首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
High-affinity nitrate transport was examined in intact root hair cells of Arabidopsis thaliana using electrophysiological recordings to characterise the response of the plasma membrane to NO 3 ? challenge and to quantify transport activity. The NO 3 ? -associated membrane current was determined using a three-electrode voltage clamp to bring membrane voltage under experimental control and to compensate for current dissipation along the longitudinal cell axis. Nitrate transport was evident in the roots of seedlings grown in the absence of a nitrogen source, but only 4–6 days postgermination. In 6-day-old seedlings, additions of 5–100 μm NO 3 ? to the bathing medium resulted in membrane depolarizations of 8–43 mV, and membrane voltage (V m) recovered on washing NO 3 ? from the bath. Voltage clamp measurements carried out immediately before and following NO 3 ? additions showed that the NO 3 ? -evoked depolarizations were the consequence of an inward-directed current that appeared across the entire range of accessible voltages (?300 to +50 mV). Both membrane depolarizations and NO 3 ? -evoked currents recorded at the free-running voltage displayed quasi-Michaelian kinetics, with apparent values for Km of 23 ± 6 and 44 ± 11 μm, respectively and, for the current, a maximum of 5.1 ± 0.9 μA cm?2. The NO 3 ? current showed a pronounced voltage sensitivity within the normal physiological range between ?250 and ?100 mV, as could be demonstrated under voltage clamp, and increasing the bathing pH from 6.1 to 7.4–8.0 reduced the current and the associated membrane depolarizations 3- to 8-fold. Analyses showed a well-defined interaction between the kinetic variables of membrane voltage, pHo and [NO 3 ? ]o. At a constant pHo of 6.1, depolarization from ?250 to ?150 mV resulted in an approximate 3-fold reduction in the maximum current but a 10% rise in the apparent affinity for NO 3 ? . By contrast, the same depolarization effected an approximate 20% fall in the Km for transport as a function in [H+]o. These, and additional characteristics of the transport current implicate a carrier cycle in which NO 3 ? binding is kinetically isolated from the rate-limiting step of membrane charge transit, and they indicate a charge-coupling stoichiometry of 2(H+) per NO 3 ? anion transported across the membrane. The results concur with previous studies showing a high-affinity NO 3 ? transport system in Arabidopsis that is inducible following a period of nitrogen-limiting growth, but they underline the importance of voltage as a kinetic factor controlling NO 3 ? transport at the plant plasma membrane.  相似文献   

2.

Key message

Over-production of functional PSK-α in Arabidopsis caused increases in both plant cell growth and biomass and induced male sterility by regulating cell wall development.

Abstract

Phytosulfokine-α (PSK-α) is a novel disulfated pentapeptide hormone that is involved in promoting plant cell growth. Although a role for PSK-α in stimulating protoplast expansion has been suggested, how PSK-α regulates cell growth in planta remains poorly understood. In this study, we found that overexpression of the normal PSK-α precursor gene AtPSK4, which resulted in high levels of PSK-α, caused longer roots and larger leaves with enlarged cells. As expected, these changes were not observed in transgenic plants overexpressing mutated AtPSK4, which generated unsulfated PSK-α. These findings confirmed the role of PSK-α in promoting plant cell growth. Furthermore, we found that overexpressing AtPSK4, but not mutated AtPSK4, induced a phenotype of male sterility that resulted from the failure of fibrous cell wall development in the endothecium. In addition, overexpressing AtPSK4 enhanced expression of a number of genes encoding expansins, which are involved in cell wall loosening. Accordingly, in addition to its role in cell growth, we propose a novel function for PSK-α signaling in the modulation of plant male sterility via regulation of cell wall development.
  相似文献   

3.
The reduction in growth of maize (Zea mays L.) seedling primary roots induced by salinization of the nutrient medium with 100 millimolar NaCl was accompanied by reductions in the length of the root tip elongation zone, the length of fully elongated epidermal cells, and the apparent rate of cell production: Each was partially restored when calcium levels in the salinized growth medium were increased from 0.5 to 10.0 millimolar. We investigated the possibility that the inhibition of elongation growth by salinity might be associated with an inhibition of cell wall acidification, such as that which occurs when root growth is inhibited by IAA. A qualitative assay of root surface acidification, using bromocresol purple pH indicator in agar, showed that salinized roots, with and without extra calcium, produced a zone of surface acidification which was similar to that produced by control roots. The zone of acidification began 1 to 2 millimeters behind the tip and coincided with the zone of cell elongation. The remainder of the root alkalinized its surface. Kinetics of surface acidification were assayed quantitatively by placing a flat tipped pH electrode in contact with the elongation zone. The pH at the epidermal surfaces of roots grown either with 100 millimolar NaCl (growth inhibitory), or with 10 millimolar calcium ± NaCl (little growth inhibition), declined from 6.0 to 5.1 over 30 minutes. We conclude that NaCl did not inhibit growth by reducing the capacity of epidermal cells to acidify their walls.  相似文献   

