首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background and Aims

In most plant species, initiation of lateral root primordia occurs above the elongation zone. However, in cucurbits and some other species, lateral root primordia initiation and development takes place in the apical meristem of the parental root. Composite transgenic plants obtained by Agrobacterium rhizogenes-mediated transformation are known as a suitable model to study root development. The aim of the present study was to establish this transformation technique for squash.

Methods

The auxin-responsive promoter DR5 was cloned into the binary vectors pKGW-RR-MGW and pMDC162-GFP. Incorporation of 5-ethynyl-2′-deoxyuridine (EdU) was used to evaluate the presence of DNA-synthesizing cells in the hypocotyl of squash seedlings to find out whether they were suitable for infection. Two A. rhizogenes strains, R1000 and MSU440, were used. Roots containing the respective constructs were selected based on DsRED1 or green fluorescent protein (GFP) fluorescence, and DR5::Egfp-gusA or DR5::gusA insertion, respectively, was verified by PCR. Distribution of the response to auxin was visualized by GFP fluorescence or β-glucuronidase (GUS) activity staining and confirmed by immunolocalization of GFP and GUS proteins, respectively.

Key Results

Based on the distribution of EdU-labelled cells, it was determined that 6-day-old squash seedlings were suited for inoculation by A. rhizogenes since their root pericycle and the adjacent layers contain enough proliferating cells. Agrobacterium rhizogenes R1000 proved to be the most virulent strain on squash seedlings. Squash roots containing the respective constructs did not exhibit the hairy root phenotype and were morphologically and structurally similar to wild-type roots.

Conclusions

The auxin response pattern in the root apex of squash resembled that in arabidopsis roots. Composite squash plants obtained by A. rhizogenes-mediated transformation are a good tool for the investigation of root apical meristem development and root branching.  相似文献   

2.
We have developed an efficient transformation system for Tribulus terrestris L., an important medicinal plant, using Agrobacterium rhizogenes strains AR15834 and GMI9534 to generate hairy roots. Hairy roots were formed directly from the cut edges of leaf explants 10–14 days after inoculation with the Agrobacterium with highest frequency transformation being 49 %, which was achieved using Agrobacterium rhizogenes AR15834 on hormone-free MS medium after 28 days inoculation. PCR analysis showed that rolB genes of Ri plasmid of A. rhizogenes were integrated and expressed into the genome of transformed hairy roots. Isolated transgenic hairy roots grew rapidly on MS medium supplemented with indole-3-butyric acid. They showed characteristics of transformed roots such as fast growth and high lateral branching in comparison with untransformed roots. Isolated control and transgenic hairy roots grown in liquid medium containing IBA were analyzed to detect ß-carboline alkaloids by High Performance Thin Layer Chromatograghy (HPTLC). Harmine content was estimated to be 1.7 μg g−1 of the dried weight of transgenic hairy root cultures at the end of 50 days of culturing. The transformed roots induced by AR15834 strain, spontaneously, dedifferentiated as callus on MS medium without hormone. Optimum callus induction and shoot regeneration of transformed roots in vitro was achieved on MS medium containing 0.4 mg L−1 naphthaleneacetic acid and 2 mg L−1 6-benzylaminopurine (BAP) after 50 days. The main objective of this investigation was to establish hairy roots in this plant by using A. rhizogenes to synthesize secondary products at levels comparable to the wild-type roots.  相似文献   

3.
Cytokinins (CKs) are ubiquitous phytohormones that participate in development, morphogenesis and many physiological processes throughout plant kingdom. In higher plants, mutants and transgenic cells and tissues with altered activity of CK metabolic enzymes or perception machinery, have highlighted their crucial involvement in different agriculturally important traits, such as productivity, increased tolerance to various stresses and overall plant morphology. Furthermore, recent precise metabolomic analyses have elucidated the specific occurrence and distinct functions of different CK types in various plant species. Thus, smooth manipulation of active CK levels in a spatial and temporal way could be a very potent tool for plant biotechnology in the future. This review summarises recent advances in cytokinin research ranging from transgenic alteration of CK biosynthetic, degradation and glucosylation activities and CK perception to detailed elucidation of molecular processes, in which CKs work as a trigger in model plants. The first attempts to improve the quality of crop plants, focused on cereals are discussed, together with proposed mechanism of action of the responses involved.  相似文献   

