首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 636 毫秒
1.
The development of new nitrogen fertilizers is necessary to optimize crop production whilst improving the environmental aspects arising from the use of nitrogenous fertilization as a cultural practice. The use of urease inhibitors aims to improve the efficiency of urea as a nitrogen fertilizer by preventing its loss from the soil as ammonia. However, although the action of urease inhibitors is aimed at the urease activity in soil, their availability for the plant may affect its urease activity. The aim of this work was therefore to evaluate the effect of two urease inhibitors, namely acetohydroxamic acid (AHA) and N-(n-butyl) thiophosphoric triamide (NBPT), on the germination of pea and spinach seeds. The results obtained show that urease inhibitors do not affect the germination process to any significant degree, with the only process affected being imbibition in spinach, thus also suggesting different urease activities for both plants. Our findings therefore suggest an activity other than the previously reported urolytic activity for urease in spinach. Furthermore, of the two inhibitors tested, NBPT was found to be the most effective at inhibiting urease activity, especially in pea seedlings.  相似文献   

2.

Background and aims

Urea is the predominant form of N applied as fertilizer to crops, but it is also a significant N metabolite of plants themselves. As such, an understanding of urea metabolism in plants may contribute significantly to subsequent N fertilizer management. It currently appears that arginase is the only plant enzyme that can generate urea in vivo. The aim of this work was, therefore, to gain a more in-depth understanding of the significance of the inhibition of endogenous urease activity and its role in N metabolism depending on the N source supplied.

Methods

Pea (Pisum sativum cv. Snap-pea) plants were grown with either ammonium or nitrate as the sole N source in the presence or absence of the urease inhibitor NBPT.

Results

When supplied, NBPT is absorbed by plants and translocated from the roots to the leaves, where it reduces endogenous urease activity. Different N metabolic responses in terms of N-assimilatory enzymes and N-containing compounds indicate a different degree of arginine catabolism activation in ammonium- and nitrate-fed plants.

Conclusions

The arginine catabolism is more highly activated in ammonium-fed plants than in nitrate-fed plants, probably due to the higher turnover of substrates by enzymes playing a key role in N recycling and remobilization during catabolism and in early flowering and senescence processes, usually observed under ammonium nutrition.  相似文献   

3.
The use of urea as an N fertilizer has increased to such an extent that it is now the most widely used fertilizer in the world. However, N losses as a result of ammonia volatilization lead to a decrease in its efficiency, therefore different methods have been developed over the years to reduce these losses. One of the most recent involves the use of urea combined with urease inhibitors, such as N-(n-butyl) thiophosphoric triamide (NBPT), in an attempt to delay the hydrolysis of urea in the soil. The aim of this study was to perform an in-depth analysis of the effect that NBPT use has on plant growth and N metabolism. Wheat plants were cultivated in a greenhouse experiment lasting 4 weeks and fertilized with urea and NBPT at different concentrations (0, 0.012, 0.062, 0.125%). Each treatment was replicated six times. A non-fertilized control was also cultivated. Several parameters related with N metabolism were analysed at the end of growth period. NBPT use was found to have visible effects, such as a transitory yellowing of the leaf tips, at the end of the first week of treatment. At a metabolic level, plants treated with the inhibitor were found to have more urea in their tissues and a lower amino acid content, lower glutamine synthetase activity, and lower urease and glutamine synthetase content at the end of the study period, whereas their urease activity seemed to have recovered by this stage.  相似文献   

