共查询到20条相似文献,搜索用时 15 毫秒
1.
The biosynthetic pathway to abscisic acid (ABA) from isopentenyl diphosphate in the fungus, Botrytis cinerea, was investigated. Labeling experiments with (18)O2 and H2(18)O indicated that all oxygen atoms at C-1, -1, -1' and -4' of ABA were derived from molecular oxygen, and not from water. This finding was inconsistent not only with the known carotenoid pathway via oxidative cleavage of carotenoids, but also with the classical direct pathway via cyclization of farnesyl diphosphate. The fungus produced new C15-compounds, 2E,4E-alpha-ionylideneethane and 2Z,4E-alpha-ionylideneethane, along with 2E,4E,6E-allofarnesene and 2Z,4E,6E-allofarnesene, but did not apparently produce carotenoids except for a trace of phytoene. The C15-compounds labeled with 13C were converted to ABA by the fungus, and the incorporation ratio of 2Z,4E-alpha-ionylideneethane was higher than that of 2E,4E-alpha-ionylideneethane. From these results, it was concluded that farnesyl diphosphate was reduced at C-1, desaturated at C-4, and isomerized at C-2 to form 2Z,4E,6E-allofarnesene before being cyclized to 2Z,4E-alpha-ionylideneethane; the ionylideneethane was then oxidized to ABA with molecular oxygen. This direct pathway via ionylideneethane means that the biosynthetic pathway to fungal ABA, not only before but also after isopentenyl diphosphate, differs from that to ABA in plants, since plant ABA is biosynthesized using the non-mevalonate and carotenoid pathways. 相似文献
2.
C6-aldehydes, such as (Z)-3-hexenal, (E)-2-hexenal, and n-hexanal, are volatile compounds formed by hydroperoxide lyase (HPL) and found in most terrestrial plants. They are fungicidal and bactericidal compounds, and are also signaling compounds to induce defense responses in plants. Transgenic plants having overexpressed or suppressed HPL activity (SH or ASH, respectively) showed lower or higher susceptibility against a necrotrophic fungal pathogen, Botrytis cinerea. In this study, we examined whether the modulated susceptibility was accountable to the direct fungicidal activity or to the signaling potency of C6-aldehydes. When wild-type Arabidopsis leaves were inoculated with B. cinerea, HPL expression was upregulated, and concomitantly, the amounts of C6-aldehydes increased. Higher amounts of C6-aldehydes found in inoculated SH plants inhibited growth of B. cinerea in vitro, while lower amounts found in ASH plants caused no inhibitory effect on the fungi. Thus, it was suggested that direct fungicidal activity of C6-aldehydes accounted for the modulated susceptibility. With SH plants higher amounts of camalexin could be found, but with the ASH plants no difference from wild-type plants could be found. Surplus amounts of C6-aldehydes could induce formation of camalexin as signaling compounds; however, this was not the case with wild-type and ASH plants. Accordingly, it could be assumed that direct fungicidal activity of C6-aldehydes were prominently responsible to the defense against B. cinerea but their signaling roles could be little responsible if any. 相似文献
3.
4.
Thirty-six phytohormone-affected mutants of Arabidopsis thaliana (L.) Heynh. and their parental ecotypes were tested for resistance/susceptibility to Botrytis cinerea Pers.; Fr. and ability to develop Trichoderma-mediated induced systemic resistance (ISR). Ecotype Colombia-0 (Col-0) was relatively resistant to B. cinerea, and Trichoderma harzianum Rifai T39 application at sites spatially separated (roots) from the B. cinerea inoculation (leaves) resulted in reduction of grey mold symptoms. Ecotypes Wassilewskija-4, Nossen-0 and Landsberg-0 had
low levels of basal resistance to B. cinerea and were unable to express ISR. Mutants derived from ISR-non-inducible ecotypes displayed ISR-non-inducible phenotypes, whereas
the ISR inducibility of mutants derived from the ISR-inducible genotype Col-0 varied according to the type of mutant. Thus,
salicylic acid (SA)-impaired mutants derived from Col-0 were ISR-inducible, while ethylene/jasmonic acid (ethylene/JA)-impaired
mutants of the same origin were ISR-non-inducible. SA-impaired mutants retained basal level of resistance to B. cinerea, while most ethylene/JA-impaired mutants were highly susceptible. Abscisic acid- and gibberellin-impaired mutants were highly
susceptible to B. cinerea and showed ISR-non-inducible phenotypes irrespective of their lines of origin. Auxin-resistant mutants derived from Col-0
were ISR-inducible; mutant originating from Landsberg-0 and mutants which were resistant to both auxin and ethylene were ISR-non-inducible.