4.
Nepeta pogonosperma is an important medicinal plant with anti-inflammatory effects. An efficient and reliable transformation system for this plant was developed through optimization of several factors which affected the rate of Agrobacterium rhizogenes mediated transformation. Five bacterial strains, A4, ATCC15834, LBA9402, MSU440 and A13, two explant types, leaves and stems, and several co-cultivation media were examined. The maximum rate of hairy root induction was obtained from stem explants using MSU440 and ATCC15834 bacterial strains. A drastic increase in the frequency of transformation (91 %) was observed when MS medium lacking NH4NO3, KH2PO4, KNO3 and CaCl2. Hairy root lines were confirmed by polymerase chain reaction (PCR) using primers of the rolB gene. According to Southern blot analysis, one T-DNA copy was inserted into each of the hairy root lines. In the present study, transgenic hairy roots have been obtained trough genetic transformation by A. rhizogenes harbouring two plasmids, the Ri plasmid and pBI121 binary vector harbouring gus reporter gene. Expression of the gus gene in transgenic hairy root was confirmed by histochemical GUS assay.  相似文献   

5.
Agrobacterium rhizogenes mediated transformation combined with a visual selection for green fluorescent protein (GFP) has been applied effectively in carrot (Daucus carota L.) transformation. Carrot root discs were inoculated with A4, A4T, LBA1334 and LBA9402 strains, all bearing gfp gene in pBIN-m-gfp5-ER. The results indicate that transformed adventitious roots can be visually selected solely based on GFP fluorescence with a very high accuracy. The method requires no selection agents like antibiotics or herbicides and enables a reduction of labour and time necessary for tissue culture. Moreover, individual transformants can be easily excised from the host tissue and cultured separately. All of the 12 used carrot cultivars produced transformed adventitious roots and the frequency of discs producing GFP expressing adventitious roots varied from 13 to 85%. The highest transformation rate was found for A4T and LBA1334 strains possessing chromosomal background of A. tumefaciens C58. The results encourage that visual selection of transformed, fluorescing adventitious roots can be highly effective and applied routinely for the production of carrot transgenic plants.  相似文献   

6.
Transformed roots of Lupinus mutabilis cv. Potosi induced by Agrobacterium rhizogenes strain R1601 were cultured on Murashige and Skoog-based medium lacking kanamycin sulphate, or with this antibiotic at 40 mg l−1. The neomycin phosphotransferase gene in the genome of transformed roots was confirmed by non-radioactive Southern hybridisation. Neomycin phosphotransferase protein was detected by ELISA. Transformed roots synthesised isoflavones, but not quinolizidine alkaloids; the latter are typical secondary metabolites of lupin normally produced in aerial parts of the plant. Genistein and 2′-hydroxygenistein, were the main secondary metabolites in cultured, transformed roots, whereas the glycoside genistin was more abundant in roots of non-transformed plants. Wighteone concentrations in transgenic roots were higher than those of non-transformed roots. Transformed roots produced twice the concentration of isoflavones compared with roots from non-transformed plants, indicating that Ri plasmid T-DNA genes modified isoflavone concentration and pattern of biosynthesis.  相似文献   