4.
采用田间盆栽试验,研究生化抑制剂与生物刺激素腐植酸结合制成的高效稳定性增效尿素肥料在黄土中的氮素转化特征、增产效果和氮素肥料表观利用率,以探明其施用效果,为开发适宜黄土施用的新型增效尿素肥料提供理论依据。本研究以不施氮肥(CK)和施尿素氮肥(N)为对照,在尿素中分别添加腐植酸(F)、N-丁基硫代磷酰三胺(NBPT)、3,4-二甲基吡唑磷酸盐(DMPP)和2-氯-6-三甲基吡啶(CP),以及腐植酸与3种生化抑制剂分别组合(NBPT+F、DMPP+F、CP+F)。结果表明: 与N处理相比,F、NBPT+F、DMPP+F和CP+F处理均能显著提高玉米的产量、叶片叶绿素含量、叶面积指数和植株吸氮量,对土壤铵态氮和硝态氮含量也有显著影响。与单独施用生化抑制剂相比,添加腐植酸可提高玉米叶片叶绿素含量。与CP相比,CP+F玉米的植株吸氮量、叶绿素含量、氮肥吸收利用率均显著提高;与NBPT相比,NBPT+F硝化抑制率提高10.7%,但玉米产量、叶面积指数、植株吸氮量和氮肥利用率等均有所降低;与DMPP相比,DMPP+F显著降低了玉米产量、叶面积指数、植株吸氮量、氮肥利用率和硝化抑制率等。综合玉米产量、植株吸氮量、氮肥吸收利用率以及土壤铵态氮、硝态氮含量等指标,在黄土地区施用尿素肥料时,建议添加腐植酸和CP以提升尿素性能,从而提高产量和肥料利用率。  相似文献   

5.
Gerendás  J.  Sattelmacher  B. 《Plant and Soil》1997,196(2):217-222
The effect of Ni supply on growth and N metabolism of zucchini plants grown with either NH4NO3 or urea as sole N source was investigated. Dry matter production of plants grown with NH4NO3 was not affected by the Ni status, while urea-based nutrition led to reduced growth, particularly when plants were grown without Ni supplementation. The activity of urease, which requires Ni for activation, was hardly detectable in leaves and roots of plants grown without supplementary Ni irrespective of N source. Low-Ni urea-grown plants were chlorotic, accumulated large amounts of urea and had lower amino acid contents indicating impaired usage of the N supplied. The lack of urease activation made these plants metabolically N deficient. The amino acid pools of plants grown with NH4NO3 was not markedly affected by the Ni supply, although these plants accumulated endogenous urea in their leaves when grown without supplementary Ni. In urea-grown plants the glutamine content was considerably increased by Ni supply, indicating that the efficient use of urea N is Ni (urease) dependant. Based on growth and urease activity, a critical Ni concentration in the leaves of around 100 µg kg-1 can be deduced. These results confirm the necessity of Ni for urease activation and thus for growth of plants on urea-based media, as well as for recycling endogenous urea.  相似文献   

6.
The effect of salinity and different nitrogen sources on the level of xanthine dehydrogenase (XDH) activity in roots and leaves of pea plants was investigated. Two bands of xanthine dehydrogenase activity (XDH-R2, XDH-R3) were detected in roots after native PAGE and staining with hypoxanthine as substrate. Only one band of XDH activity (XDH-L1) was detected in leaf extracts. Within leaves of three different ages the highest XDH activity was detected in young leaves both under control as well as stress conditions. Salinity did not affect significantly the activity of XDH in pea roots, however, depressed XDH activity in leaves. A significant increase of XDH activity both in roots and leaves was observed only when ammonium was applied as the sole N source. Increased concentration of ureides in the xylem sap of pea plants was observed for both ammonium and high salt treatments, although the higher content of ureides in the xylem sap of 100 mM NaCl treated plants may be rather a result of lower rate of exudation from roots than of increased root ureide biosynthesis. Thus, the changes of root and leaf XDH activity in pea plants seem to be tightly correlated with ureide synthesis that is induced by NH 4 + , the product of N fixation, and rather than by salinity. A contribution of pea XDH in increased oxygen species or uric acid production under saline conditions seems to be less than likely.  相似文献   

