首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The rice blast fungus Magnaporthe oryzae is a serious pathogen that jeopardises the world’s most important food-security crop. Ten common Malaysian rice varieties were examined for their morphological, physiological and genomic responses to this rice blast pathogen. qPCR quantification was used to assess the growth of the pathogen population in resistant and susceptible rice varieties. The chlorophyll content and photosynthesis were also measured to further understand the disruptive effects that M. oryzae has on infected plants of these varieties. Real-time PCR was used to explore the differential expression of eight blast resistance genes among the ten local varieties. Blast disease has destructive effects on the growth of rice, and the findings of our study provide evidence that the Pikh, Pi9, Pi21, and Osw45 genes are involved in defence responses in the leaves of Malaysian rice at 31 h after inoculation with M. oryzae pathotype P7.2. Both the chlorophyll content and photosynthesis were reduced, but the levels of Pikh gene expression remained constant in susceptible varieties, with a developed pathogen population and mild or severe symptoms. The Pi9, Pi21, and Osw45 genes, however, were simultaneously upregulated in infected rice plants. Therefore, the presence of the Pikh, Pi9, Pi21, and Osw45 genes in the germplasm is useful for improving the resistance of rice varieties.  相似文献   

2.
3.
Generally, under normal conditions plants are resistant to many of the incompatible pathogens (viral, fungal and bacterial), and this is named “non-host resistance phenomenon”. To understand this phenomenon, different types of food crops (faba bean, squash, barley and wheat) were inoculated with compatible and incompatible pathogens. Strong resistance symptoms were observed in the non-host/incompatible pathogen combinations as compared with host/compatible pathogen combinations, which showed severe infection (susceptibility). Reactive oxygen species (ROS) mostly hydrogen peroxide and superoxide were significantly increased early 24 and 48 h after inoculation (hai) in the non-host plants comparing to the host. Antioxidant enzymes activity (catalase, polyphenol oxidase and peroxidase) were not increased at the same early time 24, 48 hai in the non-host resistant and host resistant plants, however, it increased later at 72 and 168 hai. Electrolyte leakage decreased significantly in non-host resistant and host resistant/pathogen combinations. Catalase and peroxidase genes were significantly expressed in non-host resistant and in host resistant plants as compared to the host susceptible one, which did not show expression using RT-PCR technique. Furthermore, Yr5, Yr18 and Yr26 resistant genes were identified positively using PCR in all treatments either host susceptible or non-host resistant plants in which prove that no clear role of these resistant genes in resistance. Early accumulation of ROS could have a dual roles, first role is preventing the growth or killing the pathogens early in the non-host, second, stimulating the gene appearance of related genes in addition the activition of antioxidant enzymes later on which thereby, neutralize the harmful effect of ROS and consequently suppressing disease symptoms. The new finding from this study supporting the plant breeders with new source of resistance to develop new resistant cultivars and/or stop the breakdown of resistance in resistant cultivars.  相似文献   

4.
5.
6.
7.
Fusarium head blight (FHB) caused by Fusarium graminearum is one of the most serious diseases in wheat (Triticum aestivum) and barley (Hordeum vulgare). Dahongmil is an elite Korean wheat cultivar with relatively high resistance to FHB. To identify differentially expressed genes in the resistant cultivar Dahongmil and the susceptible cultivar Urimil after inoculation of F. graminearum, we used the Affymetrix GeneChip® Wheat Genome Array to identify 328 ESTs that were differentially expressed in inoculated seedling tissues of the two cultivars. From these, we selected 16 induced genes and found that they have defense functions, such as genes encoding pathogen resistance proteins, oxidative stress-related proteins, metabolism, and proteins involved in defense mechanisms. To verify the DNA microarray results, we tested seven of these genes by semiquantitative RT-PCR and confirmed that these defense- and stress-related genes were expressed at much higher levels in the resistant Dahongmil cultivar. We next developed a hypothetical functional gene network and identified 89 interaction pairs mediated by four of the differentially expressed genes in the hypothetical network. We further refined the network by identifying nine genes showing significant up- or down-regulation after FHB challenge in the resistant cultivar and two genes having multiple interactions with queried proteins. We hope that the set of induced genes identified in this study can be used for development of new wheat and barley cultivars with improved resistance to FHB.  相似文献   

8.
9.
10.
Bacterial blight (BB) of rice caused by Xanthomonas oryzae pv. oryzae (Xoo) is a major disease of rice in several countries. Three BB resistance genes, xa5, xa13 and Xa21, were pyramided into cv. PR106, which is widely grown in Punjab, India, using marker-assisted selection. Lines of PR106 with pyramided genes were evaluated after inoculation with 17 isolates of the pathogen from the Punjab and six races of Xoo from the Philippines. Genes in combinations were found to provide high levels of resistance to the predominant Xoo isolates from the Punjab and six races from the Philippines. Lines of PR106 with two and three BB resistance genes were also evaluated under natural conditions at 31 sites in commercial fields. The combination of genes provided a wider spectrum of resistance to the pathogen population prevalent in the region; Xa21 was the most effective, followed by xa5. Resistance gene xa13 was the least effective against Xoo. Only 1 of the BB isolates, PX04, was virulent on the line carrying Xa21 but avirulent on the lines having xa5 and xa13 genes in combination with Xa21. Received: 26 May 2000 / Accepted: 16 August 2000  相似文献   

