首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
We studied the influence of inorganic nitrogen sources (NO3 ? or NH4 +) and potassium deficiency on expression and activity of plasma membrane (PM) H+-ATPase in sorghum roots. After 15 d of cultivation at 0.2 mM K+, the plants were transferred to solutions lacking K+ for 2 d. Then, K+ depletion assays were performed in the presence or absence of vanadate. Further, PMs from K+-starved roots were extracted and used for the kinetic characterization of ATP hydrolytic activity and the immunodetection of PM H+-ATPase. Two major genes coding PM H+-ATPase (SBA1 and SBA2) were analyzed by real-time PCR. PM H+-ATPase exhibited a higher Vmax and Km in NH4 +-fed roots compared with NO3 ? -fed roots. The optimum pH of the enzyme was slightly lower in NO3 ? -fed roots than in NH4 +-fed roots. The vanadate sensitivity was similar. The expressions of SBA1 and SBA2 increased in roots grown under NH4 +. Concomitantly, an increased content of the enzyme in PM was observed. The initial rate of K+ uptake did not differ between plants grown with NO3 ? or NH4 +, but it was significantly reduced by vanadate in NH4 +-grown plants.  相似文献   

2.
The kinetics of NH4 + and NO3 uptake in young Douglas fir trees (Pseudotsuga menziesii [Mirb.] Franco) were studied in solutions, containing either one or both N species. Using solutions containing a single N species, the Vmax of NH4 + uptake was higher than that of NO3 uptake. The Km of NH4 + uptake and Km of NO3 uptake differed not significantly. When both NH4 + and NO3 were present, the Vmax for NH4 + uptake became slightly higher, and the Km for NH4 + uptake remained in the same order. Under these conditions the NO3 uptake was almost totally inhibited over the whole range of concentrations used (10–1000 μM total N). This inhibition by NH4 + occurred during the first two hours after addition. ei]{gnA C}{fnBorstlap}  相似文献   

3.
We investigated whether six arctic plant species have the potential to induce nitrate reductase (NR) activity when exposed to NO3 --nitrogen under controlled environment conditions, using an in vivo assay that uses the rate of NO2 --accumulation to estimate potential NR activity. We also assessed the effect of low root temperatures on NR activity, growth and nitrogen uptake (using 15N applications) in two of the selected species. Five of the six species (Cerastium alpinum, Dryas intergrifolia, Oxyria digyna, Saxifraga cernua and Salix arctica) were capable of inducing NR activity when exposed to solutions containing 0.5 mM NO3 - at 20°C for 10 days. Although in vivo NR activity was not induced in Saxifraga oppositifolia under controlled conditions, we conclude that it was capable of growing successfully on NO3 -, due to the presence of moderate rates of NR activity observed in both NH4 +-grown and NO3 --treated plants. Exposure of O. digyna and D. integrifolia to 3°C root temperatures for two weeks, with the shoots kept at 20°C, resulted in root and leaf NR activity rates of NO3 --treated plants being reduced to rates exhibited by NH4 +-grown plants. Although these decreases in NR in both species appeared to be due to limitations in NO3 --uptake and growth rate (rather than direct low-temperature inhibition of NR synthesis per se), direct low-temperature inhibition of root NR synthesis could not be ruled out. In contrast to the temperature insensitivity of NH4 + uptake in D. integrifolia, NO3 --uptake in D. integrifolia was inhibited by low root temperatures. We conclude that the selected arctic species have the genetic potential to utilize NO3 --nitrogen, and that low root temperatures, in conjunction with other environmental limitations, may be responsible for the lack of induction of NR in D. integrifolia and Salix arctica under field conditions.  相似文献   

