共查询到20条相似文献,搜索用时 0 毫秒
1.
The oxidoreductase ERp57 is a component of the major histocompatibility complex (MHC) class I peptide-loading complex. ERp57 can interact directly with MHC class I molecules, however, little is known about which of the cysteine residues within the MHC class I molecule are relevant to this interaction. MHC class I molecules possess conserved disulfide bonds between cysteines 101-164, and 203-259 in the peptide-binding and alpha3 domain, respectively. By studying a series of mutants of these conserved residues, we demonstrate that ERp57 predominantly associates with cysteine residues in the peptide-binding domain, thus indicating ERp57 has direct access to the peptide-binding groove of MHC class I molecules during assembly. 相似文献
2.
Guennadi Kozlov 《Journal of molecular biology》2010,401(4):618-1883
Protein disulfide isomerases (PDIs) are responsible for catalyzing the proper oxidation and isomerization of disulfide bonds of newly synthesized proteins in the endoplasmic reticulum (ER). The ER contains many different PDI-like proteins. Some, such as PDI, are general enzymes that directly recognize misfolded proteins while others, such as ERp57 and ERp72, have more specialized roles. Here, we report the high-resolution X-ray crystal structure of the N-terminal portion of ERp72 (also known as CaBP2 or PDI A4), which contains two a0a catalytic thioredoxin-like domains. The structure shows that the a0 domain contains an additional N-terminal β-strand and a different conformation of the β5-α4 loop relative to other thioredoxin-like domains. The structure of the a domain reveals that a conserved arginine residue inserts into the hydrophobic core and makes a salt bridge with a conserved glutamate residue in the vicinity of the catalytic site. A structural model of full-length ERp72 shows that all three catalytic sites roughly face each other and positions the adjacent hydrophobic patches that are likely involved in protein substrate binding. 相似文献
3.
Human Equilibrative Nucleoside Transporter 1 (hENT1) is an integral membrane protein that transports nucleosides and analog drugs across cellular membranes. Very little is known about intracellular processing and localization of hENT1. Here we show that disruption of a highly conserved triplet (PWN) near the N-terminus, or the last eight C-terminal residues (two hydrophobic triplets separated by a positive arginine) result in loss of plasma membrane localization and/or transport function. To understand the role of specific residues within these regions, we studied the localization patterns of N- or C-terminal deletion and/or substitution mutants of GFP-hENT1 using confocal microscopy. Quantification of GFP-hENT1 (mutant and wildtype) protein at the plasma membrane was conducted using nitrobenzylthioinosine (NBTI) binding. Functionality of the GFP-hENT1 mutants was determined by heterologous expression in Xenopus laevis oocytes followed by measurement of uridine uptake. Mutation of the proline within the PWN motif disrupts plasma membrane localization. C-terminal mutations (primarily within the hydrophobic triplets) lead to hENT1 retention within the cell (e.g. in the ER). Some mutants still localize to the plasma membrane but show reduced transport activity. These data suggest that these two regions contribute to the structural integrity and thus correct processing and function of hENT1. 相似文献
4.
Vitu E Gross E Greenblatt HM Sevier CS Kaiser CA Fass D 《Journal of molecular biology》2008,384(3):631-640
Oxidoreductases belonging to the protein disulfide isomerase (PDI) family promote proper disulfide bond formation in substrate proteins in the endoplasmic reticulum. In plants and metazoans, new family members continue to be identified and assigned to various functional niches. PDI-like proteins typically contain tandem thioredoxin-fold domains. The limited information available suggested that the relative orientations of these domains may be quite uniform across the family, and structural models based on this assumption are appearing. However, the X-ray crystal structure of the yeast PDI family protein Mpd1p, described here, demonstrates the radically different domain orientations and surface properties achievable with multiple copies of the thioredoxin fold. A comparison of Mpd1p with yeast Pdi1p expands our perspective on the contexts in which redox-active motifs are presented in the PDI family. 相似文献
5.
