共查询到20条相似文献,搜索用时 0 毫秒
1.
The enzymatic characterization of GDP-d-mannose 3',5'-epimerase (GME), a key enzyme in the biosynthesis of vitamin C in plants is described. The GME gene (Genbank Accession No. AB193582) in rice was cloned, and expressed as a fusion protein in Escherichia coli. Reaction products from GDP-d-mannose, as produced by GME catalysis, were separated by recycling HPLC on an ODS column, and were determined to be GDP-l-galactose and GDP-l-gulose, based on their NMR spectra and sugar analysis. The reaction catalyzed by GME was inhibited by GDP, and was strongly accelerated by NAD(+) in contrast to the case of GME from Arabidopsis thaliana. This difference in the effect of NAD(+) on GME activity can be attributed to the NAD binding domain which is conserved in the rice gene, but not in the Arabidopsis thaliana gene. The apparent K(m) and k(cat) were determined to be 1.20x10(-5)M and 0.127s(-1), respectively, in the presence of 20microM NAD(+). The fractions of GDP-d-mannose, GDP-l-galactose and GDP-l-gulose, at equilibrium, were approximately 0.75, 0.20 and 0.05, respectively. 相似文献
2.
A Glu141Asn mutant Paracoccus sp. 12-A formate dehydrogenase catalyzes marked glyoxylate reduction. Additional replacement of the His332-Gln313 pair with His-Glu, which is a consensus acid/base catalyst in D-hydroxyacid dehydrogenases, further improved the catalytic activity of the enzyme as to glyoxylate reduction through enhancement of the hydrogen transfer step in the catalytic process, slightly shifting the optimal pH for the reaction. On the other hand, the replacement induced no marked activity toward other 2-ketoacid substrates, and diminished the enzyme activity as to formate oxidation. Consequently, the formate dehydrogenase was converted to a highly specific and active glyoxylate reductase through only the two amino acid replacements. 相似文献
3.
Erythroascorbic acid (eAsA) is a five-carbon analog of ascorbic acid, and it is synthesized from D-arabinose by D-arabinose dehydrogenase (ARA) and D-arabinono-gamma-lactone oxidase. We found an NAD+-specific ARA activity which is operative under submillimolar level of d-arabinose in the extracts of Saccharomyces cerevisiae. The hypothetical protein encoded by YMR041c showed a significant homology to a l-galactose dehydrogenase which plays in plant ascorbic acid biosynthesis, and we named it as Ara2p. Recombinant Ara2p showed NAD+-specific ARA activity with Km=0.78 mM to d-arabinose, which is 200-fold lower than that for the conventional NADP+-specific ARA, Ara1p. Gene disruptant of ARA2 lost entire NAD+-specific ARA activity and the conspicuous increase in intracellular eAsA by exogenous d-arabinose feeding, while the double knockout mutant of ARA1 and ARA2 still retained measurable amount of eAsA. It demonstrates that Ara2p, not Ara1p, mainly contributes to the production of eAsA from d-arabinose in S. cerevisiae. 相似文献
4.
Sabin C Mitchell EP Pokorná M Gautier C Utille JP Wimmerová M Imberty A 《FEBS letters》2006,580(3):982-987
The lectin from Pseudomonas aeruginosa (PA-IIL) is involved in host recognition and biofilm formation. Lectin not only displays an unusually high affinity for fucose but also binds to L-fucose, L-galactose and D-arabinose that differ only by the group at position 5 of the sugar ring. Isothermal calorimetry experiments provided precise determination of affinity for the three methyl-glycosides and revealed a large enthalpy contribution. The crystal structures of the complexes of PA-IIL with L-galactose and Met-beta-D-arabinoside have been determined and compared with the PA-IIL/fucose complex described previously. A combination of the structures and thermodynamics provided clues for the role of the hydrophobic group in affinity. 相似文献
5.
