首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Iranian seedless barberry is a very recalcitrant species in in vitro culture which does not show appropriate growth on standard culture media. Response surface methodology was employed to evaluate the effects of changing macronutrients concentrations on establishment and proliferation phases. KNO3 and NH4NO3 macronutrients at 0.3 to 1.5?×?MS medium levels and CaCl2, MgSO4 and KH2PO4 macronutrients in a range of 0.5 to 1.5?×?MS medium concentrations were tested in a response surface design with 30 treatments. Many significant interactions were found among the macronutrients. High concentrations of KNO3, NH4NO3 and CaCl2 improved the growth rate in the establishment phase. The growth rate in media containing high KNO3 and low CaCl2 was high. Reduced concentrations of CaCl2 and KNO3 decreased hyperhydricity. The greatest hyperhydricity was induced when both NH4NO3 and CaCl2 were used at 1.5?×?MS level. The number of hooked leaves decreased as KH2PO4 increased and MgSO4 reduced. In the proliferation phase, there were many significant interactions among the macronutrients. Increased concentration of NH4NO3 and reduced concentration of KH2PO4 improved the growth rate. Proliferation rate increased in media containing high concentration of KNO3 and low to moderate concentrations of NH4NO3. The greatest production of new tissues and organs was seen in media with high KNO3 and moderate to high CaCl2. High concentration of NH4NO3 and low concentration of KH2PO4 also increased production of new tissues and organs. No shoot apical meristem was seen when CaCl2 level was high and KNO3 level was low. Formation of shoot apical meristem required high KH2PO4 concentration and low CaCl2 concentration. Finally, low concentration of KNO3 and low to moderate concentrations of NH4NO3 increased phenol exudation.

  相似文献   

2.
Somatic embryogenesis was obtained in cultures of leaves from young seedlings of Quercus suber L. A two-stage process, in which benzyladenine and naphthaleneacetic acid were added first at high and then at low concentrations, was required to initiate the process. Somatic embryos arose when the explants were subsequently placed on medium lacking plant growth regulators. The embryogenic lines remained productive, by means of secondary embryogenesis, on medium without growth regulators. However, this repetitive induction was influenced by the macronutrient composition of the culture medium. Both low total nitrogen content and high reduced nitrogen concentration decreased the percentage of somatic embryos that showed secondary embryogenesis. Our results suggest that alternate culture on medium that increases embryo proliferation and a low salt medium prohibiting embryo formation will partially synchronize embryo development. Chilling slightly reduced secondary embryogenesis but gave a modest increase in germination. Maturation under light followed by storage at 4 °C for at least 30 days gave the best results in switching embryos from an embryogenic pathway to a germinative one. Under these conditions 15% of embryos showed coordinated root and shoot growth and 35% formed either shoots or mostly roots. These percentages were higher than those of embryos matured in darkness. This result indicates that a specific treatment is required after maturation and before chilling to activate the switch from secondary embryo formation to germination.Abbreviations BA benzyladenine - NAA naphthaleneacetic acid - 2,4-D 2,4-dichlorophenoxyacetic acid - BA indolebutyric acid - MS Murashige & Skoog (1962) medium - SH Schenk & Hildebrandt (1972) medium - G Gamborg (1966, PRL-4-C) medium (macronutrients in mg l–1: NaH2PO4·H2O, 90; Na2HPO4, 30; KCl, 300; (NH4)2SO4, 200; MgSO4·7H2O, 250; KNO3, 1000, CaCl2·2H2O, 150) - PGR plant growth regulator  相似文献   

3.

Mineral nutrient medium requirements for propagation of in vitro shoots of apple (Malus domestica Borkh) ‘Golden Delicious’, ‘Maksat’, and ‘Voskhod’ were studied using response surface methodology (RSM). The mineral nutritional factors evaluated were based on Murashige and Skoog (MS) mineral nutrients (NH4NO3, KNO3, CaCl2, KH2PO4, MgSO4, and minor nutrients), with concentrations ranging from 0.5 to 3.0× the MS concentrations. Nine plant growth qualities were evaluated. The most significant factors were NH4NO3 at 0.5 to 1.0× MS, and minor nutrients at 2.0× MS. Most of the other factors were optimal at 0.5×. The quality rating was highest when minor nutrients were 2.0× MS, and most other nutrients were standard concentrations or lower. Increased KH2PO4 and minor nutrients were the most significant for improved multiplication, and higher KNO3 for shoot length. Optimized media were developed for each cultivar based on these models. The cultivars were grown on the three individual optimized media, a general medium based on the three optimizations, and MS. The optimized medium for each cultivar was significantly better for shoot quality and shoot length of each cultivar than MS, but the generalized medium of minors at 2.0× and NH4NO3, CaCl2, and MgSO4 at 0.5× MS, was significantly better for two of the three cultivars and not significantly different for the third. The next step to develop a final optimized medium will require the evaluation of the minor nutrients, determination of optimal concentrations of each, and screening a wide range of Malus germplasm on the finalized medium.

