首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Powdery mildew significantly affects grain yield and end-use quality of winter wheat in the southern Great Plains. Employing resistance resources in locally adapted cultivars is the most effective means to control powdery mildew. Two types of powdery mildew resistance exist in wheat cultivars, i.e., qualitative and quantitative. Qualitative resistance is controlled by major genes, is race-specific, is not durable, and is effective in seedlings and in adult plants. Quantitative resistance is controlled by minor genes, is non-race-specific, is durable, and is predominantly effective in adult plants. In this study, we found that the segregation of powdery mildew resistance in a population of recombinant inbred lines developed from a cross between the susceptible cultivar Jagger and the resistant cultivar 2174 was controlled by a major QTL on the short arm of chromosome 1A and modified by four minor QTLs on chromosomes 1B, 3B, 4A, and 6D. The major QTL was mapped to the genomic region where the Pm3 gene resides. Using specific PCR markers for seven Pm3 alleles, 2174 was found to carry the Pm3a allele. Pm3a explained 61% of the total phenotypic variation in disease reaction observed among seedlings inoculated in the greenhouse and adult plants grown in the field and subjected to natural disease pressure. The resistant Pm3a allele was present among 4 of 31 cultivars currently being produced in the southern Great Plains. The genetic effects of several minor loci varied with different developmental stages and environments. Molecular markers associated with these genetic loci would facilitate incorporating genetic resistance to powdery mildew into improved winter wheat cultivars.  相似文献   

2.

Key message

Resistance factors against non-adapted powdery mildews were mapped in barley. Some QTLs seem effective only to non-adapted mildews, while others also play a role in defense against the adapted form.The durability and effectiveness of nonhost resistance suggests promising practical applications for crop breeding, relying upon elucidation of key aspects of this type of resistance. We investigated which genetic factors determine the nonhost status of barley (Hordeum vulgare L.) to powdery mildews (Blumeria graminis). We set out to verify whether genes involved in nonhost resistance have a wide effectiveness spectrum, and whether nonhost resistance genes confer resistance to the barley adapted powdery mildew. Two barley lines, SusBgtSC and SusBgtDC, with some susceptibility to the wheat powdery mildew B. graminis f.sp. tritici (Bgt) were crossed with cv Vada to generate two mapping populations. Each population was assessed for level of infection against four B. graminis ff.spp, and QTL mapping analyses were performed. Our results demonstrate polygenic inheritance for nonhost resistance, with some QTLs effective only to non-adapted mildews, while others play a role against adapted and non-adapted forms. Histology analyses of nonhost interaction show that most penetration attempts are stopped in association with papillae, and also suggest independent layers of defence at haustorium establishment and conidiophore formation. Nonhost resistance of barley to powdery mildew relies mostly on non-hypersensitive mechanisms. A large-effect nonhost resistance QTL mapped to a 1.4 cM interval is suitable for map-based cloning.
  相似文献   

3.
Epidemics of powdery mildew due to Leveillula taurica is an increasing problem in pepper production areas, particularly in coastal regions or greenhouse cultivation. The highly resistant genitor 'H3' was submitted to genetic analysis and QTL mapping in order to promote the introgression of its oligogenic resistance into large and sweet-fruited cultivars. The doubled-haploid progeny from the cross 'H3' (resistant) by 'Vania' (susceptible) was tested for resistance under both natural field infection and artificial inoculation tests, and QTL detection was compared for those two methods. Seven genomic regions including additive QTLs and epistatic interactions were detected, explaining altogether the major part of genotypic variance. Two genomic regions were common to both the evaluation methods, whereas other QTLs were method-specific, reflecting the environment dependence of powdery mildew epidemics. Orthologies with tomato genomic regions carrying resistance genes to L. taurica and Oidium lycopersicum were revealed by comparative mapping with pepper. Tight linkages between the detected QTLs and virus resistance or fruit color traits in pepper were also shown, which adds to the agronomic importance of these regions in pepper breeding programs.Communicated by G. Wenzel  相似文献   

4.
QTL analysis of powdery mildew resistance in cucumber (Cucumis sativus L.)   总被引:5,自引:0,他引:5  
A population of F7 recombinant inbred lines (RILs) was made from a cross between susceptible (‘Santou’) and resistant (PI197088-1) lines of cucumber in order to study powdery mildew resistance loci. Susceptibility to powdery mildew in the F7 RIL individuals showed a continuous distribution from susceptible to resistant, suggesting that powdery mildew resistance is controlled by quantitative trait loci (QTLs). A QTL analysis identified two and three loci for powdery mildew resistance under 26 and 20°C conditions, respectively. One QTL was found in the same position under both temperature conditions. Therefore, it is more likely that one major QTL acts under both temperature conditions and that other QTLs are specific to the two temperature conditions. The above results suggest that the four QTLs are controlled in a different temperature manner, and that their combination played an important role in expressing a high level of resistance to powdery mildew in this cucumber population. Sequence-tagged site (STS) markers associated with each QTL were developed and would be useful for breeding a cucumber line with a high level of powdery mildew resistance. Y. Sakata and N. Kubo contributed equally to this work and are considered as first authors.  相似文献   