Most of the arabidopsis genotypes which were unable to express Trichoderma-mediated ISR against B. cinerea exhibited enhanced susceptibility to this pathogen. T. harzianum treatments enhanced the growth of arabidopsis plants regardless of genotype or ISR inducibility. 相似文献
5.
Vicedo B de la O Leyva M Flors V Finiti I Del Amo G Walters D Real MD García-Agustín P González-Bosch C 《Archives of microbiology》2006,184(5):316-326
The in vitro and in vivo antifungal activity of adipic acid monoethyl ester (AAME) on the necrotrophic pathogen Botrytis cinerea has been studied. This chemical effectively controlled this important phytopathogen, inhibited spore germination and mycelium development at non-phytotoxic concentrations. The effectiveness of AAME treatment is concentration-dependent and influenced by pH. Spore germination in the presence of AAME is stopped at a very early stage, preventing germ tube development. In addition, cytological changes such as retraction of the conidial cytoplasm in the fungus are observed. AAME was also found to act on membrane integrity, affecting permeability without exhibiting lytic activity, as described previously for other antifungal compounds. Polyamine content in the mycelium of B. cinerea was also affected in response to AAME treatment, resulting in putrescine reduction and spermine accumulation similar to a number of antifungal agents. Microscopic observation of treated conidia after inoculation on tomato leaves suggested that inhibited spores are not able to attach to and penetrate the leaf. Finally, AAME completely suppressed the grey mould disease of tomato fruits under controlled inoculation conditions, providing evidence for its efficacy in a biological context and for the potential use of this chemical as an alternative fungicide treatment. 相似文献
6.
Gillmor CS Poindexter P Lorieau J Palcic MM Somerville C 《The Journal of cell biology》2002,156(6):1003-1013
Novel mutations in the RSW1 and KNOPF genes were identified in a large-scale screen for mutations that affect cell expansion in early Arabidopsis embryos. Embryos from both types of mutants were radially swollen with greatly reduced levels of crystalline cellulose, the principal structural component of the cell wall. Because RSW1 was previously shown to encode a catalytic subunit of cellulose synthase, the similar morphology of knf and rsw1-2 embryos suggests that the radially swollen phenotype of knf mutants is largely due to their cellulose deficiency. Map-based cloning of the KNF gene and enzyme assays of knf embryos demonstrated that KNF encodes alpha-glucosidase I, the enzyme that catalyzes the first step in N-linked glycan processing. The strongly reduced cellulose content of knf mutants indicates that N-linked glycans are required for cellulose biosynthesis. Because cellulose synthase catalytic subunits do not appear to be N glycosylated, the N-glycan requirement apparently resides in other component(s) of the cellulose synthase machinery. Remarkably, cellular processes other than extracellular matrix biosynthesis and the formation of protein storage vacuoles appear unaffected in knf embryos. Thus in Arabidopsis cells, like yeast, N-glycan trimming is apparently required for the function of only a small subset of N-glycoproteins. 相似文献
7.