11.
Head blight caused by Fusarium graminearum (F. graminearum) is one of the major threats to wheat and barley around the world. The importance of this disease is due to a reduction in both grain yield and quality in infected plants. Currently, there is limited knowledge about the physiological mechanisms involved in plant resistance against this pathogen. To reveal the physiological mechanisms underlying the resistance to F. graminearum, spikes of resistant (Sumai3) and susceptible (Falat) wheat cultivars were analyzed 4 days after inoculation, as the first symptoms of pathogen infection appeared. F. graminearum inoculation resulted in a greater induction level and activity of salicylic acid (SA), callose, phenolic compounds, peroxidase, phenylalanine ammonia lyase (PAL), and polyphenol oxidase in resistant versus susceptible cultivars. Soil drench application to spikes of SA, 24 h before inoculation with F. graminearum alleviated Fusarium head blight symptoms in both resistant and susceptible cultivars. SA treated plants showed a significant increment in hydrogen peroxide (H2O2) production, lipid peroxidation, SA, and callose content. SA-induced H2O2 level seems to be related to increased superoxide dismutase and decreased catalase activities. In addition, real-time quantitative PCR analysis showed that SA pretreatment induced expression of PAL genes in both infected and non-infected head tissues of the susceptible and resistant cultivars. Our data showed that soil drench application of SA activates antioxidant defense responses and may subsequently induce systemic acquired resistance, which may contribute to the resistance against F. graminearum. These results provide novel insights about the physiological and molecular role of SA in plant resistance against hemi-biotrophic pathogen infection.  相似文献   

12.
Fusarium head blight (FHB) is a destructive disease of wheat and barley. In wheat it is mainly caused by the fungal pathogens Fusarium graminearum and Fusarium culmorum. We report the identification and evaluation of candidate genes for quantitative FHB resistance. These genes showed altered expression levels in the moderately resistant winter wheat genotypes Capo and SVP72017 after inoculation with F. graminearum. Amongst others, a NPR1-like gene was identified. Sequence analysis of this gene fragment revealed a high level of variation between the parents of a doubled haploid population. Single nucleotide polymorphism and polymerase chain reaction markers were developed and two homoeologous genes were mapped on the long arms of chromosomes 2A and 2D, respectively. Markers for both genes had significant effects on FHB resistance in a diverse collection of 178 European winter wheat cultivars evaluated in multi-environmental field trials after spray inoculation with F. culmorum. These results revealed that allelic variation in two homoeologous NPR1-like genes is associated with FHB resistance in European winter wheat. Markers for these genes might therefore be used for marker-assisted breeding programs.  相似文献   

13.
UDP-glucosyltransferases (UGTs) contribute to Fusarium head blight (FHB) resistance of wheat and barley by glycosylating the deoxynivalenol (DON), which is produced by Fusarium fungus. In this study, seven alleles of barley HvUGT14077 (GenBank No.GU170356.1) were cloned using RT-PCR. Among them, HvUGT-10W1, which was isolated from a FHB resistant barley variety 10W1, was significantly up-regulated in young spikes after F. graminearum (F.g) inoculation. HvUGT-10W1::GFP was subcellularly located in the plasma membrane and cytoplasm of the wheat protoplasts. In vitro antifungal activity assay showed that the HvUGT-10W1 protein exerted obvious inhibition against the growth of F.g. The silencing of the HvUGT-10W1 by virus-induced gene silencing (VIGS) resulted in compromised FHB resistance of 10W1, which was shown by the increased infected colonies on the leaves. These indicated that the barley HvUGT-10W1 may also contribute to F.g resistance in barley and provided a potential candidate gene to develop transgenic barley with enhanced FHB resistance.  相似文献   

14.
15.
16.
Quantitative resistance against Leptosphaeria maculans in Brassica napus is difficult to assess in young plants due to the long period of symptomless growth of the pathogen from the appearance of leaf lesions to the appearance of canker symptoms on the stem. By using doubled haploid (DH) lines A30 (susceptible) and C119 (with quantitative resistance), quantitative resistance against L. maculans was assessed in young plants in controlled environments at two stages: stage 1, growth of the pathogen along leaf veins/petioles towards the stem by leaf lamina inoculation; stage 2, growth in stem tissues to produce stem canker symptoms by leaf petiole inoculation. Two types of inoculum (ascospores; conidia) and three assessment methods (extent of visible necrosis; symptomless pathogen growth visualised using the GFP reporter gene; amount of pathogen DNA quantified by PCR) were used. In stage 1 assessments, significant differences were observed between lines A30 and C119 in area of leaf lesions, distance grown along veins/petioles assessed by visible necrosis or by viewing GFP and amount of L. maculans DNA in leaf petioles. In stage 2 assessments, significant differences were observed between lines A30 and C119 in severity of stem canker and amount of L. maculans DNA in stem tissues. GFP-labelled L. maculans spread more quickly from the stem cortex to the stem pith in A30 than in C119. Stem canker symptoms were produced more rapidly by using ascospore inoculum than by using conidial inoculum. These results suggest that quantitative resistance against L. maculans in B. napus can be assessed in young plants in controlled conditions. Development of methods to phenotype quantitative resistance against plant pathogens in young plants in controlled environments will help identification of stable quantitative resistance for control of crop diseases.  相似文献   