5.
Sorghum downy mildew caused by Peronosclerospora sorghi is a major disease of maize and resistance is under the control of polygenes which necessitated identification of quantitative-trait loci (QTLs) for initiating marker-assisted introgression of resistant QTLs in elite susceptible inbred lines. In the present study, QTLs for sorghum downy mildew (SDM) resistance in maize were identified based on cosegregation with linked simple sequence repeats in 185 F2 progeny from a cross between susceptible (CM500-19) and resistant (MAI105) parents. F3 families were screened in the National Sorghum Downy Mildew Screening Nursery during 2010 and 2011. High heritability was observed for the disease reaction. The final map generated using 87 SSR markers had 10 linkage groups, spanning a length of 1210.3 cM. Although, we used only 87 SSR markers for mapping, the per cent of genome within 20 cM to the nearest marker was 88.5. Three putative QTLs for SDM resistance were located on chromosomes 3 (bin 3.01), 6 (bin 6.01) and 2 (bin 2.02) using composite interval mapping. The locus on chromosome 3 had a major effect and explained up to 12.6% of the phenotypic variation. The other two QTLs on chromosomes 6 and 2 had minor effects with phenotypic variation of 7.1 and 2%. The three QTLs appeared to have additive effects on resistance. The QTLs on chromosomes 3 and 6 were successfully used in the marker-assisted selection programme for introgression of resistance to SDM in eight susceptible maize lines.  相似文献   

6.
A total of forty eight accessions of barley landraces from Morocco were screened for resistance to powdery mildew. Twenty two (46%) of tested landraces showed resistance reactions and thirty four single plant lines were selected. Eleven of these lines were tested in seedling stage with seventeen and another twenty three lines with twenty three isolates of powdery mildew respectively. The isolates were chosen according to the virulence spectra observed on the ‘Pallas’ isolines differential set. Line 229–2–2 was identified with resistance to all prevalent in Europe powdery mildew virulence genes. Lines 230–1–1, 248–1–3 showed susceptible reaction for only one and lines 221–3–2, 227–1–1, 244–3–4 for only two isolates respectively. Three different resistance alleles (Mlat, Mla6, and MLA14) were postulated to be present in tested lines alone or in combination. In thirty (88%) tested lines it was impossible to determine which specific gene or genes for resistance were present. Most probably these lines possessed alleles not represented in the ‘Pallas’ isolines differential set. The distribution of reaction type indicated that about 71% of all reaction types observed were classified as powdery mildew resistance (scores 0, 1 and 2). Majority (79%) of resistance reaction types observed in tested lines was intermediate resistance reaction type two and twenty three lines (68%) showed this reaction for inoculation with more than 50% isolates used. The use of new effective sources of resistance from Moroccan barley landraces for diversification of resistance genes for powdery mildew in barley cultivars was discussed.  相似文献   

7.
Powdery mildew, caused by Sphaerotheca pannosa var. persicae is one of the most important diseases in European peach orchards. Quantitative trait loci controlling powdery mildew resistance were detected using three related F1, F2 and BC2 populations derived from the cross between the resistant parent P. davidiana clone P1908 and the susceptible peach cultivar Summergrand. Powdery mildew resistance of each population was evaluated under natural exposure, in several locations and over several years. Thirteen QTLs were detected. For nine of them, the favourable allele came from the resistant parent. Five QTLs were consistently detected across the three populations. The F1 hybrid used to produce F2 and BC2 populations had not inherited the favourable allele from P1908 for QTL detected on LG3 and LG8 in F1 population. QTLs were not detected in the corresponding regions in F2 and BC2 populations. In two other genomic areas, significant substitution effects between P1908 alleles were evidenced in the F1 population, but the favourable allele came from Summergrand in the F2 and BC2 populations. Analysis of phenotypic data suggested an important qualitative change in the distribution of powdery mildew resistance after 1996, confirmed by QTL analysis. Indeed, a dramatic decrease of the effect of the major QTL previously detected on LG6 was observed after 1996, while the QTL on LG8 was increasingly involved in the control of powdery mildew resistance. Consequences for peach breeding strategies to improve powdery mildew resistance are discussed.  相似文献   

