首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Meng YL  Wang YM  Zhang B  Nii N 《Cell research》2001,11(3):187-193
INTRODUCTIONAmaranth is a C4 dicotyledonous mesophytecrop plant. A. tricofor is a major variety for veg-etable and ornamental crops, and is widely culti-vated in the wor1d. Osmoprotectant glycine betaine(GB) was detected in Amaranthaceae, A. HyPochon-driacus L[2] and A. Caudatus L[3, 4]. GB iswidespread and an effective osmoprotectant in manyplants[3]. We studied the photosynthetic adaptationmechanism of A. trico1or under salt stress due to ac-cumulation of GB[5].GB is synthesized …  相似文献   

2.
Choline oxidase catalyzes the oxidation of choline to glycine betaine via two sequential flavin-linked transfers of hydride equivalents to molecular oxygen and formation of a betaine aldehyde intermediate. In the present study, choline and glycine betaine analogs were used as substrates and inhibitors for the enzyme to investigate the structural determinants that are relevant for substrate recognition and specificity. Competitive inhibition patterns with respect to choline were determined for a number of substituted amines at pH 6.5 and 25 degrees C. The Kis values for the carboxylate-containing ligands glycine betaine, N,N-dimethylglycine, and N-methylglycine increased monotonically with decreasing number of methyl groups, consistent with the trimethylammonium portion of the ligand being important for binding. In contrast, the acetate portion of glycine betaine did not contribute to binding, as suggested by lack of changes in the Kis values upon substituting glycine betaine with inhibitors containing methyl, ethyl, allyl, and 2-amino-ethyl side chains. In agreement with the inhibition data, the specificity of the enzyme for the organic substrate (kcat/Km value) decreased when N,N-dimethylethanolamine, N-methylethanolamine, and the isosteric substrate 3,3-dimethyl-1-butanol were used as substrate instead of choline; a contribution of approximately 7 kcal mol(-1) toward substrate discrimination was estimated for the interaction of the trimethylammonium portion of the substrate with the active site of choline oxidase.  相似文献   

3.
The addition of the cyclic cofactor 2,3,5,6-tetramethyl-p-phenylenediamine (diaminodurene) to a suspension of chromatophores of Rhodopseudomonas spheroides causes a light-dependent quenching of bacteriochlorophyll fluorescence. This effect is similar to one observed in chloroplasts and related to proton uptake. It is distinct from the quenching operative through the redox state of the primary electron donor and acceptor, as shown by its sensitivity to uncouplers and ionophorous antibiotics. The quenching is dependent on light intensity and diaminodurene concentration, and has a pH optimum at 7.1 where up to 70% of the fluorescence could be quenched in the presence of 0.33 mM diaminodurene.  相似文献   

4.
N-Acetylglucosamine (GlcNAc), a major component of complex carbohydrates, is synthesized de novo or salvaged from lysosomally degraded glycoconjugates and from nutritional sources. The salvage pathway requires that GlcNAc kinase converts GlcNAc to GlcNAc-6-phosphate, a component utilized in UDP-GlcNAc biosynthesis or energy metabolism. GlcNAc kinase belongs to the sugar kinase/Hsp70/actin superfamily that catalyze phosphoryl transfer from ATP to their respective substrates, and in most cases catalysis is associated with a large conformational change in which the N-terminal small and C-terminal large domains enclose the substrates. Here we report two crystal structures of homodimeric human GlcNAc kinase, one in complex with GlcNAc and the other in complex with ADP and glucose. The active site of GlcNAc kinase is located in a deep cleft between the two domains of the V-shaped monomer. The enzyme adopts a "closed" configuration in the GlcNAc-bound complex and GlcNAc interacts with residues of both domains. In addition, the N-acetyl methyl group contacts residues of the other monomer in the homodimer, a unique feature compared to other members of the sugar kinase/Hsp70/actin superfamily. This contrasts an "open" configuration in the ADP/glucose-bound structure, where glucose cannot form these interactions, explaining its low binding affinity for GlcNAc kinase. Our results support functional implications derived from apo crystal structures of GlcNAc kinases from Chromobacter violaceum and Porphyromonas gingivalis and show that Tyr205, which is phosphorylated in thrombin-activated platelets, lines the GlcNAc binding pocket. This suggests that phosphorylation of Tyr205 may modulate GlcNAc kinase activity and/or specificity.  相似文献   