17.
Plants have developed sophisticated mechanisms to combat pathogen infection. One of the acquired modes in response to pathogen attack is the production of the pathogenesis-related (PR) proteins. Our earlier studies reported that TaLr35PR1, a PR1 gene encoding a protein with conserved serine carboxypeptidase (SCP) domain, has been cloned from wheat near-isogenic line TcLr35. However, the involvement of TaLr35PR1 in wheat growth and Lr35-mediated adult resistance to Puccinia triticina remains unclear. Here, we showed that TaLr35PR1 was strongly induced by P. triticina in wheat plant containing Lr35 (TcLr35), in which the expression level of TaLr35PR1 significantly increased and reached the maximum at 12 hpi. The accumulations of TaLr35PR1 increased stably and showed significant peak challenged by P. triticina at different growth and development periods of TcLr35 wheat while it maintained similar level and changed little in mock inoculated. Western blotting was conducted to confirm that TaLr35PR1 protein was increasingly accumulated in the TcLr35 adult plants after P. triticina inoculation and maintained at a similar level from 120 to 168 h post-inoculation. Similar to the expression patterns of TaLr35PR1 at RNA levels, the accumulations of TaLr35PR1 protein were weak in the seedling stage and then increased to the peak and kept constant levels at the mature stage which is consistent with the expression feature of Lr35 gene as an adult plant resistance gene. All these findings suggest that TaLr35PR1 is involved in wheat growth and Lr35-mediated adult wheat defense response to leaf rust pathogen attack.  相似文献   

18.
Barley is compatible with the rice blast pathogen (Pyricularia oryzae Cav.). Fiftyfour barley cultivars of diverse geographic origin and pedigree were inoculated with three isolates of the rice blast pathogen. All barley genotypes showed blast disease symptoms when inoculated at the seedling stage with each of the three isolates. However, one genotype showed quantitative resistance to all three isolates and three genotypes showed quantitative resistance to one or two of the isolates. By inoculating a set of doubled-haploid lines derived from the cross ’Harrington’ (susceptible) and ’TR306’ (resistant) with isolate Ken 54–20, we mapped quantitative trait loci (QTLs) determining seedling stage blast resistance. At all QTLs, TR306 contributed the resistance alleles. The four QTLs, when considered jointly, explained 43.6% of the phenotypic variation in blast symptom expression. A comparison of the blast resistance QTLs with other disease resistance QTLs reported in this population revealed a region on chromosome 4 (4H) with multiple disease resistance loci. It will be useful to capitalize on the syntenic relationship of rice and barley and to integrate information on species-specific resistance genes with information on the reaction of the two species to the same pathogen. Received: 7 January 2000 / Accepted: 22 September 2000  相似文献   

19.
Barley stripe mosaic virus-induced gene silencing in a monocot plant   总被引:35,自引:0,他引:35  
RNA silencing of endogenous plant genes can be achieved by virus-mediated, transient expression of homologous gene fragments. This powerful, reverse genetic approach, known as virus-induced gene silencing (VIGS), has been demonstrated only in dicot plant species, where it has become an important tool for functional genomics. Barley stripe mosaic virus (BSMV) is a tripartite, positive-sense RNA virus that infects many agriculturally important monocot species including barley, oats, wheat and maize. To demonstrate VIGS in a monocot host, we modified BSMV to express untranslatable foreign inserts downstream of the gammab gene, in either sense or antisense orientations. Phytoene desaturase (PDS) is required for synthesizing carotenoids, compounds that protect chlorophyll from photo-bleaching. A partial PDS cDNA amplified from barley was 90, 88 and 74% identical to PDS cDNAs from rice, maize and Nicotiana benthamiana, respectively. Barley infected with BSMV expressing barley, rice or maize PDS fragments became photo-bleached and accumulated phytoene (the substrate for PDS) in a manner similar to plants treated with the chemical inhibitor of PDS, norflurazon. In contrast, barley infected with wild-type BSMV, or BSMV expressing either N. benthamiana PDS or antisense green fluorescent protein (GFP), did not photo-bleach or accumulate phytoene. Thus BSMV silencing of the endogenous PDS was homology-dependent. Deletion of the coat protein enhanced the ability of BSMV to silence PDS. This is the first demonstration of VIGS in a monocot, and suggests that BSMV can be used for functional genomics and studies of RNA-silencing mechanisms in monocot plant species.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号