4.
5.
Xiao  Zhuoxi  Yan  Guochao  Ye  Mujun  Liang  Yongchao 《Plant and Soil》2021,460(1-2):189-209
Plant and Soil - We propose a thorough study of the succulent halophyte Sarcocornia carinata endemic to the saline lagoons of the center of the Iberian Peninsula. We describe its elemental...  相似文献   

6.
7.
Arabidopsis thaliana CEL1 protein was detected in young expanding tissues. Immunostaining revealed that CEL1 accumulated mostly in xylem cells. The primary, as well as the secondary xylem showed considerable CEL1 staining. CEL1 was also observed in young epidermal cells, in which the thicker lateral and tangential walls stained more intensely than the inner walls. In newly formed cell walls, the lateral tangential walls were labeled more intensively than the inner walls. Cellulase activity was found to be significantly higher in growing tissue compared to mature parts of the plant. Cel1 expression concurrently with cellulase activity could be restored in detached matured leaves by sucrose treatment after 48 h in the culture medium.  相似文献   

8.
Glycine release provoked by ion dysregulations typical of some neuropathological conditions was analyzed in cerebellar synaptosomes selectively pre-labelled with [3H]glycine through GlyT2 transporters and exposed in superfusion to KCl, 4-aminopyridine (4-AP) or veratridine. The overflows caused by relatively low concentrations of the releasers were largely external Ca2?-dependent. Higher concentrations of KCl (50 mM) or veratridine (10 μM), but not of 4-AP (1 mM), involved also external Ca2?-independent mechanisms. GlyT1-mediated release could not be observed; only the external Ca2?-independent veratridine-evoked overflow occurred significantly by GlyT2 reversal. None of the three depolarizing agents activated store-operated or transient receptor potential or L-type Ca2? channels. The overflows caused by KCl or 4-AP occurred in part by N- and P/Q-type voltage-sensitive calcium channel-dependent exocytosis. Significant portions of the external Ca2?-dependent overflow evoked by KCl or 4-AP (and all that caused by veratridine) were mediated by reverse plasmalemmal Na?/Ca2? exchangers. Significant contribution to the overflows evoked by KCl or veratridine came from Ca2? originated through mitochondrial Na?/Ca2? exchangers. Ca2?-induced Ca2? release (CICR) mediated by inositoltrisphosphate receptors (InsP?Rs) represents the final trigger of the glycine release evoked by high KCl. The overflows evoked by 4-AP or, less so, by veratridine also involved InsP?R-mediated CICR and, in part, CICR mediated by ryanodine receptors. To conclude, ionic dysregulations typical of ischemia and epilepsy caused glycine release in cerebellum by multiple differential mechanisms that may represent potential therapeutic targets.  相似文献   

9.
Seawater (SW) contains ~10 mM Ca(2+), yet marine fish must drink seawater as their major water source. Thus marine teleosts fish need to excrete Ca(2+) to maintain whole body Ca(2+) homeostasis. In the intestine, seawater Ca(2+) interreacts with epithelial-secreted HCO(3)(-) by the intestinal epithelium, and the resulting CaCO(3) precipitates, which is rectally excreted. Recently the transporters involved in intestinal HCO(3)(-) secretion were identified. Ca(2+) is also excreted by the kidney, but the protein(s) involved in renal Ca(2+) excretion have not been identified. Here we identified a candidate transporter by using SW pufferfish torafugu (Takifugu rubripes) and its closely related euryhaline species mefugu (Takifugu obscurus), which are becoming useful animal models for studying molecular mechanisms of seawater adaptation. RT-PCR analyses of Na(+)/Ca(2+) exchanger (NCX) family members in various torafugu tissues demonstrated that only NCX2a is highly expressed in the kidney. Renal expression of NCX2a was markedly elevated when mefugu were transferred from freshwater to seawater. In situ hybridization and immunohistochemical analyses indicated that NCX2a is expressed in the proximal tubule at the apical membrane. NCX2a, expressed in Xenopus oocytes, conferred [Ca(2+)](out)- and Na(+)-dependent currents. These results suggest that NCX2a mediates renal Ca(2+) secretion at the apical membrane of renal proximal tubules and has an important role in whole body Ca(2+) homeostasis of marine teleosts.  相似文献   