5.
Edward A. Berry  Dong-Woo Lee  Kazuo Nagai 《BBA》2010,1797(3):360-7281
Ascochlorin is an isoprenoid antibiotic that is produced by the phytopathogenic fungus Ascochyta viciae. Similar to ascofuranone, which specifically inhibits trypanosome alternative oxidase by acting at the ubiquinol binding domain, ascochlorin is also structurally related to ubiquinol. When added to the mitochondrial preparations isolated from rat liver, or the yeast Pichia (Hansenula) anomala, ascochlorin inhibited the electron transport via CoQ in a fashion comparable to antimycin A and stigmatellin, indicating that this antibiotic acted on the cytochrome bc1 complex. In contrast to ascochlorin, ascofuranone had much less inhibition on the same activities. On the one hand, like the Qi site inhibitors antimycin A and funiculosin, ascochlorin induced in H. anomala the expression of nuclear-encoded alternative oxidase gene much more strongly than the Qo site inhibitors tested. On the other hand, it suppressed the reduction of cytochrome b and the generation of superoxide anion in the presence of antimycin A3 in a fashion similar to the Qo site inhibitor myxothiazol. These results suggested that ascochlorin might act at both the Qi and the Qo sites of the fungal cytochrome bc1 complex. Indeed, the altered electron paramagnetic resonance (EPR) lineshape of the Rieske iron-sulfur protein, and the light-induced, time-resolved cytochrome b and c reduction kinetics of Rhodobacter capsulatus cytochrome bc1 complex in the presence of ascochlorin demonstrated that this inhibitor can bind to both the Qo and Qi sites of the bacterial enzyme. Additional experiments using purified bovine cytochrome bc1 complex showed that ascochlorin inhibits reduction of cytochrome b by ubiquinone through both Qi and Qo sites. Moreover, crystal structure of chicken cytochrome bc1 complex treated with excess ascochlorin revealed clear electron densities that could be attributed to ascochlorin bound at both the Qi and Qo sites. Overall findings clearly show that ascochlorin is an unusual cytochrome bc1 inhibitor that acts at both of the active sites of this enzyme.  相似文献   

6.
Aminoaldehyde dehydrogenases (AMADHs, EC 1.2.1.19) belong to the large aldehyde dehydrogenase (ALDH) superfamily, namely, the ALDH9 family. They oxidize polyamine-derived ω-aminoaldehydes to the corresponding ω-amino acids. Here, we report the first X-ray structures of plant AMADHs: two isoenzymes, PsAMADH1 and PsAMADH2, from Pisum sativum in complex with β-nicotinamide adenine dinucleotide (NAD+) at 2.4 and 2.15 Å resolution, respectively. Both recombinant proteins are dimeric and, similarly to other ALDHs, each monomer is composed of an oligomerization domain, a coenzyme binding domain and a catalytic domain. Each subunit binds NAD+ as a coenzyme, contains a solvent-accessible C-terminal peroxisomal targeting signal (type 1) and a cation bound in the cavity close to the NAD+ binding site. While the NAD+ binding mode is classical for PsAMADH2, that for PsAMADH1 is unusual among ALDHs. A glycerol molecule occupies the substrate binding site and mimics a bound substrate. Structural analysis and substrate specificity study of both isoenzymes in combination with data published previously on other ALDH9 family members show that the established categorization of such enzymes into distinct groups based on substrate specificity is no more appropriate, because many of them seem capable of oxidizing a large spectrum of aminoaldehyde substrates. PsAMADH1 and PsAMADH2 can oxidize N,N,N-trimethyl-4-aminobutyraldehyde into γ-butyrobetaine, which is the carnitine precursor in animal cells. This activity highly suggests that in addition to their contribution to the formation of compatible osmolytes such as glycine betaine, β-alanine betaine and γ-aminobutyric acid, AMADHs might participate in carnitine biosynthesis in plants.  相似文献   