Nitric oxide is induced by wounding and influences jasmonic acid signaling in<Emphasis Type="Italic"> Arabidopsis thaliana</Emphasis> 总被引:2,自引:0,他引:2
Nitric oxide (NO) has been associated with plant defense responses during microbial attack, and with induction and/or regulation of programmed cell death. Here, we addressed whether NO participates in wound responses in Arabidopsis thaliana (L.) Heynh.. Real-time imaging by confocal laser-scanning microscopy in conjunction with the NO-selective fluorescence indicator 4,5-diaminofluorescein diacetate (DAF-2 DA) uncovered a strong NO burst after wounding or after treatment with JA. The NO burst was triggered within minutes, reminiscent of the oxidative burst during hypersensitive responses. Furthermore, we were able to detect NO in plants (here induced by wounding) by means of electron paramagnetic resonance measurements using diethyldithiocarbamate as a spin trap. When plants were treated with NO, Northern analyses revealed that NO strongly induces key enzymes of jasmonic acid (JA) biosynthesis such as allene oxide synthase (AOS) and lipoxygenase (LOX2). On the other hand, wound-induced AOS gene expression was independent of NO. Furthermore, JA-responsive genes such as defensin (PDF1.2) were not induced, and NO induction of JA-biosynthesis enzymes did not result in elevated levels of JA. However, treatment with NO resulted in accumulation of salicylic acid (SA). In transgenic NahG plants (impaired in SA accumulation and/or signaling), NO did induce JA production and expression of JA-responsive genes. Altogether, the presented data demonstrate that wounding in Arabidopsis induces a fast accumulation of NO, and that NO may be involved in JA-associated defense responses and adjustments.Abbreviations
AOS
Allene oxide synthase
-
cPTIO
Carboxy-2-phenyl-4,4,5,5-tetramethylimidazolinone-3-oxide-1-oxyl
-
DAF-2 DA
4,5-Diaminofluorescein diacetate
-
DETC
Diethyldithiocarbamate
-
EPR
Electron paramagnetic resonance
-
iNOS
Inducible nitric oxide synthase
-
JA
Jasmonic acid
-
JIP
Jasmonic acid-induced protein
-
LOX2
Lipoxygenase 2
-
NO
Nitric oxide
-
OPR3
12-Oxophytodienoate reductase
-
PDF1.2
Plant defensin
-
ROS
Reactive oxygen species
-
SA
Salicylic acid
-
SNP
Sodium nitroprusside 相似文献
8.
Ian Sofian Yunus Amaury Cazenave-Gassiot Yu-chi Liu Ying-Chen Lin Markus R Wenk Yuki Nakamura 《Plant signaling & behavior》2015,10(8)
Phospholipids are the crucial components of biological membranes and signal transduction. Among different tissues, flower phospholipids are one of the least characterized features of plant lipidome. Here, we report that floral reproductive organs of Arabidopsis thaliana contain high levels of phosphatidic acid (PA), a known lipid second messenger. By using floral homeotic mutants enriched with specific floral organs, lipidomics study showed increased levels of PA species in ap3-3 mutant with enriched pistils. Accompanied gene expression study for 7 diacylglycerol kinases and 11 PA phosphatases revealed distinct floral organ specificity, suggesting an active phosphorylation/dephosphorylation between PA and diacylglycerol in flowers. Our results suggest that PA is a major phospholipid class in floral reproductive organs of A. thaliana. 相似文献
9.
Frataxin is a mitochondrial protein that is conserved throughout evolution. In yeast and mammals, frataxin is essential for cellular iron (Fe) homeostasis and survival during oxidative stress. In plants, frataxin deficiency causes increased reactive oxygen species (ROS) production and high sensitivity to oxidative stress. In this work we show that a knock-down T-DNA frataxin-deficient mutant of Arabidopsis thaliana (atfh-1) contains increased total and organellar Fe levels. Frataxin deficiency leads also to nitric oxide (NO) accumulation in both, atfh-1 roots and frataxin null mutant yeast. Abnormally high NO production might be part of the defence mechanism against Fe-mediated oxidative stress. 相似文献
10.