The Hypocrea jecorina LXR1 was described as the first fungal l-xylulose reductase responsible for NADPH dependent reduction of l-xylulose to xylitol in l-arabinose catabolism. Phylogenetic analysis now reveals that LXR1 forms a clade with fungal d-mannitol 2-dehydrogenases. Lxr1 and the orthologous Aspergillus nigermtdA are not induced by l-arabinose but expressed at low levels during growth on different carbon sources. Deletion of lxr1 does not affect growth on l-arabinose and l-xylulose reductase activity remains unaltered whereas d-mannitol 2-dehydrogenase activities are reduced. We conclude that LXR1 is a d-mannitol 2-dehydrogenase and that a true LXR1 is still awaiting discovery. 相似文献
6.
Zaare-Nahandi F Hosseinkhani S Zamani Z Asadi-Abkenar A Omidbaigi R 《Biochemical and biophysical research communications》2008,371(1):59-62
Genes encoding limonoid UDP-glucosyltransferase from albedo of six Citrus species with different levels of delayed bitterness are isolated and cloned in vector pTZ57R/T. Our results indicate that gene sequence of sweet lime (with intense juice delayed bitterness) have complete identity with Satsuma mandarin (without distinctive juice delayed bitterness). Also gene sequence of Marsh seedless grapefruit, local orange and Thompson navel orange (with mild juice delayed bitterness) have very similarity with Satsuma mandarin. On the other hand, this gene started to express 60, 120, and 210 days after full blooming in albedo of Satsuma mandarin, sweet oranges and sour orange, and both grapefruit and sweet lime, respectively. Expression pattern of limonoid glucosyltransferase gene in leaves was quite different with albedo. Thus, we supposed the delayed bitterness in this species was related to delay in expression of limonoid glucosyltransferase gene in albedo and lower limonoid glucoside accumulation in fruits. 相似文献
7.
Base-catalysed isomerisation of aldoses of the arabino and lyxo series in aluminate solution has been investigated. L-Arabinose and D-galactose give L-erythro-2-pentulose (L-ribulose) and D-lyxo-2-hexulose (D-tagatose), respectively, in good yields, whereas lower reactivity is observed for 6-deoxy-D-galactose (D-fucose). From D-lyxose, D-mannose and 6-deoxy-L-mannose (L-rhamnose) are obtained mixtures of ketoses and C-2 epimeric aldoses. Small amounts of the 3-epimers of the ketoses were also formed. 6-Deoxy-L-arabino-2-hexulose (6-deoxy-L-fructose) and 6-deoxy-L-glucose (L-quinovose) were formed in low yields from 6-deoxy-L-mannose and isolated as their O-isopropylidene derivatives. Explanations of the differences in reactivity and course of the reaction have been suggested on the basis of steric effects. 相似文献
8.
Furuichi M Suzuki N Dhakshnamoorhty B Minagawa H Yamagishi R Watanabe Y Goto Y Kaneko H Yoshida Y Yagi H Waga I Kumar PK Mizuno H 《Journal of molecular biology》2008,378(2):436-446
l-Lactate oxidase (LOX) belongs to a family of flavin mononucleotide (FMN)-dependent α-hydroxy acid-oxidizing enzymes. Previously, the crystal structure of LOX (pH 8.0) from Aerococcus viridans was solved, revealing that the active site residues are located around the FMN. Here, we solved the crystal structures of the same enzyme at pH 4.5 and its complex with d-lactate at pH 4.5, in an attempt to analyze the intermediate steps. In the complex structure, the d-lactate resides in the substrate-binding site, but interestingly, an active site base, His265, flips far away from the d-lactate, as compared with its conformation in the unbound state at pH 8.0. This movement probably results from the protonation of His265 during the crystallization at pH 4.5, because the same flip is observed in the structure of the unbound state at pH 4.5. Thus, the present structure appears to mimic an intermediate after His265 abstracts a proton from the substrate. The flip of His265 triggers a large structural rearrangement, creating a new hydrogen bonding network between His265-Asp174-Lys221 and, furthermore, brings molecular oxygen in between d-lactate and His265. This mimic of the ternary complex intermediate enzyme-substrate-O2 could explain the reductive half-reaction mechanism to release pyruvate through hydride transfer. In the mechanism of the subsequent oxidative half-reaction, His265 flips back, pushing molecular oxygen into the substrate-binding site as the second substrate, and the reverse reaction takes place to produce hydrogen peroxide. During the reaction, the flip-flop action of His265 has a dual role as an active base/acid to define the major chemical steps. Our proposed reaction mechanism appears to be a common mechanistic strategy for this family of enzymes. 相似文献
9.