  相似文献   

4.
Culture conditions were optimized for somatic embryogenesis ofPanax ginseng. The highest frequency of embryo formation was obtained when tissues were excised from the middle region of the cotyledon segments of zygotic embryos. Only treatment with light could stimulate the formation of single-type somatic embryos, whereas multiple-type somatic embryos and calli were observed under dark conditions. The highest production of somatic embryos was found with an NH4 +:NO3 ratio of 21:39. Among the tested media (MS, B5, and SH), maximum formation of somatic embryos was obtained when cotyledon expiants were cultured on an 1% agar MS medium supplemented with 5% sucrose. Regenerated ginseng plantlets were transferred to an autoclaved soil mixture in the greenhouse. These transformants showed no detectable variations in their morphology or growth characteristics compared with the donor plant.  相似文献   

5.
Defining optimal mineral-salt concentrations for in vitro plant development is challenging, due to the many chemical interactions in growth media and genotype variability among plants. Statistical approaches that are easier to interpret are needed to make optimization processes practical. Response Surface Methodology (RSM) and the Chi-Squared Automatic Interaction Detection (CHAID) data mining algorithm were used to analyze the growth of shoots in a hazelnut tissue-culture medium optimization experiment. Driver and Kuniyuki Walnut medium (DKW) salts (NH4NO3, Ca(NO3)2·4H2O, CaCl2·2H2O, MgSO4·7H2O, KH2PO4 and K2SO4) were varied from 0.5× to 3× DKW concentrations with 42 combinations in a IV-optimal design. Shoot quality, shoot length, multiplication and callus formation were evaluated and analyzed using the two methods. Both analyses indicated that NH4NO3 was a predominant nutrient factor. RSM projected that low NH4NO3 and high KH2PO4 concentrations were significant for quality, shoot length, multiplication and callus formation in some of the hazelnut genotypes. CHAID analysis indicated that NH4NO3 at ≤1.701× DKW and KH2PO4 at >2.012× DKW were the most critical factors for shoot quality. NH4NO3 at ≤0.5× DKW and Ca(NO3)2 at ≤1.725× DKW were essential for good multiplication. RSM results were genotype dependent while CHAID included genotype as a factor in the analysis, allowing development of a common medium rather than several genotype specific media. Overall, CHAID results were more specific and easier to interpret than RSM graphs. The optimal growth medium for Corylus avellana L. cultivars should include: 0.5× NH4NO3, 3× KH2PO4, 1.5× Ca(NO3)2.  相似文献   

6.
The effectiveness of nitrogen sources in Feijoa somatic embryogenesis   总被引:4,自引:0,他引:4  
Immature and mature zygotic embryos excised from Feijoa fruits were employed as explants and the effects of NH4 + and NO3 ionic concentration in basal LPm culture medium supplemented with 2,4-D (10 M) were evaluated. Moreover, the addition of 4 mM of Asn, Gln, and Arg, and levels of Gln (0 to 8 mM) were tested. The original NH4 + and NO3 concentration present in the LPm culture medium supplemented with Gln (4 mM) resulted in the highest somatic embryo number from immature zygotic embryos. For mature zygotic embryos, the addition of Asn, Gln or Arg to the basal LPm culture medium resulted in improved somatic embryogenesis induction. Ten weeks in culture allowed the highest somatic embryo number when mature zygotic embryos were used as explant. Half-strength MS culture medium supplemented with BAP (0.5 M) enhanced the conversion of somatic embryos to plantlets.  相似文献   