Screening of 18 suspension plant cell cultures of taxonomically distant species revealed that a methyl jasmonate hydrolysing enzyme activity (0.21-5.67 pkat/mg) occurs in all species so far analysed. The methyl jasmonate hydrolysing esterase was purified from cell cultures of Lycopersicon esculentum using a five-step procedure including anion-exchange chromatography, gel-filtration and chromatography on hydroxylapatite. The esterase was purified 767-fold to give an almost homogenous protein in a yield of 2.2%. The native enzyme exhibited a M(r) of 26 kDa (gel-filtration chromatography), which was similar to the M(r) determined by SDS-PAGE and MALDI-TOF analysis (M(r) of 28547 kDa). Enzyme kinetics revealed a K(m) value of 15 microM and a V(max) value of 7.97 nkat/mg, an pH optimum of 9.0 and a temperature optimum of 40 degrees C. The enzyme also efficiently hydrolyzed methyl esters of abscisic acid, indole-3-acetic acid, and fatty acids. In contrast, methyl esters of salicylic acid, benzoic acid and cinnamic acid were only poor substrates for the enzyme. N-Methylmaleimide, iodacetamide, bestatin and pepstatin (inhibitors of thiol-, metal- and carboxyproteases, respectively) did not inactivate the enzyme while a serine protease inhibitor, phenylmethylsulfonyl fluoride, at a concentration of 5 mM led to irreversible and complete inhibition of enzyme activity. Proteolysis of the pure enzyme with endoproteinase LysC revealed three peptide fragments with 11-14 amino acids. N-Terminal sequencing yielded an additional peptide fragment with 10 amino acids. Sequence alignment of these fragments showed high homologies to certain plant esterases and hydroxynitrile lyases that belong to the alpha/beta hydrolase fold protein superfamily. 相似文献
11.
Deprost D Truong HN Robaglia C Meyer C 《Biochemical and biophysical research communications》2005,326(4):844-850
The RAPTOR/KOG1 proteins are binding partners of the target of rapamycin (TOR) kinase that is present in all eucaryotes and plays a central role in the stimulation of cell growth and metabolism in response to nutrients. We show in this report that two genes are coding for RAPTOR/KOG1 homologs in the Arabidopsis and rice genomes. Disruption of the Arabidopsis AtRaptor1 gene leads to a very early arrest of embryo development whereas disruption of the AtRaptor2 gene, which is expressed at a lower level than AtRaptor1, has no visible effects on embryo and plant development. We also observed that mutations in the AtRaptor1 gene result in an earlier halt of embryo development than disruption of the AtTor gene. 相似文献
12.
Kong F Abe J Takahashi K Matsuura H Yoshihara T Nabeta K 《Biochemical and biophysical research communications》2005,336(4):1150-1156
Theobroxide, a natural product, strongly stimulates the biosynthesis of jasmonic acid (JA) in Pharbitis nil. In this study, we investigated the accumulation of protein by the immunoblot analysis of lipoxygenase (LOX), allene oxide synthase (AOS), and allene oxide cyclase (AOC), key enzymes in JA biosynthesis, and how the endogenous levels of JA in P. nil are affected by theobroxide. The effect of JA on the accumulations of these proteins was monitored simultaneously. The results show that theobroxide treatment led to a high level accumulation of JA, which is due to high accumulations of LOX, AOS, and AOC proteins induced by theobroxide treatment both under short day (SD) and long day (LD) conditions. However, under SD conditions AOS and AOC proteins are not enhanced by JA treatment. Kinetic analysis of protein levels shows that a biphasic activation of AOC protein by theobroxide is displayed and the first activation of AOC protein together with elevated JA levels is observed within 30min after treatment. Meanwhile, AOS and LOX proteins are activated by theobroxide later than AOC protein, suggesting that AOC plays an essential role in the initial JA formation induced by theobroxide. Since theobroxide-increased JA levels also show a biphasic manner similar to AOC activation and AOS, LOX proteins are activated later than AOC, and thus we propose a positive JA feedback regulation. Interestingly, AOS protein, which is also the enzyme for the biosynthesis of 9,10-ketol-octadecadienoic acid (KODA, a flowering inducing factor), accumulates markedly due to the simultaneous involvement of theobroxide and SD conditions, suggesting that AOS probably plays a role in flower bud formation in P. nil. 相似文献
13.
