h relative to controls, as were polyamine conjugates. No differences were revealed in ADC and ODC activities whereas DAO activity was not detectable. These results further support the hypothesis that polyamines are involved in the response of tobacco to TMV and that, only a few hours after inoculation, the response of hypersensitive plants is distinct from that of susceptible ones.  相似文献   

16.
利用根尖压片法对可再生型发根农杆菌A4转化系毛根和不可再生型转化系毛根进行了染色体计数,并利用聚丙稀酰胺凝胶电泳法对其进行过氧化物酶(POD)、细胞色素氧化酶(COD)、酯酶(EST)的同工酶酶谱分析。结果表明:(1)染色体丢失现象在转化的毛根根尖中是普遍存在的,不可再生转化系与可再生转化系相比,染色体丢失比例显著增多;(2)不可再生转化系的POD和COD同工酶酶谱变化较可再生转化系的变化大,且EST含量明显低于可再生转化系。  相似文献   

17.
Thin cell layers excised from tobacco ( Nicotiana tabacum L. cv. Samsun) stem internodes, with an appropriate exogenous hormonal balance, were able to form a greater number of roots, and in a larger percentage of the explants (93%) than when they were excised from pedicels (40%). The developmental sequence of root formation and explant growth were followed by histological analysis. Free and bound [trichloroacetic acid (TCA)-soluble and -insoluble] putrescine and spermidine increased in the explants, particularly when root meristemoids appeared. These meristemoids originated in the superficial (day 6 in culture) or deep (days 10–11) layers and inside the newly formed callus (day 25). At those times, TCA-soluble and, to a lesser extent, TCA-insoluble bound putrescine predominated over the other polyamines. Spermine was always present in trace amounts. Polyamines decreased again when root and callus formation was completed (day 30). The involvement of these three classes of polyamines (free, TCA-soluble and -insoluble) in morphogenic processes is discussed.  相似文献   

18.
为了探讨利用南美蟛蜞菊毛状根来改良其观赏性状和生产次生物质,研究了南美蟛蜞菊Wedelia trilobata(L.)A.S.Hitche毛状根的诱导及其离体培养过程中培养基N源、碳源、磷和钙的消耗变化。结果表明,发根农杆菌Agrobacterium rhizogenes ATCC15834感染南美蟛蜞菊幼嫩叶片外植体7d后从其叶片切口中脉处产生毛状根。毛状根能在无外源激素的培养基上自主生长。PCR扩增结果显示发根农杆菌Ri质粒的rol B和rol C基因已在南美蟛蜞菊毛状根基因组中插入、整合并得到表达。毛状根液体培养0~7d内处于生长迟滞期、7~21d为快速生长期、21d后进入生长平台期。在毛状根液体培养过程中培养基的蔗糖、硝态氮、PO43?、Ca2+被逐渐吸收和消耗,培养至7d时,蔗糖被消耗近50%;硝态氮含量只剩下起始硝态氮含量的5.8%;至35d时,蔗糖和硝态氮含量分别约为其起始浓度的3.39%和1.82%。与Ca2+浓度变化不同的是,培养基的无机磷被快速消耗,培养至7d时其浓度约为其起始浓度的1.76%;但培养至35d时培养基中仍残存有占起始浓度约61.3%的Ca2+。该结果为今后利用南美蟛蜞菊毛状根来改良其观赏性状和设计合适的培养基来规模培养生产其次生物质提供了可能性。  相似文献   

19.
The addition of exogenous nicotinic acid, nicotinamide or nicotine was studied with reference to their effects on growth and alkaloid production by hairy root cultures of Nicotiana rustica. Nicotinic acid and nicotinamide were toxic (50% phytostatic dose being 2.4 and 9 mM respectively) while nicotine was not toxic below 10 mM. Nicotinic acid (up to 5 mM) was found to be phytostatic rather than phytotoxic. Roots exposed to increasing nicotinic acid or nicotinamide levels had altered alkaloid accumulation patterns relative to the controls. The principal effects were to increase the intracellular and extracellular levels of anatabine and nicotine, with a markedly greater proportion of anatabine being produced. The use of nicotinic acid as a selection agent for the recovery of higher alkaloid-producing lines is identified and discussed.  相似文献   

20.
Urano K  Hobo T  Shinozaki K 《FEBS letters》2005,579(6):1557-1564
Arginine decarboxylase (ADC) is a rate-limiting enzyme that catalyzes the first step of polyamine (PA) biosynthesis in Arabidopsis thaliana. We generated a double mutant deficient in Arabidopsis two ADC genes (ADC1-/- ADC2-/-) and examined their roles in seed development. None of the F2 seedlings from crosses of adc1-1 and adc2-2 had the ADC1-/- ADC2-/- genotype. In addition, some abnormal seeds were observed among the ADC1+/- ADC2-/- and ADC1-/- ADC2+/- siliques. Viable offspring with the ADC1-/- ADC2-/- genotype could not be obtained from the ADC1+/- ADC2-/- and ADC1-/- ADC2+/- plants. These results indicate that AtADC genes are required for production of polyamines that are essential for normal seed development in Arabidopsis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号