4.
5.
The ability to cope with NH4+-N was studied in the littoral helophytes Phragmites australis and Glyceria maxima, species commonly occupying fertile habitats rich in NH4+ and often used in artificial wetlands. In the present study, Glyceria growth rate was reduced by 16% at 179 μM NH4+-N, and the biomass production was reduced by 47% at 3700 μM NH4+-N compared to NO3-N. Similar responses were not found in Phragmites. The amounts (mg g−1 dry wt) of starch and total non-structural carbohydrates (TNC) in rhizomes were significantly lower in NH4+ (8.9; 12.2 starch; 20.1; 41.9 TNC) compared to NO3 treated plants (28.0; 15.6 starch; 58.5; 56.3 TNC) in Phragmites and Glyceria, respectively. In addition, Glyceria showed lower amounts (mg g−1 dry wt) of soluble sugars, TNC, K+, and Mg2+ in roots under NH4+ (5.6; 14.3; 20.6; 1.9) compared to NO3 nutrition (11.6; 19.9; 37.9; 2.9, for soluble sugars, TNC, K+, and Mg2+, respectively), while root internal levels of NH4+ and Ca2+ (0.29; 4.6 mg g−1 dry wt, mean of both treatments) were only slightly affected. In Phragmites, no changes in soluble sugars, TNC, Ca2+, K+, and Mg2+ contents of roots (7.3; 14.9; 5.1; 17.3; 2.6 mg g−1 dry wt, means of both treatments) were found in response to treatments. The results, therefore, indicate a more pronounced tolerance towards high NH4+ supply in Phragmites compared to Glyceria, although the former may be susceptible to starch exhaustion in NH4+-N nutrition. In contrast, Glyceria's ability to colonize fertile habitats rich in NH4+ is probably related to the avoidance strategy due to shallow rooting or to the previously described ability to cope with high NH4+ levels when P availability is high and NO3 is also provided.  相似文献   

6.
We examine hemolymph ion regulation and the kinetic properties of a gill microsomal (Na+, K+)-ATPase from the intertidal hermit crab, Clibanarius vittatus, acclimated to 45‰ salinity for 10 days. Hemolymph osmolality is hypo-regulated (1102.5 ± 22.1 mOsm kg−1 H2O) at 45‰ but elevated compared to fresh-caught crabs (801.0 ± 40.1 mOsm kg−1 H2O). Hemolymph [Na+] (323.0 ± 2.5 mmol L−1) and [Mg2+] (34.6 ± 1.0 mmol L−1) are hypo-regulated while [Ca2+] (22.5 ± 0.7 mmol L−1) is hyper-regulated; [K+] is hyper-regulated in fresh-caught crabs (17.4 ± 0.5 mmol L−1) but hypo-regulated (6.2 ± 0.7 mmol L−1) at 45‰. Protein expression patterns are altered in the 45‰-acclimated crabs, although Western blot analyses reveal just a single immunoreactive band, suggesting a single (Na+, K+)-ATPase α-subunit isoform, distributed in different density membrane fractions. A high-affinity (Vm = 46.5 ± 3.5 U mg−1; K0.5 = 7.07 ± 0.01 μmol L−1) and a low-affinity ATP binding site (Vm = 108.1 ± 2.5 U mg−1; K0.5 = 0.11 ± 0.3 mmol L−1), both obeying cooperative kinetics, were disclosed. Modulation of (Na+, K+)-ATPase activity by Mg2+, K+ and NH4+ also exhibits site-site interactions, but modulation by Na+ shows Michaelis-Menten kinetics. (Na+, K+)-ATPase activity is synergistically stimulated up to 45% by NH4+ plus K+. Enzyme catalytic efficiency for variable [K+] and fixed [NH4+] is 10-fold greater than for variable [NH4+] and fixed [K+]. Ouabain inhibited ≈80% of total ATPase activity (KI = 464.7 ± 23.2 μmol L−1), suggesting that ATPases other than (Na+, K+)-ATPase are present. While (Na+, K+)-ATPase activities are similar in fresh-caught (around 142 nmol Pi min−1 mg−1) and 45‰-acclimated crabs (around 154 nmol Pi min−1 mg−1), ATP affinity decreases 110-fold and Na+ and K+ affinities increase 2-3-fold in 45‰-acclimated crabs.  相似文献   