Cartry J Nichane M Ribes V Colas A Riou JF Pieler T Dollé P Bellefroid EJ Umbhauer M 《Developmental biology》2006,299(1):35-51
The mechanisms by which a subset of mesodermal cells are committed to a nephrogenic fate are largely unknown. In this study, we have investigated the role of retinoic acid (RA) signalling in this process using Xenopus laevis as a model system and Raldh2 knockout mice. Pronephros formation in Xenopus embryo is severely impaired when RA signalling is inhibited either through expression of a dominant-negative RA receptor, or by expressing the RA-catabolizing enzyme XCyp26 or through treatment with chemical inhibitors. Conversely, ectopic RA signalling expands the size of the pronephros. Using a transplantation assay that inhibits RA signalling specifically in pronephric precursors, we demonstrate that this signalling is required within this cell population. Timed antagonist treatments show that RA signalling is required during gastrulation for expression of Xlim-1 and XPax-8 in pronephric precursors. Moreover, experiments conducted with a protein synthesis inhibitor indicate that RA may directly regulate Xlim-1. Raldh2 knockout mouse embryos fail to initiate the expression of early kidney-specific genes, suggesting that implication of RA signalling in the early steps of kidney formation is evolutionary conserved in vertebrates. 相似文献
14.
Garzón M Eifler K Faust A Scheel H Hofmann K Koncz C Yephremov A Bachmair A 《FEBS letters》2007,581(17):3189-3196
The eukaryotic N-end rule pathway mediates ubiquitin- and proteasome-dependent turnover of proteins with a bulky amino-terminal residue. Arabidopsis locus At5g02310 shows significant similarity to the yeast N-end rule ligase Ubr1. We demonstrate that At5g02310 is a ubiquitin ligase and mediates degradation of proteins with amino-terminal Arg residue. Unlike Ubr1, the Arabidopsis protein does not participate in degradation of proteins with amino-terminal Phe or Leu. This modified target specificity coincides with characteristic differences in domain structure. In contrast to previous publications, our data indicate that At5g02310 is not identical to CER3, a gene involved in establishment of a protective surface wax layer. At5g02310 has therefore been re-designated PROTEOLYSIS 6 (PRT6), in accordance with its ubiquitin ligase function. 相似文献
15.
The UCU1 Arabidopsis gene encodes a SHAGGY/GSK3-like kinase required for cell expansion along the proximodistal axis 总被引:11,自引:0,他引:11
Most signal transduction pathways central to development are not shared by plants and animals. Such is the case of the Wingless/Wnt signaling pathway, whose components play key roles in metazoan pattern formation and tumorigenesis, but are absent in plants, with the exception of SHAGGY/GSK3, a cytoplasmic protein kinase represented in the genome of Arabidopsis thaliana by a family of 10 AtSK genes for which mutational evidence is scarce. Here, we describe the characterization of mutant alleles of the Arabidopsis ULTRACURVATA1 (UCU1) gene, the two strongest of which dramatically reduce cell expansion along the proximodistal axis, dwarfing the mutant plants, whose cells expand properly across but not along most organs. Proximodistal expansion of adaxial (dorsal) and abaxial (ventral) leaf cells exhibits a differential dependence on UCU1 function, as suggested by the leaves of ucu1 mutants, which are rolled spirally downward in a circinate manner. We have positionally cloned the UCU1 gene, which encodes an AtSK protein involved in the cross-talk between auxin and brassinosteroid signaling pathways, as indicated by the responses of ucu1 mutants to plant hormones and the phenotypes of double mutants involving ucu1 alleles. 相似文献
16.