7.
Although essentially conserved, the N-terminal nucleotide-binding domain (NBD) of Cdr1p and other fungal transporters has some unique substitutions of amino acids which appear to have functional significance for the drug transporters. We have previously shown that the typical Cys193 in Walker A as well as Trp326 and Asp327 in the Walker B of N-terminal NBD (NBD-512) of Cdr1p has acquired unique roles in ATP binding and hydrolysis. In the present study, we show that due to spatial proximity, fluorescence resonance energy transfer (FRET) takes place between Trp326 of Walker B and MIANS [2-(4-maleimidoanilino) naphthalene-6-sulfonic acid] on Cys193 of Walker A motif. By exploiting FRET, we demonstrate how these critical amino acids are positioned within the nucleotide-binding pocket of NBD-512 to bind and hydrolyze ATP. Our results show that both Mg2+ coordination and nucleotide binding contribute to the formation of the active site. The entry of Mg2+ into the active site causes the first large conformational change that brings Trp326 and Cys193 in close proximity to each other. We also show that besides Trp326, typical Glu238 in the Q-loop also participates in coordination of Mg2+ by NBD-512. A second conformational change is induced when ATP, but not ADP, docks into the pocket. Asn328 does sensing of the γ-phosphate of the substrate in the extended Walker B motif, which is essential for the second conformational change that must necessarily precede ATP hydrolysis. Taken together our results imply that the uniquely placed residues in NBD-512 have acquired critical roles in ATP catalysis, which drives drug extrusion.  相似文献   

8.
Proline plays a significant role in plant resistance to abiotic stresses, and its level is determined by a combination of synthesis, catabolism and transport. The primary proteins involved are Δ1-pyrroline-5-carboxylate synthetase (P5CS), proline dehydrogenase (PDH) and proline transporter (ProT). To utilise proline metabolism to improve the stress resistance of Chrysanthemum × morifolium, we isolated two P5CS-homologous genes (ClP5CS1 and ClP5CS2), one PDH gene (ClPDH) and four ProT-homologous genes (ClProT1-4) (GenBANK accession numbers: KF743136–KF743142) from Chrysanthemum lavandulifolium, which is closely related to chrysanthemums and exhibits strong resistance to stresses. Expression analysis of these genes in different organs and under various stresses indicated that ClP5CSs showed substantial constitutive expression, while ClPDH was only strongly expressed in the capitulum and was inhibited under most stresses. The expression patterns of four ClProT genes presented characteristics of organ specificity and disparity under stresses. Above all, the expression of ClProT2 was restricted to above-ground organs, especially strong in the capitulum and could be obviously induced by various stress conditions. Promoters of ClPDH and ClProTs contained many cis-acting regulatory elements involved in stress responses and plant growth and development. High levels of free proline were found in flower buds, the capitulum under the non-stress condition and later periods of stress conditions except cold treatment. Interestingly, organ specificity and disparity also exist in the level of free proline under different stress conditions. Our study indicates that ClProTs play significant roles in proline accumulation and stress responses, and that ClProT2 could be used to genetically modify the stress resistance of chrysanthemums. In addition, proline metabolism might be closely related to plant flowering and floral development.  相似文献   

9.
Selected residues of transmembrane domain (TM) IX were previously shown to play key roles in ligand binding and transport in members of the Na+/solute symporter family. Using the Na+/proline transporter PutP as a model, a complete Cys scanning mutagenesis of TM IX (positions 324 to 351) was performed here to further investigate the functional significance of the domain. G328, S332, Q345, and L346 were newly identified as important for Na+-coupled proline uptake. Placement of Cys at one of these positions altered Km(pro) (S332C and L346C, 3- and 21-fold decreased, respectively; Q345C, 38-fold increased), K0.5(Na+) (S332C, 13-fold decreased; Q345C, 19-fold increased), and/or Vmax [G328C, S332C, Q345C, and L346C, 3-, 22-, 2-, and 8-fold decreased compared to PutP(wild type), respectively]. Membrane-permeant N-ethylmaleimide inhibited proline uptake into cells containing PutP with Cys at distinct positions in the middle (T341C) and cytoplasmic half of TM IX (C344, L347C, V348C, and S351C) and had little or no effect on all other single Cys PutP variants. The inhibition pattern was in agreement with the pattern of labeling with fluorescein-5-maleimide. In addition, Cys placed into the cytoplasmic half of TM IX (C344, L347C, V348C, and S351C) was protected from fluorescein-5-maleimide labeling by proline while Na+ alone had no effect. Membrane-impermeant methanethiosulfonate ethyltrimethylammonium modified Cys in the middle (A337C and T341C) and periplasmic half (L331C) but not in the cytoplasmic half of TM IX in intact cells. Furthermore, Cys at the latter positions was partially protected by Na+ but not by proline. Based on these results, a model is discussed according to which residues of TM IX participate in the formation of ligand-sensitive, hydrophilic cavities in the protein that may reconstitute part of the Na+ and/or proline translocation pathway of PutP.  相似文献   