7.
The influence of three nitrogen salts: NH4NO3, KNO3 and NH4Cl on wheat in vitro cultures was investigated. Both NO 3 and NH 4 + ions were indispensable for proliferation of embryogenic calli and development of wheat somatic embryos. It is possible to obtain wheat somatic embryos when the medium is enriched with NH4NO3 only as a source of inorganic nitrogen. The results of the statistical analysis showed that the level of NH4NO3 and KNO3 in the medium had a great influence on the efficiency of somatic embryogenesis. We observed tendency that calli on media containing 50 mM NH4NO3 and 0 to 20 mM KNO3 turned out to be more embryogenic than on control MS medium. High concentrations of KNO3- 100 mM inhibited somatic embryogenesis, while 100 mM NH4NO3 did not. The level of total N did not have significant influence on wheat somatic embryogenesis. Ratio NO 3 :NH 4 + also turned out to be not substantial. We observed that mutual connection of concentration levels between NH4NO3 and KNO3 and between NH4Cl and KNO3 was more important. The efficiency of somatic embriogenesis obtained in the experiment with NH4Cl and KNO3 was significantly lower than in experiment with NH4NO3 and KNO3.  相似文献   

8.
Withania somnifera is an important medicinal plant that contains withanolides as bioactive compounds. We have investigated the effects of macroelements and nitrogen source in hairy roots of W. somnifera with the aim of optimizing the production of biomass and withanolide A content. The effects of the macroelements NH4NO3, KNO3, CaCl2, MgSO4 and KH2PO4 at concentrations of 0, 0.5, 1.0, 1.5 and 2.0× strengths and of nitrogen source [NH4 +/NO3 ? (0.00/18.80, 7.19/18.80, 14.38/18.80, 21.57/18.80, 28.75/18.80, 14.38/0.00, 14.38/9.40, 14.38/18.80, 14.38/28.20 and 14.38/37.60 mM)] in Murashige and Skoog medium were evaluated for biomass and withanolide A production. The highest accumulation of biomass (139.42 g l?1 FW and 13.11 g l?1 DW) was recorded in the medium with 2.0× concentration of KH2PO4, and the highest production of withanolide A was recorded with 2.0× KNO3 (15.27 mg g?1 DW). The NH4 +/NO3 ? ratio also influenced root growth and withanolide A production, with both parameters being larger when the NO3 ? concentration was higher than that of NH4 +. Maximum biomass growth (148.17 g l?1 FW and 14.79 g l?1 DW) was achieved at NH4 +/NO3 ? ratio of 14.38/37.60 mM, while withanolide A production was greatest (14.68 mg g?1 DW) when the NH4 +/NO3 ? ratio was 0.00/18.80 mM. The results are useful for the large scale cultivation of Withania hairy root culture for the production of withanolide A.  相似文献   

9.
Summary Mature zygotic embryos of eight (open-pollinated) families of loblolly pine (Pinus taeda L.) were cultured on eight different basal salt formulations, each supplemented with 36.2 μM 2,4-dichlorophenoxyacetic acid, 17.8 μM 6-benzyladenine, 18.6 μM kinetin, 500 mg l−1 casein hydrolysate, and 500 mg l−1 l-glutamine for 9 wk; embryogenic tissue was formed on cotyledons, hypocotyls, and radieles of mature zygotic embryos. Callus was subcultured on the callus proliferation medium, the same as the induction medium but with one-fifth concentration of auxin and cytokinin for 9 wk. On this medium a white to translucent, glossy, mucilaginous embryogenic callus containing embryogenic suspensor masses (ESMs) was obtained. The highest frequency of explants forming embryogenic tissue, 17%, occurred on a modified Murashige and Skoog salts basal medium containing the concentration of KNO3, Ca(NO3)2·4H2O, NH4NO3, KCl, ZnSO4·7H2O, and MnSO4·H2O, 720, 1900, 400, 250, 25.8, and 25.35 mg l−1, respectively. Embryogenic suspension cultures were established by culturing embryogenic callus in liquid callus proliferation medium. Liquid cultures containing ESMs were transferred to medium containing abscisic acid, polyethylene glycols, and activated charcoal for stimulating the production of cotyledonary somatic embryos. Mature somatic embryos germinated for 4–12 wk on medium containing indole-butyric acid, gibberellic acid, 6-benzyladenine, activated charcoal, and reduced sucrose concentration (15 g l−1). Two hundred and ninety-one regenerated plantlets were transferred to a perlite:peatmoss:vermiculite (1∶1∶1) mixture, then the plants were transplanted to soil in the earth, and 73 plantlets survived in the field.  相似文献   