7.
In G2 peas senescence only takes place in long days. In order to determine the role of cytokinins in this process the endogenous cytokinins from vegetative shoots of G2 peas were characterized using gas chromatography-mass spectroscopy following purification by HPLC. Cytokinins were extracted and purified with and without the addition of 15N labelled internal standards of several cytokinins to estimate cytokin content by isotope dilution in the mass spectra. Samples without internal standards were bioassayed after HPLC. Bioassays showed the presence of zeatin, zeatin riboside and zeatin-0-glucoside. The presence of zeatin was confirmed by its mass spectrum of its permethylated derivative. Tentative identification of zeatin riboside, zeatin-0-glucoside, dihydrozeatin, and dihydrozeatin-0-glucoside was obtained by the coincidence of the major ion for the permethylated natural and 15N labelled internal standards on GC-MS, and the similar coincidence of ions for permethylated zeatin riboside-0-glucoside by direct probe MS. There was no indication of the presence of significant quantities of zeatin-7-glucoside or zeatin-9-glucoside. The amounts in the tissue ranged from 200–1000 ng/kg fresh weight for each cytokinin and about 2–4 g/kg fresh weight for total cytokinins. There was no apparent difference in the levels in mature but pre-senescent shoots grown in long days and short days indicating that apical senesecence in G2 peas does not appear to be induced by a decline in cytokinin level in the shoots.Cytokinin abbreviations CK Cytokinin - Z trans zeatin - [9R]Z t-zeatin riboside - [9R-5P] Z t-zeatin riboside-5-monophosphate - (OG)Z t-zeatin-0-glucoside - (OG)[9R]Z t-zeatin riboside-0-glucoside - [7Z]G t-zeatin-7-glucoside - [9G]Z t-zeatin-9-glucoside - (diH)Z dihydrozeatin - (diH)[9R]Z dihydrozeatin riboside - iP N6(2-isopentenyl) adenine - [9R]iP N6(2-isopentenyl) adenosine Work performed while PJD was on leave at the University College of Wales at Aberystwyth.  相似文献   

8.
Despite numerous advantages of the many tissue culture-independent hairy root transformation protocols, the process is often compromised in the initial in vitro culture stage where inability to maintain high humidity and the delivery of nourishing culture medium decrease cellular morphogenesis and organ formation efficiency. Ultimately, this influences the effective transfer of produced plantlets during transfer from in vitro to in vivo conditions, where low survival rates occur during the acclimation period. We have developed an intermediate protocol for Agrobacterium rhizogenes transformation in Glycine species by combining a two-step in vitro and in vivo process that greatly enhances the efficiency of hairy root formation and which simplifies the maintenance of the transformed roots. In this protocol, cotyledonary nodes of Glycine max and Glycine canescens seedlings were infected by A. rhizogenes K599 carrying a reporter gene construct constitutively expressing green fluorescent protein (GFP). Glass containers containing sand and nutrient solution were employed to provide a moist clean microenvironment for the generation of hairy roots from inoculated seedlings. Transgenic roots were then noninvasively identified from nontransgenic roots based on the detection of GFP. Main roots and nontransgenic roots were removed leaving transgenic hairy roots to support seedling development, all within 1 mo of beginning the experiment. Overall, this protocol increased the transformation efficiency by more than twofold over traditional methods. Approximately 88% and 100% of infected plants developed hairy roots from G. max and G. canescens, respectively. On average, each infected plant produced 10.9 transformed hairy roots in G. max and 13–20 in G. canescens. Introduction of this simple protocol is a significant advance that eliminates the long and genotype-dependent tissue culture procedure while taking advantage of its optimum in vitro qualities to enhance the micropropagation rate. This research will support the increasing use of transient transgenic hairy roots for the study of plant root biology and symbiotic interactions with Rhizobium spp.  相似文献   