10.
The hypothesis that the primary Na+-pump, Na+-ATPase, functions in the plasma membrane (PM) of halotolerant microalga Dunaliella maritima was tested using membrane preparations from this organism enriched with the PM vesicles. The pH profile of ATP hydrolysis catalyzed by the PM fractions exhibited a broad optimum between pH 6 and 9. Hydrolysis in the alkaline range was specifically stimulated by Na+ ions. Maximal sodium dependent ATP hydrolysis was observed at pH 7.5-8.0. On the assumption that the ATP-hydrolysis at alkaline pH values is related to a Na+-ATPase activity, we investigated two ATP-dependent processes, sodium uptake by the PM vesicles and generation of electric potential difference (Deltapsi) across the vesicle membrane. PM vesicles from D. maritima were found to be able to accumulate 22Na+ upon ATP addition, with an optimum at pH 7.5-8.0. The ATP-dependent Na+ accumulation was stimulated by the permeant NO3- anion and the protonophore CCCP, and inhibited by orthovanadate. The sodium accumulation was accompanied by pronounced Deltapsi generation across the vesicle membrane. The data obtained indicate that a primary Na+ pump, an electrogenic Na+-ATPase of the P-type, functions in the PM of marine microalga D. maritima.  相似文献   

11.
A phosphate-linked antiporter activity of the glucose-6-phosphate transporter (G6PT) has been recently described in liposomes including the reconstituded transporter protein. We directly investigated the mechanism of glucose-6-phosphate (G6P) transport in rat liver microsomal vesicles. Pre-loading with inorganic phosphate (Pi) did not stimulate G6P or Pi microsomal inward transport. Pi efflux from pre-loaded microsomes could not be enhanced by G6P or Pi addition. Rapid G6P or Pi influx was registered by light-scattering in microsomes not containing G6P or Pi. The G6PT inhibitor, S3483, blocked G6P transport irrespectively of experimental conditions. We conclude that hepatic G6PT functions as an uniporter.  相似文献   

12.
Megumi Hirono 《BBA》2007,1767(12):1401-1411
The H+-translocating inorganic pyrophosphatase is a proton pump that hydrolyzes inorganic pyrophosphate. It consists of a single polypeptide with 14-17 transmembrane domains (TMs). We focused on the third quarter region of Streptomyces coelicolor A3(2) H+-pyrophosphatase, which contains a long conserved cytoplasmic loop. We assayed 1520 mutants for pyrophosphate hydrolysis and proton translocation, and selected 34 single-residue substitution mutants with low substrate hydrolysis and proton-pump activities. We also generated 39 site-directed mutant enzymes and assayed their activity. The mutation of 5 residues in TM10 resulted in low energy-coupling efficiencies, and mutation of conserved residues Thr409, Val411, and Gly414 showed neither hydrolysis nor pumping activity. The mutation of six, five, and four residues in TM11, 12, and 13, respectively, gave a negative effect. Phe388, Thr389, and Val396 in cytoplasmic loop i were essential for efficient H+ translocation. Ala436 and Pro560 in the periplasmic loops were critical for coupling efficiency. These low-efficiency mutants showed dysfunction of the energy-conversion and/or proton-translocation activity. The energy efficiency was increased markedly by the mutation of two and six residues in TM9 and 12, respectively. These results suggest that TM10 is involved in enzyme function, and that TM12 regulate the energy-conversion efficiency. H+-pyrophosphatase might involve dynamic linkage between the hydrophilic loops and TMs through the central half region of the enzyme.  相似文献   

13.
Chunxi Zhang 《BBA》2006,1757(7):781-786
In the field of photosynthetic water oxidation it has been under debate whether TyrosineZ (TyrZ) acts as a hydrogen or an electron acceptor from water. In the former concept, direct contact of TyrZ with substrate water has been assumed. However, there is no direct evidence for the interaction between TyrZ and substrate water in active Photosystem II (PSII), instead most experiments have been performed on inhibited PSII. Here, this problem is tackled in active PSII by combining low temperature EPR measurements and quantum chemistry calculations. EPR measurements observed that the maximum yield of TyrZ oxidation at cryogenic temperature in the S0 and S1 states was around neutral pH and was essentially pH-independent. The yield of TyrZ oxidation decreased at acidic and alkaline pH, with pKs at 4.7-4.9 and 7.7, respectively. The observed pH-dependent parts at low and high values of pH can be explained as due to sample inactivation, rather than active PSII. The reduction kinetics of TyrZ· in the S0 and S1 states were pH independent at pH range from 4.5 to 8. Therefore, the change of the pH in bulk solution probably has no effect on the TyrZ oxidation and TyrZ· reduction at cryogenic temperature in the S0 and S1 states of the active PSII. Theoretical calculations indicate that TyrZ becomes more difficult to oxidize when a H2O molecule interacts directly with it. It is suggested that TyrZ is probably located in a hydrophobic environment with no direct interaction with the substrate H2O in active PSII. These results provide new insights on the function and mechanism of water oxidation in PSII.  相似文献   