10.
The present work deals with optimization of adventitious shoot culture of Bacopa monnieri for the production of biomass and bacoside A and has investigated the effects of macro elements (NH4NO3, KNO3, CaCl2, MgSO4 and KH2PO4) and nitrogen source [NH4 +/NO3 ] of Murashige and Skoog (Physiol Plant 15:473–497, 1962) medium (MS) on accumulation of biomass and bacoside A content. Optimum number of adventitious shoots (99.33 shoots explant−1), fresh weight (1.841 g) and dry weight (0.150 g) were obtained in the medium with 2.0× strength of NH4NO3. The highest production of bacoside A content was also recorded in the medium of 2.0× NH4NO3, which produced 17.935 mg g−1 DW. The number of adventitious shoot biomass and bacoside A content were optimum when the NO3 concentration was higher than that of NH4 +. Maximum number of shoots (70.00 shoots explant−1), biomass (fresh weight 1.137 g and dry weight 0.080 g) and also bacoside A content (27.106 mg g−1 DW) were obtained at NH4 +/NO3 ratio of 14.38/37.60 mM. Overall, MS medium supplemented with 2.0× NH4NO3 is recommended for most efficient bacoside A production.  相似文献   

11.
Cotyledon expiants ofPanax ginseng were cultured on modified Murashige and Skoog medium with various concentrations of NH4C1 and KNO,. Morphogenesis such as somatic embryo, embryogenic callus, or adventitious root formation from cotyledon expiants differently occurred according to the concentrations of NH/ and NO3. Somatic embryos were actively formed in a moderate concentration of NH4 + (20 mM) in combination of NO3, but in a high concentration of NH4 + (60 mM), only embryogenie calli were formed. In little or no NH4 +, adventitious roots were formed at a high rate. The influence of NO3 on those morphogenesis was slight but combination of NO3 with NH4 + was indispensable since the cotyledon expiants were necrotized on medium containing only NH4 + as a nitrogen source. Histological observation revealed that somatic embryo and embryogénie callus formation occurred from the same origin (cotyledon epidermis), whereas, adventitious roots were originated from the cells near vascular strands.  相似文献   

12.
Mineral nutrition in the media used for growth of in vitro plants is often difficult to optimize due to complex chemical interactions of required nutrients. The response of plant tissue to standard growth media varies widely due to the genetic diversity of the plant species studied. This study was designed as the initial step in determining the optimal mineral nutrient requirements for micropropagation of shoot tips from a collection of genetically diverse pear germplasm. Five mineral nutrient factors were defined from Murashige and Skoog salts: NH4NO3, KNO3, mesos (CaCl2·2H20–KH2PO4–MgSO4), micronutrients (B, Cu, Co, I, Mn, Mo, and Zn), and Fe-EDTA. Each factor was varied over a range of concentrations. Treatment combinations were selected using response surface methods. Five pears in three species (Pyrus communis ‘Horner 51,’ ‘Old Home?×?Farmingdale 87,’ ‘Winter Nelis,’ Pyrus dimorphophylla, and Pyrus ussuriensis ‘Hang Pa Li’) were grown on each treatment combination, responses were measured, and each response was analyzed by analysis of variance. The analyses resulted in the identification of the following factors with the single largest effects on plant response: shoot quality (mesos), leaf spotting/necrosis (mesos), leaf size (mesos), leaf color (mesos, NH4NO3, and KNO3), shoot number (NH4NO3 and Fe), nodes (NH4NO3 and KNO3), and shoot length (mesos and Fe). Factors with the largest effects (mesos and Fe) were similar among the genotypes. This approach was very successful for defining the appropriate types and concentrations of mineral nutrients for micropropagation of diverse pear genotypes.  相似文献   