7.
新型磷酰胺类脲酶抑制剂对不同质地土壤尿素转化的影响   总被引:4,自引:0,他引:4  
周旋  吴良欢  戴锋 《生态学杂志》2016,27(12):4003-4012
施用脲酶抑制剂是降低尿素水解、减少氨气挥发损失、提高作物氮(N)肥利用率的重要途径之一.采用室内恒温、恒湿模拟试验方法,在25 ℃黑暗条件下培养,研究新型磷酰胺类脲酶抑制剂N-丙基磷酰三胺(NPPT)的脲酶抑制效果,比较其与N-丁基磷酰三胺(NBPT)在不同尿素用量条件下不同质地土壤中对脲酶的抑制差异.结果表明: 在壤土和黏土中,尿素作用时间≤9 d,添加抑制剂可以将尿素水解时间延长3 d以上.砂土中,尿素分解过程相对缓慢,添加抑制剂显著降低土壤脲酶活性,抑制NH4+-N生成.在培养期间,不同尿素用量条件下,脲酶抑制剂在不同质地土壤中的抑制效果表现为高施N量优于低施N量.培养第6天,在尿素用量250 mg N·kg-1条件下,NBPT和NPPT在砂土中脲酶抑制率分别为56.3%和53.0%,在壤土中分别为0.04%和0.3%,在黏土中分别为4.1%和6.2%;尿素用量500 mg N·kg-1,NBPT和NPPT在砂土中脲酶抑制率分别为59.4%和65.8%,在壤土中分别为14.5%和15.1%,在黏土中分别为49.1%和48.1%.不同质地土壤中脲酶抑制效果表现为砂土>黏土>壤土.不同抑制剂处理在培养期间土壤NH4+-N含量呈现先上升后下降的趋势,而NO3--N含量和表观硝化率均呈现逐渐上升的趋势.与单施尿素处理相比,添加脲酶抑制剂NBPT和NPPT显著增加土壤中的残留尿素态N,降低NH4+-N生成.新型脲酶抑制剂NPPT在不同质地土壤中的抑制效果与NBPT相似,是一款有效的脲酶抑制剂.  相似文献   

8.
Spinach and pea plants were grown in hydroponic culture with nitrate orammonium salts as the nitrogen source. Dry matter accumulation andphotosynthetic rate declined in spinach plants fed with ammonium salts, whereasthey did not change in pea plants compared with nitrate-fed plants. Measurementof organic nitrogen and free amino acid content showed that ammonium ions wereassimilated in shoots in spinach plants and in roots in pea plants. Ammoniumionnutrition led to a decline in starch content in both species. Organic acidsincreased in roots of pea plants fed with ammonium ions whereas they declinedinspinach plants. In both species ammonium ions increased root respiration ratebut the contribution of both routes (cytochromic and alternative pathway) tothis increase was different depending on the species. In spinach plants,ammonium ions increased the cytochromic path and decreased the alternativepathway, whereas in pea plants both routes were stimulated mainly through thealternative pathway. The differences in the sensitivity to ammonium ionsbetweenboth species are discussed in terms of differences in the availability of Cskeletons and energy, which could be due in part to differences in the capacityto stimulate the alternative pathway.  相似文献   

9.
Spinach (Spinacea oleracea L. “Correnta F1”) and pea (Pisum sativum L. “Macrocarpon”) plants were grown in a hydroponic culture with nitrate (5 mM), or ammonium (5 mM) as the nitrogen source. Dry matter accumulation declined dramatically in spinach plants fed with ammonium, whereas there was no change in pea plants when compared with nitrate-fed plants. Data obtained from δ15N, the organic nitrogen content, N-assimilation enzyme activity, glutamine synthetase (L-glutamate:ammonia-ligase; EC 6.3.1.2), glutamate dehydrogenase (L-glutamate:NAD+-oxidoreductase; EC 1.4.1.2) and enzymes from the tricarboxylic acid cycle suggest that ammonium incorporation into organic nitrogen is localized in the roots in pea plants and in the shoots in spinach plants. Distribution of incorporated ammonium (in shoots and roots) may determine ammonium tolerance. Our results show that unlike in spinach plants, in pea plants, an ammonium-tolerant species, GDH enzyme plays an important role in ammonium detoxification by its incorporation into amino acids. Furthermore, phosphoenolpyruvate carboxylase (phosphate:oxaloacetate-carboxy-lyase; EC 4.1.1.31) and pyruvate kinase (ATP:pyruvate-2-O-phosphotransferase; EC 2.7.1.40) activities reflect a major flow of carbon for ammonium assimilation through oxalacetate in pea plants and through pyruvate in spinach plants. The differences in the sensitivity to ammonium between the species are discussed in terms of differences in the site of ammonium assimilation as well as in the nitrogen assimilation ways.  相似文献   