Nuclear localization and DNA interaction of protein disulfide isomerase ERp57 in mammalian cells 总被引:3,自引:0,他引:3
Coppari S Altieri F Ferraro A Chichiarelli S Eufemi M Turano C 《Journal of cellular biochemistry》2002,85(2):325-333
Protein disulfide isomerase ERp57 is localized predominantly in the endoplasmic reticulum, but is also present in the cytosol and, according to preliminary evidence, in the nucleus of avian cells. Conclusive evidence of its nuclear localization and of its interaction with DNA in vivo in mammalian cells is provided here on the basis of DNA-protein cross-linking experiments performed with two different cross-linking agents on viable HeLa and 3T3 cells. Nuclear ERp57 could also be detected by immunofluorescence in HeLa cells, where it showed an intracellular distribution clearly different from that of an homologous protein, located exclusively in the endoplasmic reticulum. Mammalian ERp57 resembles the avian protein in its recognition of S/MAR-like DNA sequences and in its association with the nuclear matrix. It can be hypothesized that ERp57, which is known to associate with other proteins, in particular STAT3 and calreticulin, may contribute to their nuclear import, DNA binding, or other functions that they fulfil inside the nucleus. 相似文献
6.
Hye-Jung Park Kyoungsook Park Chang-Soo Lee Wan Soo Yun Bong Hyun Chung 《FEBS letters》2009,583(1):157-162
Here we describe an ion sensitive field effect transistor (ISFET) biosensor, which was designed to monitor directly the surface charge of structurally altered maltose binding protein (MBP) upon stimulation with maltose. This study is the first report of the application of a FET biosensor to the monitoring of conformationally changed proteins. Consequently, a significant drop in current on the basis of the charge-dependent capacitance measurement has been clearly observed in response to maltose, but not for the glucose control, thereby indicating that the substrate-specific conformational properties of the target protein could be successfully monitored using the ISFET. Collectively, our results clearly suggest that ISFET provide a high fidelity system for the detection of maltose-induced structural alterations in MBP. 相似文献
7.
8.
BACKGROUND: Immunoglobulin heavy-chain binding protein (BiP), calreticulin (Crt), and protein disulfide isomerase (PDI), are major resident endoplasmic reticulum (ER) stress proteins which are involved in diverse roles relating to successful folding, assembly, intracellular localization, and degradation of other proteins. METHODS: In this study, we molecular cloned cDNAs for BiP, Crt, and PDI from Japanese monkey (Macaca fuscata), and analyzed tissue-specific expression of respective genes. RESULTS AND CONCLUSIONS: The lengths of protein-coding regions of these cDNAs for BiP, Crt and PDI are 1965, 1254, and 1533 bp, respectively. Each protein has a signal peptide and a KDEL motif in N- and C-terminal parts respectively, showing its intracellular localization to be the lumen of the ER. These stress proteins are highly conserved, showing that their similarities among mammals are more than 90% in the level of amino acid. The expression of the genes for stress proteins differed among the monkey tissues examined. BiP and PDI gene expression was predominant in secretory tissues such as liver and kidney, and brain tissues. But Crt gene expressed rather ubiquitously in a variety of tissues. 相似文献
9.
Protein translocation in Escherichia coli is mediated by the translocase that, in its minimal form, comprises a protein-conducting pore (SecYEG) and a motor protein (SecA). The SecYEG complex forms a narrow channel in the membrane that allows passage of secretory proteins (preproteins) in an unfolded state only. It has been suggested that the SecA requirement for translocation depends on the folding stability of the mature preprotein domain. Here we studied the effects of the signal sequence and SecB on the folding and translocation of folding stabilizing and destabilizing mutants of the mature maltose binding protein (MBP). Although the mutations affect the folding of the precursor form of MBP, these are drastically overruled by the combined unfolding stabilization of the signal sequence and SecB. Consequently, the translocation kinetics, the energetics and the SecA and SecB dependence of the folding mutants are indistinguishable from those of wild-type preMBP. These data indicate that unfolding of the mature domain of preMBP is likely not a rate-determining step in translocation when the protein is targeted to the translocase via SecB. 相似文献
10.