8.
Despite the large impact of powdery mildew in wheat cultivated areas, little has been done to study powdery mildew resistance by QTL analysis up to now. The objective of the present paper is to present how the genetic basis of powdery mildew resistance in the resistant wheat line RE714 have been studied by QTL analysis at the adult plant stage over the course of 3 years, and at the vernalized seedling plant stage, and a comparison between the results obtained. Two segregating populations (DH and F2:3) were derived from the cross between the resistant line (RE714), and a susceptible line (Hardi); these were analysed for powdery mildew resistance at the adult plant stage in the field under natural infection conditions in 1996, 1997 and 1998. The DH population was also tested for powdery mildew resistance at the vernalized seedling stage with four different isolates of powdery mildew. At the adult plant stage, a total of three QTLs (on chromosomes 5D, 4A and 6A) and five QTLs (on chromosomes 5D, 6A, 7A and 7B) were found for the DH and F2:3 populations, respectively. The genetic control of resistance was found to be polygenic but involved a major QTL (on chromosome 5D), which was detected each year and which explained a high proportion of the variability observed (28.1%–37.9%). At the vernalized seedling stage, two QTLs were found (on chromosomes 5D and 7B) and the QTL detected on chromosome 5D was common to the four isolates tested. The comparison between the two development stages showed that the QTL on chromosome 5D was detected in all the different environments tested and again explained a high proportion of the variability. Different molecular interpretations of this QTL have also been discussed. Received: 5 October 2000 / Accepted: 1 March 2001  相似文献   

9.
Powdery mildew and scald can cause significant yield loss in barley. In order to identify new resistance genes for powdery mildew and scald in barley, two barley doubled haploid (DH) populations were screened for adult plant resistance in the field and glasshouse under natural infection. The mapping populations included 92 DH lines from the cross of TX9425 × Franklin and 177 DH lines from the cross of Yerong × Franklin. Two quantitative trait loci (QTL) for resistance to powdery mildew were identified in the TX9425 × Franklin population. These QTL were mapped to chromosomes 7H and 5H, respectively. The phenotypic variation explained by the two QTL detected in this population was 22 and 17%, respectively. Three significant QTL were identified from the Yerong × Franklin population for the resistance to powdery mildew; the major one, detected on the short arm of chromosome 1H, explained 66% of phenotypic variation. The major QTL for scald resistance, identified from two different populations which shared a common parent, Franklin, were mapped in the similar position on 3H. However, the Franklin allele provided resistance to one population but susceptibility to the other population. The Yerong allele on 3H showed much better resistance to scald than the Franklin allele, which has not been reported before. Using high-density maps for both populations, some markers which were very close to the resistance genes were identified. Transgression beyond the parents in disease resistances of the DH populations indicates that both small-effect QTLs and genetic background may also have significant contributions towards the resistance.  相似文献   

10.
Hordeum chilense is a South American wild barley with high potential for cereal breeding given its high crossability with other members of the Triticeae. In the present paper we consider the resistance of H. chilense to several fungal diseases and the prospects for its transference to cultivated cereals. All H. chilense accessions studied are resistant to the barley, wheat and rye brown rusts, the powdery mildews of wheat, barley, rye and oat, to Septoria leaf blotch, common bunt and to loose smuts, which suggests that H. chilense is a non-host of these diseases. There are also lines resistant to wheat and barley yellow rust, stem rust and to Agropyron leaf rust, as well as lines giving moderate levels of resistance to Septoria glume blotch, tan spot and Fusarium head blight. Some H. chilense lines display pre-appressorial avoidance to brown rust. Lines differ in the degree of haustorium formation by rust and mildew fungi they permit, and in the degree to which a hypersensitive response occurs after haustoria are formed. Unfortunately, resistance of H. chilense to rust fungi is not expressed in tritordeum hybrids, nor in chromosome addition lines in wheat. In tritordeum, H. chilense contributes quantitative resistance to wheat powdery mildew, tan spot and loose smut. The resistance to mildew, expressed as a reduced disease severity, is not associated with macroscopically visible necrosis. Hexaploid tritordeums are immune to Septoria leaf blotch and to common bunt although resistance to both is slightly diluted in octoploid tritordeums. Studies with addition lines in wheat indicate that the resistance of H. chilense to powdery mildew, Septoria leaf blotch and common bunt is of broad genetic basis, conferred by genes present on various chromosomes.  相似文献   