10.
11.
冬枣对不同形态氮素的吸收与利用   总被引:7,自引:0,他引:7  
以2年生盆栽鲁北冬枣为试材,研究了其对尿素、甘氨酸(Gly)和谷氨酸(Glu)的吸收利用与响应特性.结果表明:3种形态氮均可被冬枣吸收利用,与尿素相比,氨基酸态氮吸收的量较少.若尿素的吸收量以100%计,则叶片对Gly和Glu的相对吸收量分别为28.88%和11.73%,吸收到的氮素主要分配到叶片和枣头枝中;而根对Gly和Glu的相对吸收量则分别为50.48%和42.72%.冬枣吸收尿素、Gly和Glu后,叶片中的谷草转氨酶(GOT)和谷丙转氨酶(GPT)活性提高,可溶性蛋白质含量增加;但不同形态氮素处理对硝酸还原酶(NR)活性的影响存在差异,尿素可显著提高NR活性,Glu对NR活性影响不大,Gly降低了NR活性.与尿素相比,氨基酸态氮能明显提高冬枣果实的着色个数、着色面积以及果实中可溶性固形物含量.  相似文献   

12.
The influence of urease activity on N distribution and losses after foliar urea application was investigated using wild-type and transgenic potato (Solanum tuberosum cv Désirée) plants in which urease activity was down-regulated. A good correlation between urease activity and (15)N urea metabolism (NH(3) accumulation) was found. The general accumulation of ammonium in leaves treated with urea indicated that urease activity is not rate limiting, at least initially, for the assimilation of urea N by the plant. It is surprising that there was no effect of urease activity on either N losses or (15)N distribution in the plants after foliar urea application. Experiments with wild-type plants in the field using foliar-applied (15)N urea demonstrated an initial rapid export of N from urea-treated leaves to the tubers within 48 h, followed by a more gradual redistribution during the subsequent days. Only 10% to 18% of urea N applied was lost (presumably because of NH(3) volatilization) in contrast to far greater losses reported in several other studies. The pattern of urease activity in the canopy was investigated during plant development. The activity per unit protein increased up to 10-fold with leaf and plant age, suggesting a correlation with increased N recycling in senescing tissues. Whereas several reports have claimed that plant urease is inducible by urea, no evidence for urease induction could be found in potato.  相似文献   

13.
Spinach (Spinacia oleracea var “Yates”) plants in hydroponic culture were exposed to stepwise increased concentrations of NaCl or NaNO3 up to a final concentration of 300 millimoles per liter, at constant Ca2+-concentration. Leaf cell sap and extracts from aqueously isolated spinach chloroplasts were analyzed for mineral cations, anions, amino acids, sugars, and quarternary ammonium compounds. Total osmolality of leaf sap and photosynthetic capacity of leaves were also measured. For comparison, leaf sap from salt-treated pea plants was also analyzed. Spinach plants under NaCl or NaNO3 salinity took up large amounts of sodium (up to 400 millimoles per liter); nitrate as the accompanying anion was taken up less (up to 90 millimoles per liter) than chloride (up to 450 millimoles per liter). Under chloride salinity, nitrate content in leaves decreased drastically, but total amino acid concentrations remained constant. This response was much more pronounced (and occurred at lower salt concentrations) in leaves from the glycophyte (pea, Pisum sativum var “Kleine Rheinländerin”) than from moderately salt-tolerant spinach. In spinach, sodium chloride or nitrate taken up into leaves was largely sequestered in the vacuoles; both salts induced synthesis of quarternary ammonium compounds, which were accumulated mainly in chloroplasts (and cytosol). This prevented impairment of metabolism, as indicated by an unchanged photosynthetic capacity of leaves.  相似文献   

14.
无菌条件下小麦氨基酸态氮及铵态氮营养效应研究   总被引:14,自引:2,他引:12  
对铵态氮(硫酸铵)、氨基酸态氮(甘氨酸,谷氨酸及赖氨酸)和缺氮无菌砂培条件下小麦单株干物重、全氮量及根、叶谷草转氨酶和谷丙转氨酶活性作了研究.结果表明,铵态氮和氨基酸态氮均可被小麦吸收,且吸收量相当.培养30d后,甘氨酸和谷氨酸处理的小麦干物重显著高于缺氮及铵态氮处理,而铵态氮、赖氨酸及缺氮处理的干物重相近.低浓度铵态氮(0.7mmol·L^1)培养15d的小麦仅根的GPT活性显著高于缺氮处理,而高浓度(35.7mmol·L^1)处理6h对这两种转氨酶活性影响不大.不同种类、不同浓度的氨基酸态氮培养15d或处理6h后,小麦植株根、叶的GOT或GPT活性变化趋势有较大差异,这反映出小麦外源氨基酸主要同化部位及同化量,与氨基酸种类及浓度有较大关系.  相似文献   