In plants, pollen is the male gametophyte that is generated from microspores, which are haploid cells produced after meiosis of diploid pollen mother cells in floral anthers. In normal maturation, microspores interact with the tapetum, which consists of one layer of metabolically active cells enclosing the locule in anthers. The tapetum plays several important roles in the maturation of microspores. ATP-binding cassette (ABC) transporters are a highly conserved protein super-family that uses the energy released in ATP hydrolysis to transport substrates. The ABC transporter gene family is more diverse in plants than in animals. Previously, we reported that an Arabidopsis half-size type ABC transporter gene, COF1/AtWBC11/AtABCG11, is involved in lipid transport for the construction of cuticle layers and pollen coats in normal organ formation, as compared to CER5/AtWBC12/AtABCG12. However, physiological functions of most other ABCG members are unknown. Here, we identified another family gene, AtABCG26, which is required for pollen development in Arabidopsis. An AtABCG26 mutant developed very few pollen grains, resulting in a male-sterile phenotype. By investigating microspore and pollen development in this mutant, we observed that there was a slight abnormality in tetrad morphology prior to the formation of haploid microspores. At a later stage, we could not detect exine deposition on the microspore surface. During pollen maturation, many grains in the mutant anthers got aborted, and surviving grains were found to be defective in mitosis. Transmission of the mutant allele through male gametophytes appeared to be normal in genetic transmission analysis, supporting the view that the pollen function was disturbed by sporophytic defects in the AtABCG26 mutant. AtABCG26 can be expected to be involved in the transport of substrates such as sporopollenin monomers from tapetum to microspores, which both are plant-specific structures critical to pollen development. 相似文献
11.
Molecular cloning,expression, and hormonal regulation of the chicken microsomal triglyceride transfer protein 总被引:1,自引:0,他引:1
N. Erwin Ivessa Edward Rehberg Bernadette Kienzle Fridolin Seif Robert Hermann Marcela Hermann Wolfgang J. Schneider David A. Gordon 《Gene》2013
During an egg-laying cycle, oviparous animals transfer massive amounts of triglycerides, the major lipid component of very low density lipoprotein (VLDL), from the liver to the developing oocytes. A major stimulus for this process is the rise in estrogen associated with the onset of an egg-laying cycle. In mammals, the microsomal triglyceride transfer protein (MTP) is required for VLDL assembly and secretion. To enable studies to determine if MTP plays a role in basal and estrogen-stimulated VLDL assembly and secretion in an oviparous vertebrate, we have cloned and sequenced the chicken MTP cDNA. This cDNA encodes a protein of 893 amino acids with an N-terminal signal sequence. The primary sequence of chicken MTP is, on average, 65% identical to that of mammalian homologs, and 23% identical to the Drosophila melanogaster protein. We have obtained a clone of chicken embryo fibroblast cells that stably express the avian MTP cDNA and show that these cells display MTP activity as measured by the transfer of a fluorescently labeled neutral lipid. As in mammals, chicken MTP is localized to the endoplasmic reticulum as revealed by indirect immunofluorescence and by the fact that its N-linked oligosaccharide moiety remains sensitive to endoglycosidase H. Endogenous, enzymatically active MTP is also expressed in an estrogen receptor-expressing chicken hepatoma cell line that secretes apolipoprotein B-containing lipoproteins. In this cell line and in vivo, the expression and activity of MTP are not influenced by estrogen. Therefore, up-regulation of MTP in the liver is not required for the increased VLDL assembly during egg production in the chicken. This indicates that MTP is not rate-limiting, even for the massive estrogen-induced secretion of VLDL accompanying an egg-laying cycle. 相似文献
12.
The conserved Ala37 in the ERF/AP2 domain is essential for binding with the DRE element and the GCC box 总被引:7,自引:0,他引:7
Four AP2/EREBP genes encoding putative ethylene-responsive element binding factor (ERF)/AP2 domains were cloned from Brassica napus, and these genes could be induced by low temperature, ethylene, drought, high salinity, abscisic acid and jasmonate treatments. These four genes, named BnDREBIII-1 to BnDREBIII-4, were highly homologous and the 37th amino acid was the only difference among their ERF/AP2 domains. BnDREBIII-1 was demonstrated to be able to bind to both dehydration-responsive element and the GCC box and transactivate the expression of downstream genes, while BnDREBIII-4 could bind neither. Further results suggested that Ala37 might play a crucial role in the DNA binding or the stability of the ERF/AP2 domain. 相似文献
13.