Kamil Kaminski Ewa Kaminska Patryk Wlodarczyk Jerzy Ziolo Wies?aw Szeja Jerzy Pilch 《Carbohydrate research》2009,344(18):2547-3633
Dielectric relaxation measurements were performed on two enantiomers, d- and l-arabinose and their equimolar mixture, and compared to dielectric data obtained for d-ribose. d-Arabinose differs from d-ribose by having the opposite configuration at C2. This study reveals that both d- and l- of arabinose exhibit α-relaxation peaks with the same shape for the same α-relaxation time τα, and the same steepness index for the Tg-scale T-dependence of τα. However, the two isomers have slightly different glass transition temperatures Tg’s, and their secondary γ-relaxation times also differ slightly from the previously observed γ-relaxation in d-ribose at the same temperature. However, when samples of both investigated monosaccharides are annealed at higher temperatures, their glass transition temperatures become nearly identical. This is an effect of the mutarotation process, which leads to the formation of pairs of the enantiomers and accordingly they should have the same physical properties. The width of the α-relaxation of d- and l-arabinose is broader than that of d-ribose, as reflected by the smaller stretch exponent in the Kohlrausch-Williams-Watts function used to fit the data of the former (βKWW = 0.46 ± 0.01) than the latter (βKWW = 0.55 ± 0.01). The width of the α-relaxation of racemic mixture of the d- and l-arabinose is slightly broader than that of the pure isomers. While the dielectric loss data of d-ribose in the glassy state at ambient and elevated pressures show an inflexion indicating the presence of the JG β-relaxation, the data of d- and l-arabinose show no such feature for identification of the supposedly universal JG β-relaxation. Nevertheless, on comparing the loss spectra of d-arabinose with that of d-ribose, the presence of the JG β-relaxation in d-arabinose has been rationalized. 相似文献
10.
Structural basis of substrate specificity in human glyoxylate reductase/hydroxypyruvate reductase 总被引:3,自引:0,他引:3
Human glyoxylate reductase/hydroxypyruvate reductase (GRHPR) is a D-2-hydroxy-acid dehydrogenase that plays a critical role in the removal of the metabolic by-product glyoxylate from within the liver. Deficiency of this enzyme is the underlying cause of primary hyperoxaluria type 2 (PH2) and leads to increased urinary oxalate levels, formation of kidney stones and renal failure. Here we describe the crystal structure of human GRHPR at 2.2 A resolution. There are four copies of GRHPR in the crystallographic asymmetric unit: in each homodimer, one subunit forms a ternary (enzyme+NADPH+reduced substrate) complex, and the other a binary (enzyme+NADPH) form. The spatial arrangement of the two enzyme domains is the same in binary and ternary forms. This first crystal structure of a true ternary complex of an enzyme from this family demonstrates the relationship of substrate and catalytic residues within the active site, confirming earlier proposals of the mode of substrate binding, stereospecificity and likely catalytic mechanism for these enzymes. GRHPR has an unusual substrate specificity, preferring glyoxylate and hydroxypyruvate, but not pyruvate. A tryptophan residue (Trp141) from the neighbouring subunit of the dimer is projected into the active site region and appears to contribute to the selectivity for hydroxypyruvate. This first crystal structure of a human GRHPR enzyme also explains the deleterious effects of naturally occurring missense mutations of this enzyme that lead to PH2. 相似文献
11.