9.
10.
An efficient hairy root induction system for an important endangered medicinal plant, Dracocephalum kotschyi, was developed through Agrobacterium rhizogenes-mediated transformation by modifying the co-cultivation medium using five bacterial strains, A4, ATCC15834, LBA9402, MSU440, and A13 (MAFF-02-10266). A drastic increase in transformation frequency was observed when a Murashige and Skoog medium lacking NH4NO3 KH2PO4, KNO3 and CaCl2 was used, resulting in hairy root induction frequencies of 52.3 %, 69.6 %, 48.6 %, 89.0 %, and 80.0 % by A4, A13, LBA9402, MSU440, and ATCC15834 strains, respectively. For shoot induction, hairy roots and unorganized tumors induced by strain ATCC15834 were placed on an MS media supplemented with 0.1, 0.25, 0.5, and 1 mg/l BA plus 0.1 mg/l NAA. The high frequency of shoot regeneration and number of shoot were obtained in the medium containing 0.25 mg/l BA and 0.1 mg/l NAA. Root induction occurred from the base of regenerated shoots on the MS medium supplemented with 0.5 mg/l IBA after 10 days.  相似文献   

11.
12.
An efficient, rapid and direct multiple shoot regeneration system amenable to Agrobacterium-mediated transformation from primary leaf with intact petiole of blackgram (Vigna mungo) is established for the first time. The effect of the explant type and its age, type and concentration of cytokinin and auxin either alone or in combination and genotype on multiple shoot regeneration efficiency and frequency was optimized. The primary leaf explants with petiole excised from 4-day-old seedlings directly developed multiple shoots (an average of 10 shoots/ explant) from the cut ends of the petiole in 95 % of the cultures on MSB (MS salts and B5 vitamins) medium containing 1.0 μM 6-benzylaminopurine. Elongated (2–3 cm) shoots were rooted on MSB medium with 2.5 μM indole-butyric acid and resulted plantlets were hardened and established in soil, where they resumed growth and reached maturity with normal seed set. The regenerated plants were morphologically similar to seed-raised plants and required 8 weeks time from initiation of culture to establish them in soil. The regeneration competent cells present at the cut ends of petiole are fully exposed and are, thus, easily accessible to Agrobacterium, making this plant regeneration protocol amenable for the production of transgenic plants. The protocol was further successfully used to develop fertile transgenic plants of blackgram using Agrobacterium tumefaciens strain EHA 105 carrying a binary vector pCAMBIA2301 that contains a neomycin phosphotransferase gene (nptII) and a β-glucuronidase (GUS) gene (uidA) interrupted with an intron. The presence and integration of transgenes in putative T0 plants were confirmed by polymerase chain reaction (PCR) and Southern blot hybridization, respectively. The transgenes were inherited in Mendelian fashion in T1 progeny and a transformation frequency of 1.3 % was obtained. This protocol can be effectively used for transferring new traits in blackgram and other legumes for their quantitative and qualitative improvements.  相似文献   

13.
Thielaviopsis basicola is a hemibiotrophic root pathogen causing black root rot in a wide range of economically important crops. Our initial attempts to transform T. basicola using standard Agrobacterium tumefaciens–mediated transformation (ATMT) protocols were unsuccessful. Successful transformation required the addition of V8 juice (to induce germination of T. basicola chlamydospores) and higher concentrations of acetosyringone in the co-cultivation medium, and of chlamydospores/endoconidia, A. tumefaciens cells during co-cultivation. With these modifications, two T. basicola strains were successfully transformed with the green (egfp) or red (AsRed) fluorescent protein genes. Chlamydospores/endoconidia transformed with the egfp gene exhibited strong green fluorescence, but their fluorescence became weaker as the germ tubes emerged. Transformants harbouring the AsRed gene displayed strong red fluorescence in both chlamydospores/endoconidia and germ tubes. Fluorescent microscopic observations of an AsRed-labelled strain colonizing roots of transgenic Nicotiana benthamiana plants, which express the actin filaments labelled with EGFP, at 24 hours post inoculation showed varying levels of fungal germination and penetration. At this stage, the infection appeared to be biotrophic with the EGFP-labelled host actin filaments not being visibly degraded, even in host root cells in close contact with the hyphae. This is the first report of ATMT of T. basicola, and the use of an AsRed-labelled strain to directly observe the root infection process.  相似文献   