14.
The recently identified benzoate oxidation (box) pathway in Burkholderia xenovorans LB400 (LB400 hereinafter) assimilates benzoate through a unique mechanism where each intermediate is processed as a coenzyme A (CoA) thioester. A key step in this process is the conversion of 3,4-dehydroadipyl-CoA semialdehyde into its corresponding CoA acid by a novel aldehyde dehydrogenase (ALDH) (EC 1.2.1.x). The goal of this study is to characterize the biochemical and structural properties of the chromosomally encoded form of this new class of ALDHs from LB400 (ALDHC) in order to better understand its role in benzoate degradation. To this end, we carried out kinetic studies with six structurally diverse aldehydes and nicotinamide adenine dinucleotide (phosphate) (NAD + and NADP +). Our data definitively show that ALDHC is more active in the presence of NADP + and selective for linear medium-chain to long-chain aldehydes. To elucidate the structural basis for these biochemical observations, we solved the 1.6-Å crystal structure of ALDHC in complex with NADPH bound in the cofactor-binding pocket and an ordered fragment of a polyethylene glycol molecule bound in the substrate tunnel. These data show that cofactor selectivity is governed by a complex network of hydrogen bonds between the oxygen atoms of the 2′-phosphoryl moiety of NADP + and a threonine/lysine pair on ALDHC. The catalytic preference of ALDHC for linear longer-chain substrates is mediated by a deep narrow configuration of the substrate tunnel. Comparative analysis reveals that reorientation of an extended loop (Asn478-Pro490) in ALDHC induces the constricted structure of the substrate tunnel, with the side chain of Asn478 imposing steric restrictions on branched-chain and aromatic aldehydes. Furthermore, a key glycine (Gly104) positioned at the mouth of the tunnel allows for maximum tunnel depth required to bind medium-chain to long-chain aldehydes. This study provides the first integrated biochemical and structural characterization of a box-pathway-encoded ALDH from any organism and offers insight into the catalytic role of ALDHC in benzoate degradation.  相似文献   

15.
Pavel Pospíšil  Arjun Tiwari 《BBA》2010,1797(4):451-456
The effect of illumination and molecular oxygen on the redox and the redox potential changes of cytochrome b559 (cyt b559) has been studied in Tris-treated spinach photosystem II (PSII) membranes. It has been demonstrated that the illumination of Tris-treated PSII membranes induced the conversion of the intermediate-potential (IP) to the reduced high-potential (HPFe2+) form of cyt b559, whereas the removal of molecular oxygen resulted in the conversion of the IP form to the oxidized high-potential (HPFe3+) form of cyt b559. Light-induced conversion of cyt b559 from the IP to the HP form was completely inhibited above pH 8 or by the modification of histidine ligand that prevents its protonation. Interestingly, no effect of high pH or histidine modification was observed during the conversion of the IP to the HP form of cyt b559 after the removal of molecular oxygen. These results indicate that conversion from the IP to the HP form of cyt b559 proceeds via different mechanisms. Under illumination, conversion of the IP to the HP form of cyt b559 depends primarily on the protonation of the histidine residue, whereas under anaerobic conditions, the conversion of the IP to the HP form of cyt b559 is driven by higher hydrophobicity of the environment around the heme iron resulting from the absence of molecular oxygen.  相似文献   

16.
Hiroyuki Mino  Shigeru Itoh 《BBA》2005,1708(1):42-49
We investigated a new EPR signal that gives a broad line shape around g=2 in Ca2+-depleted Photosystem (PS) II. The signal was trapped by illumination at 243 K in parallel with the formation of YZ. The ratio of the intensities between the g=2 broad signal and the YZ signal was 1:3, assuming a Gaussian line shape for the former. The g=2 broad signal and the YZ signal decayed together in parallel with the appearance of the S2 state multiline at 243 K. The g=2 broad signal was assigned to be an intermediate S1X state in the transition from the S1 to the S2 state, where X represents an amino acid radical nearby manganese cluster, such as D1-His337. The signal is in thermal equilibrium with YZ. Possible reactions in the S state transitions in Ca2+-depleted PS II were discussed.  相似文献   