15.
施用缓/控释尿素对玉米苗期土壤生物学活性的影响   总被引:1,自引:0,他引:1  
采用盆栽试验,模拟田间生态环境,研究了施用不同种缓/控释氮素底肥对玉米苗期土壤硝酸还原酶、脲酶活性及微生物量碳、氮的影响.结果表明,施用硝化抑制剂(双氰胺)和脲酶抑制剂(n-丁基硫代磷酰三胺)涂层大颗粒尿素肥料的土壤硝酸还原酶活性最高;施用大颗粒尿素,脲酶活性最强,微生物量碳、氮最高.施用醋酸酯淀粉包膜大颗粒尿素、包膜双氰胺涂层大颗粒尿素、丙烯酸树脂包膜双氰胺涂层大颗粒尿素与不施氮肥土壤脲酶活性较高;每种处理微生物量碳与氮变化完全一致.施用醋酸酯淀粉包膜硝化和脲酶抑制剂涂层大颗粒尿素肥料,土壤微生物量碳、氮最低.同种膜材料包膜抑制剂涂层大颗粒尿素制成的缓/控释氮肥,对土壤生物学活性的影响效果好于直接包膜大颗粒尿素;丙烯酸树脂包膜大颗粒尿素制成的缓/控释氮肥,对氮素的控释效果明显好于醋酸酯淀粉包膜.  相似文献   

16.
The leaf-tip necrosis commonly observed after foliar fertilization of soybean [Glycine max (L.) Merr.] plants with urea is usually attributed to ammonia formed through hydrolysis of urea by plant urease. We recently found, however, that although addition of a urease inhibitor (phenylphosphorodiamidate) to foliar-applied urea increased the urea content and decreased the ammonia content and urease activity of soybean leaves, it increased the leaf-tip necrosis observed after foliar fertilization. We concluded that this necrosis was due to accumulation of toxic amounts of urea rather than formation of toxic amounts of ammonia. To confirm this conclusion, we measured the urea content, urease activity, and leaf-tep necrosis of leaves of soybean plants treated with urea after growth of the plants in nutrient solutions containing different amounts of nickel (Ni), which is an essential component of urease. We found that the urease activity of these leaves decreased, and that their urea content and leaf-tip necrosis increased, with decrease in the Ni content of the nutrient solution. Besides supporting the conclusion that the leaf-tip necrosis observed after foliar fertilization of soybean with urea is due to accumulation of toxic amounts of urea in the soybean leaves, these observations indicate that Ni-deficient plants may have a lower urease activity than plants that are not deficient in Ni and may therefore be more susceptible to leaf burn when foliar-fertilized with urea.  相似文献   

17.
Rapid modulation of nitrate reductase in pea roots   总被引:10,自引:0,他引:10  
The regulatory properties of nitrate reductase (NR; EC 1.6.6.1) in root extracts from hydroponically grown pea (Pisum sativum L. cv. Kleine Rheinländerin) plants were examined and compared with known properties of NR from spinach and pea leaves. Nitrate-reductase activity (NRA) extracted from pea roots decreased slowly when plants were kept in the dark, or when illuminated plants were detopped, with a half-time of about 4 h (= slow modulation in vivo). In contrast, the half-time for the dark-inactivation of NR from pea leaves was only 10 min. However, when root tip segments were transferred from aerobic to anaerobic conditions or vice versa, changes in NRA were as rapid as in leaves (= rapid modulation in vivo). Nitrate-reductase activity was low when extracted from roots kept in solutions flushed with air or pure oxygen, and high in nitrogen. Okadaic acid, a specific inhibitor of type-1 and type-2A protein phosphatases, totally prevented the in vivo activation by anaerobiosis of NR, indicating that rapid activation of root NR involved protein dephosphorylation. Under aerobic conditions, the low NRA in roots was also rapidly increased by incubating the roots with either uncouplers or mannose. Under these conditions, and also under anaerobiosis, ATP levels in roots were much lower than in aerated control roots. Thus, whenever ATP levels in roots were artificially decreased, NRA increased rapidly. The highly active NR extracted from anaerobic roots could be partially inactivated in vitro by preincubation of desalted root extracts with MgATP (2 mM), with a half-time of about 20 min. It was reactivated by subsequently incubating the extracts with excess AMP (2 mM). Thus, pea root NR shares many of the previously described properties of NR from spinach leaves, suggesting that the root enzyme, like the leaf enzyme, can be rapidly modulated, probably by reversible protein phosphorylation/ dephosphorylation.  相似文献   