The transport of l-leucine, l-phenylalanine and l-alanine by the perfused lactating rat mammary gland has been examined using a rapid, paired-tracer dilution technique. The clearances of all three amino acids by the mammary gland consisted of a rising phase followed by a rapid fall-off, respectively, reflecting influx and efflux of the radiotracers. The peak clearance of l-leucine was inhibited by BCH (65%) and d-leucine (58%) but not by l-proline. The inhibition of l-leucine clearance by BCH and d-leucine was not additive. l-leucine inhibited the peak clearance of radiolabelled l-leucine by 78%. BCH also inhibited the peak clearance of l-phenylalanine (66%) and l-alanine (33%) by the perfused mammary gland. Lactating rat mammary tissue was found to express both LAT1 and LAT2 mRNA. The results suggest that system L is situated in the basolateral aspect of the lactating rat mammary epithelium and thus probably plays a central role in neutral amino acid uptake from blood. The finding that l-alanine uptake by the gland was inhibited by BCH suggests that LAT2 may make a significant contribution to neutral amino acid uptake by the mammary epithelium. 相似文献
12.
Melting behaviour of D-sucrose, D-glucose and D-fructose 总被引:1,自引:0,他引:1
The melting behaviour of d-sucrose, d-glucose and d-fructose was studied. The melting peaks were determined with DSC and the start of decomposition was studied with TG at different rates of heating. In addition, melting points were determined with a melting point apparatus. The samples were identified as d-sucrose, alpha-d-glucopyranose and beta-d-fructopyranose by powder diffraction measurements. There were differences in melting between the different samples of the same sugar and the rate of heating had a remarkable effect on the melting behaviour. For example, T(o), DeltaH(f) and T(i) (initial temperature of decomposition) at a 1 degrees Cmin(-1) rate of heating were 184.5 degrees C, 126.6Jg(-1) and 171.3 degrees C for d-sucrose, 146.5 degrees C, 185.4Jg(-1) and 152.0 degrees C for d-glucose and 112.7 degrees C, 154.1Jg(-1) and 113.9 degrees C for d-fructose. The same parameters at 10 degrees Cmin(-1) rate of heating were 188.9 degrees C, 134.4Jg(-1) and 189.2 degrees C for d-sucrose, 155.2 degrees C, 194.3Jg(-1) and 170.3 degrees C for d-glucose and 125.7 degrees C, 176.7Jg(-1) and 136.8 degrees C d-fructose. At slow rates of heating, there were substantial differences between the different samples of the same sugar. The melting point determination is a sensitive method for the characterization of crystal quality but it cannot be used alone for the identification of sugar samples in all cases. Therefore, the melting point method should be validated for different sugars. 相似文献
13.
Hye-Lim KimMi-Bee Park Yumin KimYun Gyeong Yang Soo-Woong LeeNingning Zhuang Kon Ho Lee Young Shik Park 《FEBS letters》2012,586(20):3596-3600
We have studied the regulatory function of Dictyostelium discoideum Ax2 phenylalanine hydroxylase (dicPAH) via characterization of domain structures. Including the full-length protein, partial proteins truncated in regulatory, tetramerization, or both, were prepared from Escherichia coli as his-tag proteins and examined for oligomeric status and catalytic parameters for phenylalanine. The proteins were also expressed extrachromosomally in the dicPAH knockout strain to examine their in vivo compatibility. The results suggest that phenylalanine activates dicPAH, which is functional in vivo as a tetramer, although cooperativity was not observed. In addition, the results of kinetic study suggest that the regulatory domain of dicPAH may play a role different from that of the domain in mammalian PAH.
Structured summary of protein interactions
dicPAH and dicPAHbind by molecular sieving (View Interaction: 1, 2, 3, 4) 相似文献14.