14.
A method to produce transgenic plants of Vitis rotundifolia was developed. Embryogenic cultures were initiated from leaves of in vitro grown shoot cultures and used as target tissues for Agrobacterium-mediated genetic transformation. A green fluorescent protein/neomycin phosphotransferase II (gfp/nptII) fusion gene that allowed for simultaneous selection of transgenic cells based on GFP fluorescence and kanamycin resistance was used to optimize parameters influencing genetic transformation. It was determined that both proembryonal masses (PEM) and mid-cotyledonary stage somatic embryos (SE) were suitable target tissues for co-cultivation with Agrobacterium as evidenced by transient GFP expression. Kanamycin at 100 mg l−1 in the culture medium was effective in suppression of non-transformed tissue and permitting the growth and development of transgenic cells, compared to 50 or 75 mg l−1, which permitted the proliferation of more non-transformed cells. Transgenic plants of “Alachua” and “Carlos” were recovered after secondary somatic embryogenesis from primary SE explants co-cultivated with Agrobacterium. The presence and stable integration of transgenes in transgenic plants was confirmed by PCR and Southern blot hybridization. Transgenic plants exhibited uniform GFP expression in cells of all plant tissues and organs including leaves, stems, roots, inflorescences and the embryo and endosperm of developing berries.  相似文献   

15.
The genetic improvement of garlic plants (Allium sativum L.) with agronomical beneficial traits is rarely achieved due to the lack of an applicable transformation system. Here, we developed an efficient Agrobacterium-mediated transformation procedure with Danyang, an elite Korean garlic cultivar. Examination of sGFP (synthetic green fluorescence protein) expression revealed that treatment with 2-(N-morpholino) ethanesulfonic acid (MES), L-cysteine and/or dithiothreitol (DTT) gives the highest efficiency in transient gene transfer during Agrobacterium co-cultivation with calli derived from the roots of in vitro plantlets. To increase stable transformation efficiency, a two-step selection was employed on the basis of hygromycin resistance and sGFP expression. Of the hygromycin-resistant calli initially produced, only sGFP-expressing calli were subcultured for selection of transgenic calli. Transgenic plantlets produced from these calli were grown to maturity. The transformation efficiency increased up to 10.6% via our optimized procedure. DNA and RNA gel-blot analysis indicated that transgenic garlic plants stably integrated and expressed the phosphinothricin acetyltransferase (PAT) gene. A herbicide spraying assay demonstrated that transgenic plants of garlic conferred herbicide resistance, whilst nontransgenic plants and weeds died. These results indicate that our transformation system can be efficiently utilized to produce transgenic garlic plants with agronomic benefits.  相似文献   

16.

Background and Aims

Green kiwifruit (Actinidia deliciosa) retain high concentrations of chlorophyll in the fruit flesh, whereas in gold-fleshed kiwifruit (A. chinensis) chlorophyll is degraded to colourless catabolites during fruit development, leaving yellow carotenoids visible. The plant hormone group the cytokinins has been implicated in the delay of senescence, and so the aim of this work was to investigate the link between cytokinin levels in ripening fruit and chlorophyll de-greening.

Methods

The expression of genes related to cytokinin metabolism and signal transduction and the concentration of cytokinin metabolites were measured. The regulation of gene expression was assayed using transient activation of the promoter of STAY-GREEN2 (SGR2) by cytokinin response regulators.

Key Results

While the total amount of cytokinin increased in fruit of both species during maturation and ripening, a high level of expression of two cytokinin biosynthetic gene family members, adenylate isopentenyltransferases, was only detected in green kiwifruit fruit during ripening. Additionally, high levels of O-glucosylated cytokinins were detected only in green kiwifruit, as was the expression of the gene for zeatin O-glucosyltransferase, the enzyme responsible for glucosylating cytokinin into a storage form. Season to season variation in gene expression was seen, and some de-greening of the green kiwifruit fruit occurred in the second season, suggesting environmental effects on the chlorophyll degradation pathway. Two cytokinin-related response regulators, RRA17 and RRB120, showed activity against the promoter of kiwifruit SGR2.