7.
In short-term water culture experiments with different 15N labeled ammonium or nitrate concentrations, citrus seedlings absorbed NH4 + at a higher rate than NO3 . Maximum NO3 uptake by the whole plant occurred at 120 mg L–1 NO3 -N, whereas NH4 + absorption was saturated at 240 mg L–1 NH4 +-N. 15NH4 + accumulated in roots and to a lesser degree in both leaves and stems. However, 15NO3 was mostly partitioned between leaves and roots.Adding increasing amounts of unlabeled NH4 + (15–60 mg L–1 N) to nutrient solutions containing 120 mg L–1 N as 15N labeled nitrate reduced 15NO3 uptake. Maximum inhibition of 15NO3 uptake was about 55% at 2.14 mM NH4 + (30 mg L–1 NH4 +-N) and it did not increase any further at higher NH4 + proportions.In a long-term experiment, the effects of concentration and source of added N (NO3 or NH4 +) on nutrient concentrations in leaves from plants grown in sand were evaluated. Leaf concentration of N, P, Mg, Fe and Cu were increased by NH4 + versus NO3 nutrition, whereas the reverse was true for Ca, K, Zn and Mn.The effects of different NO3 -N:NH4 +-N ratios (100:0, 75:25, 50:50, 25:75 and 0:100) at 120 mg L–1 total N on leaf nutrient concentrations, fruit yield and fruit characteristics were investigated in another long-term experiment with plants grown in sand cultures. Nitrogen concentrations in leaves were highest when plants were provided with either NO3 or NH4 + as a sole source of N. Lowest N concentration in leaves was found with a 75:25 NO3 -N/NH4 +-N ratio. With increasing proportions of NH4 + in the N supply, leaf nutrients such as P, Mg, Fe and Cu increased, whereas Ca, K, Mn and Zn decreased. Yield in number of fruits per tree was increased significantly by supplying all N as NH4 +, although fruit weight was reduced. The number of fruits per tree was lowest with the 75:25 NO3 -N:NH4 +-N ratio, but in this treatment fruits reached their highest weight. Rind thickness, juice acidity, and colour index of fruits decreased with increasing NH4 + in the N supply, whereas the % pulp and maturity index increased. Percent of juice in fruits and total soluble solids were only slightly affected by NO3 :NH4 + ratio.  相似文献   

8.
Growth, chemical composition, and nitrate reductase activity (NRA) of hydroponically cultured Rumex crispus, R. palustris, R. acetosa, and R. maritimus were studied in relation to form (NH4 +, NO3 -, or both) and level of N supply (4 mM N, and zero-N following a period of 4mM N). A distinct preference for either NH4 + or NO3 - could not be established. All species were characterized by a very efficient uptake and utilization of N, irrespective of N source, as evident from high concentrations of organic N in the tissues and concurrent excessive accumulations of free NO3 - and free NH4 +. Especially the accumulation of free NH4 + was unusually large. Generally, relative growth rate (RGR) was highest with a combination of NH4 + and NO3 -. Compared to mixed N supply, RGR of NO3 -- and NH4 +-grown plants declined on average 3% and 9%, respectively. Lowest RGR with NH4 + supply probably resulted from direct or indirect toxicity effects associated with high NH4 + and/or low Ca2+ contents of tissues. NRA in NO3 - and NH4NO3 plants was very similar with maxima in the leaves of ca 40 μmol NO2 - g-1 DW h-1. ‘Basal’ NRA levels in shoot tissues of NH4 + plants appeared relatively high with maxima in the leaves of ca 20 μmol NO2 - g-1 DW h-1. Carboxylate to organic N ratios, (C-A)/Norg, on a whole plant basis varied from 0.2 in NH4 + plants to 0.9 in NO3 - plants. After withdrawal of N, all accumulated NO3 - and NH4 + was assimilated into organic N and the organic N redistributed on a large scale. NRA rapidly declined to similar low levels, irrespective of previous N source. Shoot/root ratios of -N plants were 50–80% lower than those from +N plants. In comparison with +N, RGR of -N plants did not decline to a large extent, decreasing by only 15% in -NH4 + plants due to very high initial organic-N contents. N-deprived plants all exhibited an excess cation over anion uptake (net proton efflux), and whole-plant (C-A)/Norg ratios increased to values around unity. Possible difficulties in interpreting the (C-A)/Norg ratio and NRA of plants in their natural habitats are briefly discussed.  相似文献   

