首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 15 毫秒
1.

Background

Phospholipid scramblases are a group of four homologous proteins conserved from C. elegans to human. In human, two members of the scramblase family, hPLSCR1 and hPLSCR3 are known to bring about Ca2+ dependent translocation of phosphatidylserine and cardiolipin respectively during apoptotic processes. However, affinities of Ca2+/Mg2+ binding to human scramblases and conformational changes taking place in them remains unknown.

Methods

In the present study, we analyzed the Ca2+ and Mg2+ binding to the calcium binding motifs of hPLSCR1–4 and hPLSCR1 by spectroscopic methods and isothermal titration calorimetry.

Results

The results in this study show that (i) affinities of the peptides are in the order hPLSCR1  > hPLSCR3 > hPLSCR2 > hPLSCR4 for Ca2+ and in the order hPLSCR1 > hPLSCR2 > hPLSCR3 > hPLSCR4 for Mg2+, (ii) binding of ions brings about conformational change in the secondary structure of the peptides. The affinity of Ca2+ and Mg2+ binding to protein hPLSCR1 was similar to that of the peptide I. A sequence comparison shows the existence of scramblase-like motifs among other protein families.

Conclusions

Based on the above results, we hypothesize that the Ca2+ binding motif of hPLSCR1 is a novel type of Ca2+ binding motif.

General significance

Our findings will be relevant in understanding the calcium dependent scrambling activity of hPLSCRs and their biological function.  相似文献   

2.
RIG-I (retinoic acid-inducible gene I) is an essential cytosolic pathogen recognition receptor that binds to a variety of viral RNA or DNA to induce type I interferons. In the present study, insert–deletion polymorphisms in promoter and introns of CiRIG-I (Ctenopharyngodon idella RIG-I) were explored, their associations with resistance/susceptibility to grass carp reovirus (GCRV) were analyzed. To this end, genomic sequence of CiRIG-I gene was obtained, and twenty pairs of primers were prepared for the detection of insert–deletion polymorphisms. Five insert–deletion mutations were found, a 2-bp mutation and an 8-bp mutation existed in the promoter and other three sizes in 74 bp, 146 bp and 53 bp were sited in the intron 8. After a challenge experiment, only the genotype and allele of − 740 insert–deletion mutation in the promoter and allele of 6804 insert–deletion mutation were significantly associated with resistance/susceptibility to GCRV among the five mutations (P < 0.05). To further identify this correlation, another independent challenge test was carried out. The result revealed that the cumulative mortality in ins/ins genotype individuals (43.75%) at − 740 insert–deletion mutation was significantly lower than that in ins/del (72.09%) and del/del (74.19%) genotypes (P < 0.05). Linkage disequilibrium and haplotype analysis showed 6610 insert–deletion mutation and 6804 insert–deletion mutation were linkage disequilibrium. The haplotype ins–ins (6610ins–6804ins) was significantly susceptible to GCRV, and ins–del (6610ins–6804del) was significantly resistant to GCRV (P < 0.05). Those could be potential gene markers for the future molecular selection of strains that are resistant to GCRV.  相似文献   

3.
Direct electron transfer (DET) from bare spectrographic graphite (SPGE) or 3-mercaptopropionic acid-modified gold (MPA-gold) electrodes to Trachyderma tsunodae bilirubin oxidase (BOD) was studied under anaerobic and aerobic conditions by cyclic voltammetry and chronoamperometry. On cyclic voltammograms nonturnover Faradaic signals with midpoint potentials of about 700 mV and 400 mV were clearly observed corresponding to redox transformations of the T1 site and the T2/T3 cluster of the enzyme, respectively. The immobilized BOD was differently oriented on the two electrodes and its catalysis of O2-electroreduction was also massively different. On SPGE, where most of the enzyme was oriented with the T1 copper site proximal to the carbon with a quite slow ET process, well-pronounced DET-bioelectroreduction of O2 was observed, starting already at > 700 mV vs. NHE. In contrast, on MPA-gold most of the enzyme was oriented with its T2/T3 copper cluster proximal to the metal. Indeed, there was little DET-based catalysis of O2-electroreduction, even though the ET between the MPA-gold and the T2/T3 copper cluster of BOD was similar to that observed for the T1 site at SPGE. When BOD actively catalyzes the O2-electroreduction, the redox potential of its T1 site is 690 mV vs. NHE and that of one of its T2/T3 copper centers is 390 mV vs. NHE. The redox potential of the T2/T3 copper cluster of a resting form of BOD is suggested to be about 360 mV vs. NHE. These values, combined with the observed biocatalytic behavior, strongly suggest an uphill intra-molecular electron transfer from the T1 site to the T2/T3 cluster during the catalytic turnover of the enzyme.  相似文献   

4.
In oxygenic photosynthesis, water is oxidized at a protein-cofactor complex comprising four Mn atoms and, presumably, one calcium. Using multilayers of Photosystem II membrane particles, we investigated the time course of the disassembly of the Mn complex initiated by a temperature jump from 25°C to 47°C and terminated by rapid cooling after distinct heating periods. We monitored polarographically the oxygen-evolution activity, the amount of the YDox radical and of released Mn2+ by EPR spectroscopy, and the structure of the Mn complex by x-ray absorption spectroscopy (XAS, EXAFS). Using a novel approach to analyze time-resolved EXAFS data, we identify three distinct phases of the disassembly process: (1) Loss of the oxygen-evolution activity and reduction of YDox occur simultaneously (k1 = 1.0 min−1). EXAFS spectra reveal the concomitant loss of an absorber-backscatterer interaction between heavy atoms separated by ~3.3 Å, possibly related to Ca release. (2) Subsequently, two Mn(III) or Mn(IV) ions seemingly separated by ~2.7 Å in the native complex are reduced to Mn(II) and released (k2 = 0.18 min−1). The x-ray absorption spectroscopy data is highly suggestive that the two unreleased Mn ions form a di-μ-oxo bridged Mn(III)2 complex. (3) Finally, the tightly-bound Mn2(μ-O)2 unit is slowly reduced and released (k3 = 0.014 min−1).  相似文献   