18.
Urea concentration and urease activity in the midgut content were compared between larvae of the silkworm, Bombyx mori fed an artificial diet and those fed fresh mulberry leaves. A considerable amount of urea was found in the midgut content of the both larvae, however it was significantly lower in the larvae fed fresh mulberry leaves than in the larvae fed the artificial diet; average urea concentrations in the midgut content of the larvae fed fresh mulberry leaves and the artificial diet were 2.9 and 4.6 &mgr;mol/g, respectively. Urea in the midgut content seems to be secreted from the insect itself since the amount of urea in both diets were negligibly small. Urease activity was detected only in the midgut content of the larvae fed fresh mulberry leaves but not in other tissues of the larvae. On the other hand, no urease activity was detected in the midgut content of the larvae fed the artificial diet. Subsequently, to elucidate the role of mulberry leaf urease in the midgut lumen, larvae that had been reared on the artificial diet were switched to fresh mulberry leaves. The diet switch caused a rapid decrease in urea concentration in the midgut content and an increase in ammonia concentration in the midgut content, suggesting that secreted urea could be hydrolyzed to ammonia by mulberry leaf urease in the midgut lumen. Furthermore, to investigate the physiological significance of mulberry leaf urease on urea metabolism of the silkworm, (15)N-urea was injected into the hemocoel, and after 12 h the larvae were dissected for (15)N analysis. A considerable amount of (15)N was found to be incorporated into the silk-protein of the larvae fed fresh mulberry leaves, but there was little incorporation of (15)N into the silk-protein of the larvae fed the artificial diet. These data indicate that urea is converted into ammonia by the action of mulberry leaf urease in the midgut lumen and used as a nitrogen source in larvae fed mulberry leaves.  相似文献   

19.

Background and aims

Urea is the major nitrogen (N) form supplied as fertilizer in agriculture. However, urease, a nickel-dependent enzyme, allows plants to use external or internally generated urea as a nitrogen source. Since a urease inhibitor is frequently applied in conjunction with urea fertilizer, the N-metabolism of plants may be affected. The aim of this study was to determine physiological and molecular effects of nickel deficiency and a urease inhibitor on urea uptake and assimilation in oilseed rape.

Methods

Plants were grown on hydroponic solution with urea as the sole N source under three treatments: plants treated with nickel (+Ni) as a control, without nickel (?Ni) and with nickel and phenylphosphorodiamidate (+Ni+PPD). Urea transport and assimilation were investigated.

Results

The results show that Ni-deficiency or PPD supply led to reduced growth and reduced 15N-uptake from urea. This effect was more pronounced in PPD-treated plants, which accumulated high amounts of urea and ammonium. Thus, Ni-deficiency or addition of PPD, limit the availability of N and decreased shoot and root amino acid content. The up-regulation of BnDUR3 in roots indicated that this gene is a component of the stress response to nitrogen-deficiency. A general decline of glutamine synthetase (GS) activity and activation of glutamate dehydrogenase (GDH) and increases in its expression level were observed in control plants. At the same time, in (?N) or (+Ni+PPD) treated plants, no increases in GS or GDH activities and expression level were found.

Conclusions

Overall results showed that plants require Ni as a nutrient (while most widely used nutrient solutions are devoid of Ni), whether they are grown with or without a urea supply, and that urease inhibitors may have deleterious effects at least in hydroponic grown oilseed rape.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号