13.
We investigated the effects on ginseng adventitious root growth and ginsenoside production when macro-element concentrations and nitrogen source were manipulated in the culture media. Biomass growth was greatest in the medium supplemented with 0.5-strength NH4PO3, whereas ginsenoside accumulation was highest (9.90 mg g-1 DW) in the absence of NH4PO3. At levels of 1.0-strength KNO3, root growth was maximum, but a 2.0 strength of KNO3 led to the greatest ginsenoside content (9.85 mg g-l). High concentrations of MgSO4 were most favorable for both root growth and ginsenoside accumulation (up to 8.89 mg g-1 DW). Root growth and ginsenoside content also increased in proportion to the concentration of CaCI2 in the medium, with the greatest accumulation of ginsenoside (8.91 mg g-1 DW) occurring at a 2.0 strength. The NH4/NO3 -- ratio also influenced adventitious root growth and ginsenoside production; both parameters were greater when the NO3 - concentration was higher than that of NH4 +. Maximum root growth was achieved at an NH4 +/NO3 - ratio of 7.19/18.50, while ginsenoside production was greatest (83.37 mg L-1) when NO3 - was used as the sole N source.  相似文献   

14.
Levels of wheat germ agglutinin have been determined by radioimmunoassay in tissues of immature wheat embryos cultured under different conditions in order to determine the suitability of the lectin as a marker for somatic embryogenesis. Embryos cultured on media favouring continued embryo development accumulated lectin in a similar manner to zygotic embryos in planta unless precocious germination occurred. Embryos cultured on media containing 2,4-D produced callus, and some of this developed somatic embryos. Both embryogenic and non-embryogenic callus contained WGA, that in non-embryogenic callus possibly arising from developmentally arrested root primordia.Abbreviations ABA abscisic acid - dpa days post anthesis - PBS phosphate buffered saline, (10 mM KH2PO4 K2HPO4, 145 mM NaCl, pH 7.4) - RIA radioimmunoassay - WGA wheat germ agglutinin - 2,4-D 2,4-dichlorophenoxyacetic acid  相似文献   

15.
Immature zygotic embryos of ginseng produced somatic embryos on MS medium without growth regulators. However, in the culture of mature zygotic embryos, excision of the embryo was required for somatic embryo induction. Somatic embryos formed only on excised cotyledons without an embryo axis or on excised embryos without the plumule and radicle of the axis. This observation suggests that the axis tip of the embryo might suppress somatic embryo production although the cotyledon tissues have predetermined embryogenic competency. To clarify the role of the embryo axis on somatic embryo formation, excised plumules or radicles were placed in direct contact with the basal cut-ends of cotyledons. The adhesion of plumules or radicles highly suppressed somatic embryo formation from cotyledon explants. When an agar block containing exudate from excised plumules or radicles was placed in contact with the cut end of the cotyledon, a similar inhibition was observed. These results suggest that embryogenic competence is suppressed by endogenous inhibitors present in the axis tip of the zygotic embryo.  相似文献   

16.
Pear accessions and species show a broad response to tissue culture media due to the wide genetic diversity that exists in the available pear germplasm. An initial study of mineral nutrition using a systematic response surface approach with five Murashige and Skoog medium mineral stock solutions indicated that the mesos factor (CaCl2, MgSO4, and KH2PO4) affected most plant responses and genotypes, suggesting that additional studies were needed to further optimize these three mesos components for a wide range of genotypes. Short stature, leaf spots, edge necrosis, and red or yellow coloration were the main symptoms of poor nutrition in shoot cultures of 10 diverse pear genotypes from six species. A surface response experimental design was used to model the optimal factor and factor levels for responses that included overall quality, leaf character, shoot multiplication, and shoot height. The growth morphology, shoot length, and multiplication of these pear shoots could be manipulated by adjusting the mesos components. The highest quality for the majority of genotypes, including five P. communis cultivars, P. koehnei, P. dimorphophylla, and P. pyrifolia ‘Sion Szu Mi’, required higher concentrations (>1.2× to 2.5×) of all the components than are present in Murashige and Skoog medium. ‘Capital’ (P. calleryana) required high CaCl2 and MgSO4 with low KH2PO4; for ‘Hang Pa Li’ (P. ussuriensis), low CaCl2 and moderate to low MgSO4 and KH2PO4 produced high-quality shoots. Suitable combinations of the meso nutrients produced both optimum shoot number and shoot length in addition to general good plant quality.  相似文献   