The CER3 wax biosynthetic gene from Arabidopsis thaliana is allelic to WAX2/YRE/FLP1 总被引:2,自引:0,他引:2
The cuticle coats the aerial organs of land plants and is composed of a cutin matrix embedded and overlayed with waxes. The Arabidopsis CER3 gene is important for cuticular wax biosynthesis and was reported to correspond to At5g02310 encoding an E3 ubiquitin ligase. Here, we demonstrate that CER3 is not At5g02310 and instead corresponds to WAX2/YRE/FLP1 (At5g57800), a gene of unknown function required for wax biosynthesis. CER3 protein has also been implicated in cutin production because strong cer3 alleles display organ fusions. Leaf cutin analysis of two cer3 alleles did not reveal significant differences in cutin load or composition, indicating that CER3 has no major role in leaf cutin formation. 相似文献
17.
18.
The fim system in E. coli controls the expression of type-1 fimbriae. These are hair-like structures that can be used to attach to host cells. Fimbriation is controlled by a mechanism called "orientational control." We present two families of models for orientational control to understand the details of how it works. We find that the main benefits of orientational control are that (i) it allows rapid adjustment of fimbriation levels in response to a change of environmental conditions while (ii) keeping the overall frequencies with which a cell switches between the fimbriate state and the afimbriate state low. The main reason for the efficiency of orientational control in regulation of fimbriation levels is that it keeps the system far from its steady state. 相似文献
19.
ERECTA is required for protection against heat-stress in the AS1/ AS2 pathway to regulate adaxial-abaxial leaf polarity in Arabidopsis 总被引:2,自引:0,他引:2
In seed plants, formation of the adaxial–abaxial polarity is of primary importance in leaf patterning. Since Arabidopsis thaliana (L.) Heynh. genes ASYMMETRIC LEAVES1 (AS1) and ASYMMETRIC LEAVES2 (AS2) are key regulators in specifying adaxial leaf identity, and ERECTA is involved in the AS1/AS2 pathway for regulating adaxial–abaxial polarity [L. Xu et al. (2003) Development 130:4097–4107], we studied the physiological functions of the ERECTA protein in plant development. We analyzed the effects of different environmental conditions on a special leaf structure in the as1 and as2 mutants. This structure, called the lotus-leaf, reflects a severe loss of adaxial–abaxial polarity in leaves. Higher concentrations of salt or other osmotic substance and lower temperature severely affected plant growth both in the wild type and the mutants, but did not affect lotus-leaf frequency in the as1 and as2 mutants. as1 and as2 mutants exhibited a very low lotus-leaf frequency at 22°C, a temperature that favors Arabidopsis growth. The lotus-leaf frequency rose significantly with an increase in growth temperature, and only in plants that are in the erecta mutation background. These results suggest that ERECTA function is required for reducing plant sensitivity to heat stress during adaxial–abaxial polarity formation in leaves.Abbreviations AS1, AS2 ASYMMETRIC LEAVES1, 2 - ER ERECTA 相似文献
20.
Prashant Singh Chih-Cheng Chien Swati Mishra Chia-Hong Tsai Laurent Zimmerli 《Plant signaling & behavior》2013,8(1)
Sensing of microbial pathogens by pathogen-associated molecular patterns (PAMPs) through pattern recognition receptors (PRRs) elicits a defense program known as PAMP-triggered immunity (PTI). Recently, we have shown that the Arabidopsis thaliana L-TYPE LECTIN RECEPTOR KINASE-VI.2 (LecRK-VI.2) positively regulates bacterial PTI. In this report, we suggest by in silico analysis that the kinase domain of LecRK-VI.2 is functional. LecRK-VI.2 also demonstrated auto-phosphorylation activity in vitro in the presence of divalent metal cations indicating that LecRK-VI.2 has the ability to auto-phosphorylate. We further investigate the role of LecRK-VI.2 in Arabidopsis resistance to the necrotrophic fungal pathogen Botrytis cinerea. Disruption of LecRK-VI.2 did not affect Arabidopsis resistance to B. cinerea. Accordingly, wild-type upregulation levels of PTI-responsive WRKY53, FRK1, NHL10, CYP81F2 and CBP60 g after treatment with the fungal PAMP chitin were observed in lecrk-VI.2-1. These data provide evidences that the kinase domain of LecRK-VI.2 is active and show that LecRK-VI.2 is not critical for resistance to the fungal pathogen B. cinerea. 相似文献