9.
The plasma membrane H+-ATPase provides the driving force for solute transport via an electrochemical gradient of H+ across the plasma membrane, and regulates pH homeostasis and membrane potential in plant cells. However, the plasma membrane H+-ATPase in non-vascular plant bryophyte is largely unknown. Here, we show that the moss Physcomitrella patens, which is known as a model bryophyte, expresses both the penultimate Thr-containing H+-ATPase (pT H+-ATPase) and non-pT H+-ATPase as in the green algae, and that pT H+-ATPase is regulated by phosphorylation of its penultimate Thr. A search in the P. patens genome database revealed seven H+-ATPase genes, designated PpHA (Physcomitrella patens H+-ATPase). Six isoforms are the pT H+-ATPase; a remaining isoform is non-pT H+-ATPase. An apparent 95-kD protein was recognized by anti-H+-ATPase antibodies against an isoform of Arabidopsis thaliana and was phosphorylated on the penultimate Thr in response to a fungal toxin fusicoccin and light in protonemata, indicating that the 95-kD protein contains pT H+-ATPase. Furthermore, we could not detect the pT H+-ATPase in the charophyte alga Chara braunii, which is the closest relative of the land plants, by immunological methods. These results strongly suggest the pT H+-ATPase most likely appeared for the first time in bryophyte.  相似文献   

10.
茉莉酸类物质(JAs)作为与昆虫啃噬及损伤相关的植物激素和信号分子在植物防御反应中起重要作用,但是茉莉酸引起的早期防御反应的机理仍不清楚。该研究以拟南芥叶片保卫细胞为材料,结合非损伤微测(NMT)及激光共聚焦技术探讨了茉莉酸诱导的保卫细胞中质膜H+-ATPase与H2O2积累的调控关系。结果表明:茉莉酸甲酯(MeJA)处理导致H+迅速跨膜外排和H2O2积累,H+外排和H2O2积累能够被钒酸钠抑制,而二苯基碘(DPI)处理则对MeJA诱导的H+跨膜外排无显著影响。研究结果证明,在MeJA诱导的早期信号事件中,质膜H+-ATPase的激活先于H2O2的产生。  相似文献   

11.
Distal colon absorbs K+ through a Na+-independent, ouabain-sensitive H+/K+-exchange, associated to an apical ouabain-sensitive H+/K+-ATPase. Expression of HKα2, gene associated with this ATPase, induces K+-transport mechanisms, whose ouabain susceptibility is inconsistent. Both ouabain-sensitive and ouabain-insensitive K+-ATPase activities have been described in colonocytes. However, native H+/K+-ATPases have not been identified as unique biochemical entities. Herein, a procedure to purify ouabain-sensitive H+/K+-ATPase from guinea-pig distal colon is described. H+/K+-ATPase is Mg2+-dependent and activated by K+, Cs+ and NH4+ but not by Na+ or Li+, independently of K+-accompanying anion. H+/K+-ATPase was inhibited by ouabain and vanadate but insensitive to SCH-28080 and bafilomycin-A. Enzyme was phosphorylated from [32P]-γ-ATP, forming an acyl-phosphate bond, in an Mg2+-dependent, vanadate-sensitive process. K+ inhibited phosphorylation, effect blocked by ouabain. H+/K+-ATPase is an α/β-heterodimer, whose subunits, identified by Tandem-mass spectrometry, seems to correspond to HKα2 and Na+/K+-ATPase β1-subunit, respectively. Thus, colonic ouabain-sensitive H+/K+-ATPase is a distinctive P-type ATPase.  相似文献   

12.
Carbon isotope composition (δ13C) was measured in a glasshouse experiment with N2-fixing and NO3- or NH4+-fed Casuarina equisetifolia Forst. & Forst plants, both under well-watered and drought conditions. The abundance of 13C was higher (more positive δ13C) for NH4+- than for NO3 -grown plants and was lowest for N2-fixing plants. NH4+-fed plants had more leaf area and dry weight and higher water use efficiency (on a biomass basis) than N2- and NO3-grown plants and had lower water consumption than plants supplied with NO3, either with high or low water supply. Specific leaf areas and leaf area ratios were higher with NH4+ than with NO3 or N2 as the N source. The difference observed in δ13C between plants grown with different N sources was higher than that predicted by theory and was not in the right direction (NH4+-grown plants with a more negative δ13C) to be explained by differences in plant composition and engagement of the various carboxylation reactions. The more positive δ13C in NH4+- than in NO3-grown plants is probably due to a decreased ratio of stomatal to carboxylation conductances, which accounts for the lower water cost of C assimilation in NH4+-grown plants.  相似文献   