17.
Somatic embryos and embryogenic callus were initiated from immature zygotic embryos of ginseng (Panax ginseng C.A. Meyer). These somatic embryos were multiplied by adventitious (secondary and tertiary) embryogenesis and their growth and development were dependent on growth hormones in the medium. Auxins, 2,4-d, NAA, and IAA at 1.0 mg l-1 were effective in inducing secondary and tertiary somatic embryos, which proliferated directly from the apical or cotyledonary portions of the primary somatic embryos. Single somatic embryos or clusters or embryos developed from the explanted primary embryos. Cytokinin (Kn, BA) inhibited adventitious embryogenesis. Secondary somatic embryos developed to maturation and later regenerated into plantlets in two stage process; firstly elongation of the shoot axes on MS +1.0 mg l-1 Kn, secondly formation of root on 1.0 mg l-1 Kn+1.0 mg-1 GA3 medium.Abbreviations 2,4-d 2,4-dichlorophenoxyacetic acid - NAA naphthaleneacetic acid - IAA in-doleacetic acid - Kn kinetin - BA benzylaminopurine - PSE primary somatic embryo - SSE secondary somatic embryo - TSE tertiary somatic embryo  相似文献   

18.
Macronutrients influence the cell biomass yield and anthocyanin production in plant cell suspension cultures. However, different species respond differently for different nutrient concentrations. In this study, we tested the effect of different concentrations of macronutrients on the cell cultures of Melastoma malabathricum L. The results showed that the addition of NH4NO3 did not show any increment in the cell biomass but it enhanced the anthocyanin accumulation. Results indicated that CaCl2.2H2O and MgSO4.7H2O played a more important role in anthocyanin accumulation than the cell growth of M. malabathricum. However, the presence or absence of KNO3 and KH2PO4 did not show any effect on either the cell biomass or the anthocyanin production.  相似文献   

19.
A response surface methodology (RSM) experimental design was applied for improving micropropagation of a wild apricot, Prunus armeniaca Lam., from the mountains of Kazakhstan. In an initial study, woody plant medium (WPM) mineral nutrients [calcium nitrate, ammonium nitrate, mesos (calcium chloride, potassium phosphate and magnesium sulfate) potassium sulfate and minor nutrients] were tested in a response surface methodology (RSM) experiment. Shoot quality was the best when nitrogen and mesos (CaCl2, MgSO4, K2SO4, KH2PO4) compounds were altered. In this study an expanded mesos optimization experiment was run. Data taken included a subjective quality rating, shoot length, shoot number, leaf color and size, callus and physiological disorders. Data were analyzed by Classification and Regression Tree Analysis (CART), a data mining technique that provides specific cutoff values for data and easy to interpret data trees. The CART analysis indicated that the best quality would be with ≤2.4× WPM levels of KH2PO4 and ≤0.75× MgSO4. Shoot length was affected by K2SO4, but most shoots were of good size at any concentration. Shoot multiplication was affected by KH2PO4, but there were >5 shoots at any concentration. Leaf color was best with ≤2.41× KH2PO4 and ≤1.22× K2SO4. Based on the CART analysis, a recommendation for improved mesos compounds was developed. Each of the individual trees was analyzed and the cutoff points determined so that all the growth characteristics could be considered in the final concentrations chosen. Using the combined results from the CART analysis, the suggested medium would include WPM with CaCl2 2.7×, MgSO4 2.7×, K2SO4 0.8×, KH2PO4 0.75×.  相似文献   

20.
Cotyledon explants of Korean ginseng (Panax ginseng C. A. Meyer) produced somatic embryos directly on growth regulator-free medium. Somatic embryos developed as either multiple or single-state forms, depending on the degree of maturity of the cotyledons. Cotyledon explants from midmature zygotic embryos formed multiple embryos, while cotyledons from fully mature zygotic embryos formed single embryos. Somatic single embryos regenerated into normal plantlets with both roots and shoots, while multiple embryos did not produce roots but regenerated only into multiple shoots. In full-strength MS basal medium, the root growth of plantlets derived from single embryos was weak compared to that of shoots. Deletion of ammonium nitrate from the MS medium promoted the root growth of the plantlets. The ginseng plants with well-developed shoots and roots regenerated from single embryos were successfully acclimatized in a greenhouse when they were planted in soil. Received: 19 July 1997 / Revision received: 6 October 1997 / Accepted: 3 October 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号