11.
Chitinases (EC 3.2.1.14) and β -1.3 glucanases (EC 3.2.1.39) have been known to play a vital role in the defense of plants against fungal pathogens. The pattern of induction of these two enzymes subsequent to infection by powdery mildew was studied in 10 pairs of near-isogenic lines of barley ( Hordeum vulgare L.) which possess powdery mildew resistance genes. These isogenic lines have been grotiped according to their reaction to the fungus. The induction patterns varied between the resistant and the susceptible cultivars within each group and between different groups. More tsozymcs were induced in susceptible varieties of highly resistant groups and the overall levels and the number of isozymes of chitinases and β -1.3 glucanases were lower in groups with low resistance. The effect of powdery mildew infection and mechanical wounding on the cellular localization of chitinases and β -1.3 glucanases in barley leaves has also been studied. The 31 kDa leaf chitinase, L-CH2, and trace amounts of a 25 kDa chitinase. L-CH3. were present in healthy leaves. Wounding increased the levels of L-CH3 within I ft h. Powdery mildew infection increased the levels of L-CH3 both in intercellular fluid and in intracellular extract of leaves. A /3-I.3 glucanase. GH, also increased after infection and wounding. In infected barley leaves, GL-1 was present both in intercellular space and intracellular extract. It is concluded that powdery mildew resistance genes exhibit qualitative and quantitative differences in the expression of chitinases and β -1.3 glucanases. Further, chitinases and β -1.3 glucanases appear to be a response to active infection rather than the factors responsible for disease resistance.  相似文献   

12.
 Powdery mildew is one of the major diseases of wheat in regions with a maritime or semi-continental climate and can strongly affect grain yield. The attempt to control powdery mildew with major resistance genes (Pm genes) has not provided a durable resistance. Breeding for quantitative resistance to powdery mildew is more promising, but is difficult to select on a phenotypic basis. In this study, we mapped and characterised quantitative trait loci (QTLs) for adult-plant powdery mildew resistance in a segregating population of 226 recombinant inbred lines derived from the cross of the Swiss wheat variety Forno with the Swiss spelt variety Oberkulmer. Forno possibly contains the Pm5 gene and showed good adult-plant resistance in the field. Oberkulmer does not have any known Pm gene and showed a moderate susceptible reaction. Powdery mildew resistance was assessed in field trials at two locations in 1995 and at three locations in 1996. The high heritability (h2=0.97) for powdery mildew resistance suggests that the environmental influence did not affect the resistance phenotype to a great extent. QTL analysis was based on a genetic map containing 182 loci with 23 linkage groups (2469 cM). With the method of composite interval mapping 18 QTLs for powdery mildew resistance were detected, explaining 77% of the phenotypic variance in a simultaneous fit. Two QTLs with major effects were consistent over all five environments. One of them corresponds to the Pm5 locus derived from Forno on chromosome 7B. The other QTL on 5A, was derived from the spelt variety Oberkulmer and did not correspond to any known Pm gene. In addition, five QTLs were consistent over three environments, and six QTLs over two environments. The QTL at the Pm5 locus showed a large effect, although virulent races for Pm5 were present in the mixture of isolates. Molecular markers linked with QTLs for adult-plant resistance offer the possibility of simultaneous marker-assisted selection for major and minor genes. Received: 22 September 1998 / Accepted: 26 October 1998  相似文献   

13.
The cucumber lines, S94 (Northern China open-field type, powdery mildew (PM) susceptible) and S06 (European greenhouse type, PM resistant), and their F6:7 populations were used to investigate PM re-sistance under seedling spray inoculation in 2005/Autumn and 2006/Spring. QTL analysis was under-taken based on a constructed molecular linkage map of the corresponding F6 population using com-posite interval mapping. A total of four QTLs (pm1.1, pm2.1, pm4.1 and pm6.1) for PM resistance were identified and located on LG 1, 2, 4 and 6, respectively, explaining 5.2%-21.0% of the phenotypic variation. Three consistent QTLs (pm1.1, pm2.1 and pm4.1) were detected under the two test conditions. The QTL pm6.1 was only identified in 2005/Autumn. The total phenotypic variation explained by the QTLs was 52.0% and 42.0% in 2005/Autumn and 2006/Spring, respectively. Anchor markers tightly linked to those loci (<5 cM) could lay a basis for both molecular marker-assisted breeding and map-based gene cloning of the PM-resistance gene in cucumber.  相似文献   