L-Glutamate in the extracellular space regulates endogenous D-aspartate homeostasis in rat pheochromocytoma MPT1 cells 总被引:1,自引:0,他引:1
Adachi M Koyama H Long Z Sekine M Furuchi T Imai K Nimura N Shimamoto K Nakajima T Homma H 《Archives of biochemistry and biophysics》2004,424(1):89-96
In previous studies [FEBS Lett. 434 (1998) 231, Arch. Biochem. Biophys. 404 (2002) 92], we demonstrated for the first time that D-aspartate (D-Asp) is synthesized in cultured mammalian cell lines, such as pheochromocytoma 12 (PC12) and its subclone, MPT1. Our current focus is analysis of the dynamics of D-Asp homeostasis in these cells. In this communication, we show that L-glutamate (Glu) and L-Glu transporter substrates in the extracellular space regulate the homeostasis of endogenous D-Asp in MPT1 cells. D-Asp is apparently in dynamic homeostasis, whereby endogenous D-Asp is constantly released into the extracellular space by an undefined mechanism, and continuously and intensively taken up into cells by an L-Glu transporter. Under these conditions, L-Glu and its transporter substrates in the medium may competitively inhibit the uptake of D-Asp via the transporter, resulting in accumulation of the amino acid in the extracellular space. We additionally demonstrate that DL-TBOA, a well-established L-Glu transporter inhibitor, is taken up by the transporter during long time intervals, but not on a short time-scale. 相似文献
15.
The three-dimensional structure of a Salmonella enterica hypothetical protein YihS is significantly similar to that of N-acyl-d-glucosamine 2-epimerase (AGE) with respect to a common scaffold, an α6/α6-barrel, although the function of YihS remains to be clarified. To identify the function of YihS, Escherichia coli and S. enterica YihS proteins were overexpressed in E. coli, purified, and characterized. Both proteins were found to show no AGE activity but showed cofactor-independent aldose-ketose isomerase activity involved in the interconversion of monosaccharides, mannose, fructose, and glucose, or lyxose and xylulose. In order to clarify the structure/function relationship of YihS, we determined the crystal structure of S. enterica YihS mutant (H248A) in complex with a substrate (d-mannose) at 1.6 Å resolution. This enzyme-substrate complex structure is the first demonstration in the AGE structural family, and it enables us to identify active-site residues and postulate a reaction mechanism for YihS. The substrate, β-d-mannose, fits well in the active site and is specifically recognized by the enzyme. The substrate-binding site of YihS for the mannose C1 and O5 atoms is architecturally similar to those of mutarotases, suggesting that YihS adopts the pyranose ring-opening process by His383 and acidifies the C2 position, forming an aldehyde at the C1 position. In the isomerization step, His248 functions as a base catalyst responsible for transferring the proton from the C2 to C1 positions through a cis-enediol intermediate. On the other hand, in AGE, His248 is thought to abstract and re-adduct the proton at the C2 position of the substrate. These findings provide not only molecular insights into the YihS reaction mechanism but also useful information for the molecular design of novel carbohydrate-active enzymes with the common scaffold, α6/α6-barrel. 相似文献
16.
The reaction of a racemic mixture of (2R,2'S)- and (2S,2'R)-N-(p-tolylsulfonyl)-2-pyrrolidinyl-2-propanol, prepared from (S)-proline, with 2,3,4-tri-O-acetyl-alpha-L-fucopyranosyl trichloroacetimidate led to both diastereoisomers of the title compound after O-deacetylation. 相似文献
17.
Synthesis of 2,3,4,5-tetra-O-methyl-D-glucono-1,6-lactone as a monomer for the preparation of copolyesters 总被引:1,自引:0,他引:1
2,3,4,5-tetra-O-methyl-D-glucono-1,6-lactone has been prepared as a crystalline compound in acceptable yield by two different routes. An initial assay of copolymerization with L-lactide by ring-opening polymerization was carried out. The incorporation of the carbohydrate monomer into the polymer chain was about 2%. 相似文献
18.