Conclusions

The results show that in kiwifruit, levels of cytokinin increase markedly during fruit ripening, and that cytokinin metabolism is differentially regulated in the fruit of the green and gold species. However, the causal factor(s) associated with the maintenance or loss of chlorophyll in kiwifruit during ripening remains obscure.  相似文献   

17.
To evaluate the ability of Arabidopsis thaliana hairy roots to produce heterologous proteins, hypocotyls were transformed with Rhizobium rhizogenes harbouring a green fluorescent protein gene (gfp) fused to a plant signal peptide sequence. Hairy root transgenic lines were generated from wild-type or mutant genotypes. A line secreted GFP at 130 mg/l of culture medium. Unlike as was previously found with turnip hairy roots, a His-tag was still attached to approximately 50?% of the protein. Control of the pH and addition of a protease inhibitor to the culture medium resulted in up to 87?% of the GFP retaining the His-tag. A. thaliana hairy roots expressing the human serpina1 (α-1-antitrypsin) gene secreted the protein, which was visible on a PAGE gel. Protein activity in the culture medium was demonstrated using an elastase inhibition assay. A. thaliana hairy roots can now be considered for the production of heterologous proteins, making it possible to mine the numerous genetic resources for enhancing protein production and quality.  相似文献   

18.
We developed an alternative methodology for in vitro selection of transgenic Medicago truncatula cv. Jemalong plants using a bifunctional construct in which the coding sequences for the green fluorescent protein (GFP) and the β-glucuronidase protein (GUS) are fused. An Agrobacterium-mediated transformation protocol was used followed by regeneration via somatic embryogenesis in the dark, to avoid the synthesis and the consequent autofluorescence of chlorophyll. This method is a clear advantage over antibiotic and herbicide selection in which survival of non-transformed tissue is commonly reported, with the reassurance that all the somatic embryos selected as GFP positive are transformed. This was subsequently corroborated by the detection of GUS activity in leaves, stems and roots of the regenerated plants. Without antibiotic selection, and performing the embryo induction in the dark, it was possible to attest the advantage of using GFP as an in vivo detectable reporter for early embryo selection. The fusion with the GUS coding sequence provided additional evidence for the transformation of the previously selected embryos.  相似文献   

19.
Stable transformation was achieved in oca (Oxalis tuberosa L.) using an Agrobacterium rhizogenes-mediated system. Transformation frequencies varied with the use of different types of strains of A. rhizogenes and the age of explants. The transfer of rol A gene into the oca genome was confirmed by PCR analysis. In vitro transformed root cultures of oca grown in sterile liquid media induced purplish-blue fluorescence of the culture flask medium when irradiated with UV light. We have previously observed a similar phenomenon, the exudation of fluorescent compounds by the roots of in vitro and field-grown oca plants. Hairy root cultures of O. tuberosa transformed with A. rhizogenes (ATCC-15834) exuded constitutive levels of harmine (7-methoxy-1-methyl-β-carboline) and harmaline (3,4-dihydroharmine), the main fluorescent compounds detected from oca’s root exudates. Transformed roots showed better growth and exudation of harmine and harmaline compared to the untransformed normal roots. Upon elicitation with fungal cell wall elicitors from Phytophthora cinnamoni, the production and exudation of harmine/harmaline was enhanced in both transformed and non-transformed roots. Harmine and harmaline showed a wide range of antimicrobial activity against soil-borne microorganisms. Biologically, these findings suggest that in nature β-carbolines are constitutive antimicrobial compounds released into the rhizosphere upon microbial challenge. Transformed root cultures of oca make a simple, reliable and well-defined model system to investigate the molecular and metabolic exudation of fluorescent β-carboline biosynthesis, and to evaluate the biological significance of the phenomenon of root exudation of fluorescent metabolites.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号