10.
L-type Ca(2+) channels (LTCCs) play an essential role in the excitation-contraction coupling of ventricular myocytes. We previously found that t-tubular (TT) LTCC current density was halved by the activation of protein phosphatase (PP)1 and/or PP2A, whereas surface sarcolemmal (SS) LTCC current density was increased by the inhibition of PP1 and/or PP2A activity in failing ventricular myocytes of mice chronically treated with isoproterenol (ISO mice). In the present study, we examined the possible involvement of inhibitory heterotrimeric G proteins (G(i/o)) in these abnormalities by chronically administrating pertussis toxin (PTX) to ISO mice (ISO + PTX mice). Compared with ISO mice, ISO + PTX mice exhibited significantly higher fractional shortening of the left ventricle. The expression level of Gα(i2) proteins was not altered by the treatment of mice with ISO and/or PTX. ISO + PTX myocytes had normal TT and SS LTCC current densities because they had higher and lower availability and/or open probability of TT and SS LTCCs than ISO myocytes, respectively. A selective PKA inhibitor, H-89, did not affect LTCC current densities in ISO + PTX myocytes. A selective PP2A inhibitor, fostriecin, did not affect SS or TT current density in control or ISO + PTX myocytes but significantly increased TT but not SS LTCC current density in ISO myocytes. These results indicate that chronic receptor-mediated activation of G(i/o) in vivo decreases basal TT LTCC activity by activating PP2A and increases basal SS LTCC activity by inhibiting PP1 without modulating PKA in heart failure.  相似文献   

11.
Russian Journal of Plant Physiology - The effect of donors of hydrogen sulfide (50 μM sodium hydrosulfide NaHS) and nitric oxide (500 μM sodium nitroprusside, SNP) on the salt...  相似文献   

12.
Zhao  Min  Liu  Qin  Zhang  Yue  Yang  Ning  Wu  Guofan  Li  Qiaoxia  Wang  Wei 《Journal of plant research》2020,133(3):393-407
Journal of Plant Research - Hydrogen sulfide (H2S) is an important gaseous molecule responding to osmotic stress in plant. Phospholipase Dα1 (PLDα1) and reactive oxygen species (ROS) are...  相似文献   

13.
Proliferation of vascular smooth muscle cells is a characteristic of pathological vascular remodeling and represents a significant therapeutic challenge in several cardiovascular diseases. Docosahexaenoic acid (DHA), a member of the n-3 polyunsaturated fatty acids, was shown to inhibit proliferation of numerous cell types, implicating several different mechanisms. In this study we examined the molecular events underlying the inhibitory effects of DHA on proliferation of primary human smooth muscle cells isolated from small pulmonary artery (hPASMCs). DHA concentration-dependently inhibited hPASMC proliferation, induced G1 cell cycle arrest, and decreased cyclin D1 protein expression. DHA activated the unfolded protein response (UPR), evidenced by increased mRNA expression of HSPA5, increased phosphorylation of eukaryotic initiation factor 2α, and splicing of X-box binding protein 1. DHA altered cellular lipid composition and led to increased reactive oxygen species (ROS) production. DHA-induced ROS were dependent on both intracellular Ca(2+) release and entry of extracellular Ca(2+). Overall cellular ROS and mitochondrial ROS were decreased by RU360, a specific inhibitor of mitochondrial Ca(2+) uptake. DHA-induced mitochondrial dysfunction was evidenced by decreased mitochondrial membrane potential and decreased cellular ATP content. DHA triggered apoptosis as found by increased numbers of cleaved caspase-3- and TUNEL-positive cells. The free radical scavenger Tempol counteracted DHA-induced ROS, cell cycle arrest, induction of UPR, and apoptosis. We conclude that Ca(2+)-dependent oxidative stress is the central and initial event responsible for induction of UPR, cell cycle arrest, and apoptosis in DHA-treated hPASMCs.  相似文献   

14.
Although cell elongation is a basic function of plant morphogenesis, many of the molecular events involved in this process are still unknown. In this work an extremely dwarf mutant, originally named bul, was used to study one of the main processes of plant development, cell elongation. Genetic analyses revealed that the BUL locus was linked to the nga172 marker on chromosome 3. Recently, after mapping the new dwf7 mutation of Arabidopsis, which is allelic to ste1, it was reported that dwf7 is also linked to the same marker. Sterol analyses of the bul1-1 mutant indicated that bul1-1 is defective in the Δ7-sterol-C5-desaturation step leading to brassinosteroid biosynthesis. Considering these findings, we designated our bul mutant as bul1-1/dwf7-3/ste1-4. The bul1-1 mutant was characterized by a very dwarf phenotype, with delayed development and reduced fertility. The mutant leaves had a dark-green colour, which was probably due to continuous stomatal closure. The bul1-1 mutant showed a partially de-etiolated phenotype in the dark. Cellular characterization and rescue experiments with brassinosteroids demonstrated the involvement of the BUL1-1 protein in brassinosteroid-dependent plant growth processes. Received: 28 April 2000 / Accepted: 6 October 2000  相似文献   