Yuji Terami Keiko Uechi Saki Nomura Naoki Okamoto Kenji Morimoto 《Bioscience, biotechnology, and biochemistry》2013,77(10):1725-1729
l-ribose isomerase (L-RI) from Cellulomonas parahominis MB426 can convert l-psicose and d-tagatose to l-allose and d-talose, respectively. Partially purified recombinant L-RI from Escherichia coli JM109 was immobilized on DIAION HPA25L resin and then utilized to produce l-allose and d-talose. Conversion reaction was performed with the reaction mixture containing 10% l-psicose or d-tagatose and immobilized L-RI at 40 °C. At equilibrium state, the yield of l-allose and d-talose was 35.0% and 13.0%, respectively. Immobilized enzyme could convert l-psicose to l-allose without remarkable decrease in the enzyme activity over 7 times use and d-tagatose to d-talose over 37 times use. After separation and concentration, the mixture solution of l-allose and d-talose was concentrated up to 70% and crystallized by keeping at 4 °C. l-Allose and d-talose crystals were collected from the syrup by filtration. The final yield was 23.0% l-allose and 7.30% d-talose that were obtained from l-psicose and d-tagatose, respectively. 相似文献
19.
《Bioscience, biotechnology, and biochemistry》2013,77(9):1425-1429
The protective effect of dietary l-glutamine against the hepatotoxic action of d-galactosamine (GalN) was investigated by model experiments with rats. Rats fed with 20% casein diets containing 10% free amino acids were injected with GalN, and the serum aspartate aminotransferase, alanine aminotransferase and lactate dehydrogenase activities and the hepatic glycogen content were assayed 20 hours after the injection. These enzyme activities in the group fed with the 10% l-glutamine diet for 8 days were lower than those in the groups fed with the control, 10% l-glutamic acid and 10% l-alanine diets for 8 days. The more prolonged the feeding period with the 10% l-glutamine diet was, the more the serum activity levels of such enzymes were decreased. Although neomycin also lowered these enzyme activities, its simultaneous ingestion with neomycin did not show any additive or synergistic effect. The hepatic glycogen content in the 10% glutamine group still remained high after the GalN treatment. It is therefore assumed that the effectiveness of glutamine intake would have been mediated by glycogen metabolism rather than by uridine metabolism. 相似文献
20.
Synthesis of 4-cyano and 4-nitrophenyl 1,6-dithio-D-manno-, L-ido- and D-glucoseptanosides possessing antithrombotic activity 总被引:1,自引:0,他引:1
1,6-Anhydro-3,4-O-isopropylidene-1-thio-D-mannitol was converted into its sulfoxide which after hydrolysis, acetylation and subsequent Pummerer rearrangement gave the penta-O-acetyl-1-thio-D-mannoseptanose anomers in excellent yield. This anomeric mixture was used as donor for the glycosylation of 4-nitro- and 4-cyanobenzenethiol in the presence of boron trifluoride etherate and trimethylsilyl triflate, respectively, to yield the corresponding thioseptanosides in high yield. The same strategy was applied for the synthesis of the corresponding L-idothioseptanosides using 1,6-anhydro-3,4-O-isopropylidene-1-thio-L-iditol as starting material. The penta-O-acetyl-D-glucothioseptanose donors could not be synthesised the same way, as the Pummerer reaction of the corresponding tetra-O-acetyl-1,6-thioanhydro-1-thio-D-glucitol sulfoxides led to an inseparable mixture of the corresponding L-gulo- and D-glucothioseptanose anomers. Therefore, D-glucose diethyl dithioacetal was converted via its 2,3,4,5-tetra-O-acetyl-6-S-acetyl derivative into an anomeric mixture of its 6-thio-septanose and -furanose peracetates which could be separated by column chromatography. Condensation of the 6-thio-glucoseptanose peracetates with 4-cyano- and 4-nitrobenezenethiol in the presence of boron trifluoride etherate afforded anomeric mixtures of the corresponding thioseptanosides. The D-manno-, L-ido- and D-glucothioseptanosides obtained after Zemplén deacetylation of these mixtures were tested for their oral antithrombotic activity. 相似文献