Hayat El Hajjaji Mireille Dumoulin Didier Colau Joris Messens Jean-Francois Collet 《Journal of molecular biology》2009,386(1):60-4425
Thioredoxins are small, ubiquitous redox enzymes that reduce protein disulfide bonds by using a pair of cysteine residues present in a strictly conserved WCGPC catalytic motif. The Escherichia coli cytoplasm contains two thioredoxins, Trx1 and Trx2. Trx2 is special because it is induced under oxidative stress conditions and it has an additional N-terminal zinc-binding domain. We have determined the redox potential of Trx2, the pKa of the active site nucleophilic cysteine, as well as the stability of the oxidized and reduced form of the protein. Trx2 is more oxidizing than Trx1 (-221 mV versus -284 mV, respectively), which is in good agreement with the decreased value of the pKa of the nucleophilic cysteine (5.1 versus 7.1, respectively). The difference in stability between the oxidized and reduced forms of an oxidoreductase is the driving force to reduce substrate proteins. This difference is smaller for Trx2 (ΔΔG°H2O = 9 kJ/mol and ΔTm = 7. 4 °C) than for Trx1 (ΔΔG°H2O = 15 kJ/mol and ΔTm = 13 °C). Altogether, our data indicate that Trx2 is a significantly less reducing enzyme than Trx1, which suggests that Trx2 has a distinctive function. We disrupted the zinc center by mutating the four Zn2+-binding cysteines to serine. This mutant has a more reducing redox potential (-254 mV) and the pKa of its nucleophilic cysteine shifts from 5.1 to 7.1. The removal of Zn2+ also decreases the overall stability of the reduced and oxidized forms by 3.2 kJ/mol and 5.8 kJ/mol, respectively. In conclusion, our data show that the Zn2+-center of Trx2 fine-tunes the properties of this unique thioredoxin. 相似文献
14.
15.
16.
Sivko GS Sanford DC Dearth LD Tang D DeWille JW 《Journal of cellular biochemistry》2004,93(4):844-856
17.
18.
Specificity in substrate binding by protein folding catalysts: tyrosine and tryptophan residues are the recognition motifs for the binding of peptides to the pancreas-specific protein disulfide isomerase PDIp 下载免费PDF全文
Ruddock LW Freedman RB Klappa P 《Protein science : a publication of the Protein Society》2000,9(4):758-764
Using a cross-linking approach, we recently demonstrated that radiolabeled peptides or misfolded proteins specifically interact in vitro with two luminal proteins in crude extracts from pancreas microsomes. The proteins were the folding catalysts protein disulfide isomerase (PDI) and PDIp, a glycosylated, PDI-related protein, expressed exclusively in the pancreas. In this study, we explore the specificity of these proteins in binding peptides and related ligands and show that tyrosine and tryptophan residues in peptides are the recognition motifs for their binding by PDIp. This peptide-binding specificity may reflect the selectivity of PDIp in binding regions of unfolded polypeptide during catalysis of protein folding. 相似文献
19.
Protein disulfide isomerase (PDI), one of the ER-resident molecular chaperones, forms and isomerizes disulfide bonds. This study attempts to investigate the effect of PDI expression level on specific productivity (q) of recombinant Chinese hamster ovary (rCHO) cells producing thrombopoietin (TPO) and antibody (Ab). To regulate the PDI expression level, the Tet-Off system was introduced in TPO and Ab producing CHO cells, and stable Tet-Off cells (TPO-Tet-Off and Ab-Tet-Off) were screened using the luciferase assay. The doxycycline-regulated PDI expression system in Tet-Off rCHO cells (Tet-TPO-PDI and Tet-Ab-PDI) was established by the cotransfection of pTRE-PDI and pTK-Hyg expression vector into TPO-Tet-Off and Ab-Tet-Off cells, respectively. Subsequent screening was done by Western blot analysis of PDI and an enzyme-linked immunosorbent assay of the secreted TPO and antibody. We cultured two Tet-TPO-PDI and two Tet-Ab-PDI clones, and all these clones showed an average of 2.5-fold increase in PDI expression when compared to the basal level. In both these cell lines the PDI expression was tightly controlled by various concentrations of doxycycline. The q of TPO (q(TPO)) was unaffected but that of antibody producing cells was increased by 15-27% due to the PDI expression level. 相似文献