5.
The D1 protein of Photosystem II (PSII) is recognized as the main target of photoinhibitory damage and exhibits a high turnover rate due to its degradation and replacement during the PSII repair cycle. Damaged D1 is replaced by newly synthesized D1 and, although reasonable, there is no direct evidence for selective replacement of damaged D1. Instead, it remains possible that increased turnover of D1 subunits occurs in a non-selective manner due for example, to a general up-regulation of proteolytic activity triggered during damaging environmental conditions, such as high light. To determine if D1 degradation is targeted to damaged D1 or generalized to all D1, we developed a genetic system involving simultaneous dual expression of wild type and mutant versions of D1 protein. Dual D1 strains (nS345P:eWT and nD170A:eWT) expressed a wild type (WT) D1 from ectopic and a damage prone mutant (D1-S345P, D1-D170A) from native locus on the chromosome. Characterization of strains showed that all dual D1 strains restore WT like phenotype with high PSII activity. Higher PSII activity indicates increased population of PSII reaction centers with WT D1. Analysis of steady state levels of D1 in nS345P:eWT by immunoblot showed an accumulation of WT D1 only. But, in vivo pulse labeling confirmed the synthesis of both S345P (exists as iD1) and WT D1 in the dual strain. Expression of nS345P:eWT in FtsH2 knockout background showed accumulation of both iD1 and D1 proteins. This demonstrates that dual D1 strains express both forms of D1, yet only damage prone PSII complexes are selected for repair providing evidence that the D1 degradation process is targeted towards damaged PSII complexes. Since the N-terminus has been previously shown to be important for the degradation of damaged D1, the possibility that the highly conserved cysteine 18 residue situated in the N-terminal domain of D1 is involved in the targeted repair process was tested by examining site directed mutants of this and the other cysteines of the D1 protein. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: Keys to Produce Clean Energy.  相似文献   

6.
Laboratory of genetics and physiology 2 (LGP2) is an actual detector and regulator during RNA viral infection in innate immunity. In this study, 5′-flanking region and all introns of LGP2 in grass carp (Ctenopharyngodon idella) were excavated. The genomic CiLGP2 (C. idella LGP2) was 8062 bp in length, with a 364 bp 5′-flanking region, twelve exons and eleven introns. Besides, the promoter activity of the upstream region before initiator codon was identified. By sequencing, six single nucleotide polymorphisms (SNPs) and one 20-bp insertion/deletion polymorphism were detected in CiLGP2. With a challenge experiment, the genotype and allele distributions of these seven polymorphisms were examined. Analytic result revealed only the − 1392 C/G, 494 A/T and 4403 C/T loci were significantly associated with the resistance/susceptibility to grass carp reovirus (GCRV) (P < 0.05). To further identify these correlations, another independent challenge test was performed. The analytic result based on the cumulative mortality demonstrated that the stock in − 1392 GG genotype was more susceptible to GCRV than that in CC genotype, while the stocks in 494 TT genotype and 4403 TT genotype were more resistant to GCRV than that in AA and CC genotype stocks, respectively (P < 0.05). Those significant SNPs might be potential gene markers for the future molecular selection of C. idella strains that are resistant to GCRV.  相似文献   

7.
8.
Moderate heat stress (40 °C, 30 min) on spinach thylakoids induced cleavage of the D1 protein, producing an N-terminal 23-kDa fragment, a C-terminal 9-kDa fragment, and aggregation of the D1 protein. A homologue of Arabidopsis FtsH2 protease, which is responsible for degradation of the damaged D1 protein, was abundant in the stroma thylakoids. Two processes occurred in the thylakoids in response to heat stress: dephosphorylation of the D1 protein in the stroma thylakoids, and aggregation of the phosphorylated D1 protein in the grana. Heat stress also induced the release of the extrinsic PsbO, P and Q proteins from Photosystem II, which affected D1 degradation and aggregation significantly. The cleavage and aggregation of the D1 protein appear to be two alternative processes influenced by protein phosphorylation/dephosphorylation, distribution of FtsH, and intactness of the thylakoids.  相似文献   

9.
Conformational changes of the Na+/K+-ATPase isolated large cytoplasmic segment connecting transmembrane helices M4 and M5 (C45) induced by the interaction with enzyme ligands (i.e. Mg2+ and/or ATP) were investigated by means of the intrinsic tryptophan fluorescence measurement and molecular dynamic simulations. Our data revealed that this model system consisting of only two domains retained the ability to adopt open or closed conformation, i.e. behavior, which is expected from the crystal structures of relative Ca2+-ATPase from sarco(endo)plasmic reticulum for the corresponding part of the entire enzyme. Our data revealed that the C45 is found in the closed conformation in the absence of any ligand, in the presence of Mg2+ only, or in the simultaneous presence of Mg2+ and ATP. Binding of the ATP alone (i.e. in the absence of Mg2+) induced open conformation of the C45. The fact that the transmembrane part of the enzyme was absent in our experiments suggested that the observed conformational changes are consequences only of the interaction with ATP or Mg2+ and may not be related to the transported cations binding/release, as generally believed. Our data are consistent with the model, where ATP binding to the low-affinity site induces conformational change of the cytoplasmic part of the enzyme, traditionally attributed to E2 → E1 transition, and subsequent Mg2+ binding to the enzyme-ATP complex induces in turn conformational change traditionally attributed to E1 → E2 transition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号