15.
16.
Summary Most cell wall components are carbohydrate including the major matrix polysaccharides, pectins and hemicelluloses, and the arabinogalactan-protein proteoglycans. Both types of molecules are assembled in the Golgi apparatus and transported in secretory vesicles to the cell surface. We have employed antibodies specific to -(16) and -(14)-D-galactans, present in plant cell wall polysaccharides, in conjunction with immunofluorescence and electron microscopy to determine the location of the galactan-containing components in the cell wall and Golgi stacks of flax root tip tissues. Immunofluorescence data show that -(14)-D-galactan epitopes are restricted to peripheral cells of the root cap. These epitopes are not expressed in meristematic and columella cells. In contrast, -(16)-D-galactan epitopes are found in all cell types of flax roots. Immunogold labeling experiments show that both epitopes are specifically located within the wall immediately adjacent to the plasma membrane. They are also detected in Golgi cisternae and secretory vesicles, which indicates the involvement of the Golgi apparatus in their synthesis and transport. These findings demonstrate that the synthesis and localization of -(14)-D-galactan epitopes are highly regulated in developing flax roots and that different -linked D-galactans associated with cell wall polysaccharides are expressed in a cell type-specific manner.  相似文献   

17.
We have used a well-characterized antibody specific for an epitope consisting of (1→3,6)-β-d-galactosyl residues with terminal glucuronic or 4-O-methylglucuronic acids of a bioactive pectin and immunocytochemistry to investigate its secretion and wall distribution in the hypocotyl and root tissues of flax seedlings. Our results show that this antigenic epitope is associated with flax pectins and is expressed by all the cells of the hypocotyl and root tissues. In the hypocotyl, it is abundant in the primary wall of epidermal cells as well as in the secondary wall of fiber cells, and is relatively less abundant in parenchyma cell walls. In contrast, the epitope is not detected in the middle lamellae and cell junction regions. In the root tip cells, immunogold electron microscopy shows that the cell walls of peripheral, columella, meristematic, cortical, and epidermal cells contain significant amounts of this epitope and that the distribution patterns are distinct. Together, these findings show that the antigenic epitope occurs in discrete domains of the wall implying a strict spatial regulation of the epitope-containing molecules. The results also show that, in root cells, the epitope is present within Golgi cisternae and is predominantly assembled in the trans and the trans-Golgi network compartments. Accepted: 21 October 1999  相似文献   

18.
This work studied the six β-galactosidases (BGALs) of the subfamily a1 of Arabidopsis, that have been proposed to play important roles in the cell wall remodelling during plant development, although their precise functions are still unknown. Knockout mutants bgal1, bgal2, bgal3, bgal4, bgal5, and bgal12 of Arabidopsis and their wild type (WT) plants were analysed to determine their morphology and composition of their cell walls. The gas chromatography and the Fourier transform infrared spectroscopy revealed differences between the mutants and their WT such as in the proportions of glucose, galactose, or xylose in bgal2 and bgal4 and in cell walls polysaccharides in bgal1, bgal3, and bgal5. However, these slight changes did not result in morphological variations during plant development. None of the mutant seedlings displayed a clear reduction in β(1,4)-galactan content, analysed by immunolocalization. The absence of significant phenotypic changes in the β-galactosidase subfamily a1 mutants could indicate possible β-galactosidases functional redundancy. Future studies will focus on the construction of multiple mutants that help to establish the precise function of each member of the β-galactosidase subfamily a1.  相似文献   

19.
Duchenne muscular dystrophy is a degenerative disorder that leads to death by the third decade of life. Previous investigations have shown that macrophages that invade dystrophic muscle are a heterogeneous population consisting of M1 and M2 macrophages that promote injury and repair, respectively. In the present investigation, we tested whether IFN-γ worsens the severity of mdx dystrophy by activating macrophages to a cytolytic M1 phenotype and by suppressing the activation of proregenerative macrophages to an M2 phenotype. IFN-γ is a strong inducer of the M1 phenotype and is elevated in mdx dystrophy. Contrary to our expectations, null mutation of IFN-γ caused no reduction of cytotoxicity of macrophages isolated from mdx muscle and did not reduce muscle fiber damage in vivo or improve gross motor function of mdx mice at the early, acute peak of pathology. In contrast, ablation of IFN-γ reduced muscle damage in vivo during the regenerative stage of the disease and increased activation of the M2 phenotype and improved motor function of mdx mice at that later stage of the disease. IFN-γ also inhibited muscle cell proliferation and differentiation in vitro, and IFN-γ mutation increased MyoD expression in mdx muscle in vivo, showing that IFN-γ can have direct effects on muscle cells that could impair repair. Taken together, the findings show that suppression of IFN-γ signaling in muscular dystrophy reduces muscle damage and improves motor performance by promoting the M2 macrophage phenotype and by direct actions on muscle cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号