13.
14.
The effects of inorganic nitrogen (N) source (NH4+, NO3 or both) on growth, biomass allocation, photosynthesis, N uptake rate, nitrate reductase activity and mineral composition of Canna indica were studied in hydroponic culture. The relative growth rates (0.05-0.06 g g−1 d−1), biomass allocation and plant morphology of C. indica were indifferent to N nutrition. However, NH4+ fed plants had higher concentrations of N in the tissues, lower concentrations of mineral cations and higher contents of chlorophylls in the leaves compared to NO3 fed plants suggesting a slight advantage of NH4+ nutrition. The NO3 fed plants had lower light-saturated rates of photosynthesis (22.5 μmol m−2 s−1) than NH4+ and NH4+/NO3 fed plants (24.4-25.6 μmol m−2 s−1) when expressed per unit leaf area, but similar rates when expressed on a chlorophyll basis. Maximum uptake rates (Vmax) of NO3 did not differ between treatments (24-35 μmol N g−1 root DW h−1), but Vmax for NH4+ was highest in NH4+ fed plants (81 μmol N g−1 root DW h−1), intermediate in the NH4NO3 fed plants (52 μmol N g−1 root DW h−1), and lowest in the NO3 fed plants (28 μmol N g−1 root DW h−1). Nitrate reductase activity (NRA) was highest in leaves and was induced by NO3 in the culture solutions corresponding to the pattern seen in fast growing terrestrial species. Plants fed with only NO3 had high NRA (22 and 8 μmol NO2 g−1 DW h−1 in leaves and roots, respectively) whereas NRA in NH4+ fed plants was close to zero. Plants supplied with both forms of N had intermediate NRA suggesting that C. indica takes up and assimilate NO3 in the presence of NH4+. Our results show that C. indica is relatively indifferent to inorganic N source, which together with its high growth rate contributes to explain the occurrence of this species in flooded wetland soils as well as on terrestrial soils. Furthermore, it is concluded that C. indica is suitable for use in different types of constructed wetlands.  相似文献   

15.
The involvement of potassium (K+)-selective, Shaker-type channels, particularly AKT1, in primary K+ acquisition in roots of higher plants has long been of interest, particularly in the context of low-affinity K+ uptake, at high K+ concentrations, as well as uptake from low-K+ media under ammonium (NH4+) stress. We recently demonstrated that K+ channels cannot mediate K+ acquisition in roots of intact barley (Hordeum vulgare L.) seedlings at low (22.5 µM) external K+ concentrations ([K+]ext) and in the presence of high (10 mM) external NH4+, while the model species Arabidopsis thaliana L. utilizes channels under comparable conditions. However, when external NH4+ was suddenly withdrawn, a thermodynamic shift to passive (channel-mediated) K+ influx was observed in barley and both species demonstrated immediate and dramatic stimulations in K+ influx, illustrating a hitherto unexplored magnitude and rapidity of K+-uptake capacity and plasticity. Here, we expand on our previous work by offering further characterization of channel-mediated K+ fluxes in intact barley, with particular focus on anion effects, root respiration and pharmacological sensitivity and highlight key additions to the current model of K+ acquisition.  相似文献   

16.
We tested whether NHE3 and NHE2 Na+/H+ exchanger isoforms were recruited to the plasma membrane (PM) in response to changes in ion homeostasis. NHE2-CFP or NHE3-CFP fusion proteins were functional Na+/H+ exchangers when transiently expressed in NHE-deficient PS120 fibroblasts. Confocal morphometry of cells whose PM was labeled with FM4-64 measured the fractional amount of fusion protein at the cell surface. In resting cells, 10-20% of CFP fluorescence was at PM and stable over time. A protocol commonly used to activate the Na+/H+ exchange function (NH4-prepulse acid load sustained in Na+-free medium), increased PM percentages of PM NHE3-CFP and NHE2-CFP. Separation of cellular acidification from Na+ removal revealed that only NHE3-CFP translocated when medium Na+ was removed, and only NHE2-CFP translocated when the cell was acidified. NHE2/NHE3 chimeric proteins demonstrate that the Na+-removal response element resides predominantly in the NHE3 cytoplasmic tail and is distinct from the acidification response sequence of NHE2.  相似文献   