17.
Lecithin:retinol acyltransferase (LRAT) plays a major role in the vertebrate visual cycle. Indeed, it is responsible for the esterification of all-trans retinol into all-trans retinyl esters, which can then be stored in microsomes or further metabolized to produce the chromophore of rhodopsin. In the present study, a detailed characterization of the enzymatic properties of truncated LRAT (tLRAT) has been achieved using in vitro assay conditions. A much larger tLRAT activity has been obtained compared to previous reports and to an enzyme with a similar activity. In addition, tLRAT is able to hydrolyze phospholipids bearing different chain lengths with a preference for micellar aggregated substrates. It therefore presents an interfacial activation property, which is typical of classical phospholipases. Furthermore, given that stability is a very important quality of an enzyme, the influence of different parameters on the activity and stability of tLRAT has thus been studied in detail. For example, storage buffer has a strong effect on tLRAT activity and high enzyme stability has been observed at room temperature. The thermostability of tLRAT has also been investigated using circular dichroism and infrared spectroscopy. A decrease in the activity of tLRAT was observed beyond 70 °C, accompanied by a modification of its secondary structure, i.e. a decrease of its α-helical content and the appearance of unordered structures and aggregated β-sheets. Nevertheless, residual activity could still be observed after heating tLRAT up to 100 °C. The results of this study highly improved our understanding of this enzyme.  相似文献   

18.
19.
The human ABCG2 protein is an ATP binding cassette half-transporter, which protects our cells and tissues against various xenobiotics, while overexpression of ABCG2 in tumor cells confers multidrug resistance. It has been documented that single amino acid changes at position 482 resulted in altered drug resistance and transport capacity. In this study, we have generated nine Arg-482 mutants (G, I, M, S, T, D, N, K, Y) of ABCG2, and expressed them in insect cells. All ABCG2 variants showed cell surface expression and, in isolated membranes, an ABCG2-specific ATPase activity. When methotrexate accumulation was measured in inside-out membrane vesicles, this transport was supported only by the wild-type ABCG2. In intact cells, mitoxantrone was transported by all ABCG2 variants, except by R482K. Rhodamine 123 was extruded by most of the mutants, except by R482K, Y and by wild-type ABCG2. Hoechst 33342 was pumped out from cells expressing the wild-type and all Arg-482 variants, but not from those expressing R482K and Y. Our study demonstrates that the substrate specificity of the Arg (wild-type) form is unique and that amino acid replacements at position 482 induce major alterations in both the transport activity and substrate specificity of this protein.  相似文献   

20.
Characteristics of mitochondrial (mt) DNA such as gene content and arrangement, as well as mt tRNA secondary structure, are frequently used in comparative genomic analyses because they provide valuable phylogenetic information. However, most analyses do not characterize the relationship of tRNA genes from the same mt genome and, in some cases, analyses overlook possible novel open reading frames (ORFs) when the 13 expected protein-coding genes are already annotated. In this study, we describe the sequence and characterization of the complete mt genome of the silver-lip pearl oyster, Pinctada maxima. The 16,994-bp mt genome contains the same 13 protein-coding genes (PCGs) and two ribosomal RNA genes typical of metazoans. The gene arrangement, however, is completely distinct from that of all other available bivalve mt genomes, and a unique tRNA gene family is observed in this genome. The unique tRNA gene family includes two trnS− AGY and trnQ genes, a trnM isomerism, but it lacks trnS− CUN. We also report the first clear evidence of alloacceptor tRNA gene recruitment (trnP → trnS− AGY) in mollusks. In addition, a novel ORF (orfUR1) expressed at high levels is present in the mt genome of this pearl oyster. This gene contains a conserved domain, “Oxidored_q1_N”, which is a member of Complex I and thus may play an important role in key biological functions. Because orfUR1 has a very similar nucleotide composition and codon bias to that of other genes in this genome, we hypothesize that this gene may have been moved to the mt genome via gene transfer from the nuclear genome at an early stage of speciation of P. maxima, or it may have evolved as a result of gene duplication, followed by rapid sequence divergence. Lastly, a 319-bp region was identified as the possible control region (CR) even though it does not correspond to the longest non-coding region in the genome. Unlike other studies of mt genomes, this study compares the evolutionary patterns of all available bivalve mt tRNA and atp8 genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号