17.
A fraction of inside-out membrane vesicles enriched in plasma membranes (PM) was isolated from Dunaliella maritima cells. Attempts were made to reveal ATP-driven Na+-dependent H+ efflux from the PM vesicles to external medium, as detected by alkalization of the vesicle lumen. In parallel experiments, ATP-dependent Na+ uptake and electric potential generation in PM vesicles were investigated. The alkalization of the vesicle lumen was monitored with an impermeant pH-sensitive optical probe pyranine (8-hydroxy-1,3,6-pyrenetrisulfonic acid), which was loaded into vesicles during the isolation procedure. Sodium uptake was measured with 22Na+ radioactive label. The generation of electric potential in PM vesicles (positive inside) was recorded with a voltage-sensitive probe oxonol VI. Appreciable Na+-and ATP-dependent alkalization of vesicle lumen was only observed in the presence of a protonophore CCCP (carbonyl cyanide-chlorophenylhydrazone). In parallel experiments, CCCP accelerated the ATP-dependent 22Na+ uptake and abolished the electric potential generated by the Na+-ATPase at the vesicle membrane. A permeant anion NO? 3 accelerated ATP-dependent 22Na+ uptake and promoted dissipation of the electric potential like CCCP did. At the same time, NO? 3 inhibited the ATP-and Na+-dependent alkalization of the vesicle lumen. The results clearly show that the ATP-and Na+-dependent H+ efflux from PM vesicles of D. maritima is driven by the electric potential generated at the vesicle membrane by the Na+-ATPase. Hence, the Na+-transporting ATPase of D. maritima carries only one ion species, i.e., Na+. Proton is not involved as a counter-ion in the catalytic cycle of this enzyme.  相似文献   

18.
H+ transport driven by V H+-ATPase was found in membrane fractions enriched with ER/PM and Golgi/Golgi-like membranes of Saccharomyces cerevisiae efficiently purified in sucrose density gradient from the vacuolar membranes according to the determination of the respective markers including vacuolar Ca2+-ATPase, Pmc1::HA. Purification of ER from PM by a removal of PM modified with concanavalin A reduced H+ transport activity of P H+-ATPase by more than 75% while that of V H+-ATPase remained unchanged. ER H+ ATPase exhibits higher resistance to bafilomycin (I50 = 38.4 nM) than Golgi and vacuole pumps (I50 = 0.18 nM). The ratio between a coupling efficiency of the pumps in ER, membranes heavier than ER, vacuoles and Golgi is 1.0, 2.1, 8.5 and 14 with the highest coupling in the Golgi. The comparative analysis of the initial velocities of H+ transport mediated by V H+-ATPases in the ER, Golgi and vacuole membrane vesicles, and immunoreactivity of the catalytic subunit A and regulatory subunit B further supported the conclusion that V H+-ATPase is the intrinsic enzyme of the yeast ER and Golgi and likely presented by distinct forms and/or selectively regulated.  相似文献   

19.
20.
Employing a simple one-step sucrose gradient fractionation method, gastric mucosal membrane of Syrian hamster was prepared and demonstrated to be specifically enriched in H+,K+-ATPase activity. The preparation is practically devoid of other ATP hydrolyzing activity and contains high K+-stimulated ATPase, activity of at least 4–5 fold compared to basal ATPase activity. The H+,K+-ATPase showed hydroxylamine-sensitive phosphorylation and K+-dependent dephosphorylation of the phospho-enzyme, characteristic inhibition by vanadate, omeprazole and SCH 28080, and nigericin-reversible K+-dependent H+-transport — properties characteristic of gastric proton pump One notable difference with H+,K+-ATPase of other species has been the observation of valinomycin-independent H+ transport in such membrane vesicles. It is proposed that such H+,K+-ATPase-rich hamster gastric mucosal membrane preparation might provide a unique model to study physiological aspects of H+,K+-ATPase-function in relation to HCl secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号