14.
We used a well-characterized barley mapping population (BCD 47 × Baronesse) to determine if barley stripe rust (BSR) resistance quantitative trait loci (QTL) mapped in Mexico and the USA were effective against a reported new race in Peru. Essentially the same resistance QTL were detected using data from each of the three environments, indicating that these resistance alleles are effective against the spectrum of naturally occurring races at these sites. In addition to the mapping population, we evaluated a germplasm array consisting of lines with different numbers of mapped BSR resistance alleles. A higher BSR disease severity on CI10587, which has a single qualitative resistance gene, in Peru versus Mexico suggests there are differences in pathogen virulence between the two locations. Confirmation of a new race in Peru will require characterization using a standard set of differentials, an experiment that is underway. The highest levels of resistance in Peru were observed when the qualitative resistance gene was pyramided with quantitative resistance alleles. We also used the mapping population to locate QTL conferring resistance to barley leaf rust and barley powdery mildew. For mildew, we identified resistance QTL under field conditions in Peru that are distinct from the Mla resistance that we mapped using specific isolates under controlled conditions. These results demonstrate the long-term utility of a reference mapping population and a well-characterized germplasm array for locating and validating genes conferring quantitative and qualitative resistance to multiple pathogens.  相似文献   

15.
The aims of this investigation have been to map new (quantitative) resistance genes against powdery mildew, caused by Blumeria graminis f.sp. hordei L., and leaf rust, caused by Puccinia hordei L., in a cross between the barley ( Hordeum vulgare ssp. vulgare) cultivar "Vada" and the wild barley ( Hordeum vulgare ssp. spontaneum) line "1B-87" originating from Israel. The population consisted of 121 recombinant inbred lines. Resistance against leaf rust and powdery mildew was tested on detached leaves. The leaf rust isolate "I-80" and the powdery mildew isolate "Va-4", respectively, were used for the infection in this experiment. Moreover, powdery mildew disease severity was observed in the field at two different epidemic stages. In addition to other DNA markers, the map included 13 RGA (resistance gene analog) loci. The structure of the data demanded a non-parametric QTL-analysis. For each of the four observations, two QTLs with very high significance were localised. QTLs for resistance against powdery mildew were detected on chromosome 1H, 2H, 3H, 4H and 7H. QTLs for resistance against leaf rust were localised on 2H and 6H. Only one QTL was common for two of the powdery mildew related traits. Three of the seven QTLs were localised at the positions of the RGA-loci. Three of the five powdery mildew related QTLs are sharing their chromosomal position with known qualitative resistance genes. All detected QTLs behaved additively. Possible sources of the distorted segregation observed, the differences between the results for the different powdery mildew related traits and the relation between qualitative and quantitative resistance are discussed.  相似文献   

16.
Hordeum bulbosum L. is a source of disease resistance genes that would be worthwhile transferring to barley (H. vulgare L.). To achieve this objective, selfed seed from a tetraploid H. vulgare x H. bulbosum hybrid was irradiated. Subsequently, a powdery mildew-resistant selection of barley phenotype (81882/83) was identified among field-grown progeny. Using molecular analyses, we have established that the H. bulbosum DNA containing the powdery mildew resistance gene had been introgressed into 81882/83 and is located on chromosome 2 (2I). Resistant plants have been backcrossed to barley to remove the adverse effects of a linked factor conditioning triploid seed formation, but there remains an association between powdery mildew resistance and non-pathogenic necrotic leaf blotching. The dominant resistance gene is allelic to a gene transferred from H. bulbosum by co-workers in Germany, but non-allelic to all other known powdery mildew resistance genes in barley. We propose Mlhb as a gene symbol for this resistance.  相似文献   

17.
大麦DNA导入小麦产生抗白粉病变异的遗传研究   总被引:14,自引:0,他引:14  
本研究将抗白粉病的大麦DNA通过花粉管途径直接导入感病的小麦品种花76中,后代出现13株抗白粉病变异株。其中5株在以后的世代中抗性稳定,另8株则继续分离。第2带分离株系的抗病株形成的第3代株系(或株行)中,抗性有分离的株行与无分离的株行比例为1.9:1,而分离株行内抗病株与不抗病株之比为3.35:1。抗性稳定株系与感病亲本杂交,F1表现高抗病,再与感病亲本回交,后代抗感病株比例为1:1,自交F2的比例为2.8:1。说明所获得的抗白粉病性受一对完全显性基因控制,抗病为显性。与已知抗白粉病基因的比较表明,这个抗病基因可能是来自大麦的一个新基因。13 Variant plants with immunity and high-resistance to powdery mildew were found in D1 generation from introducing resistant barley DNA into susceptible wheat cultivar, through pollen tube pathway after self pollination.Of the variants, 5 plants for the resistance had been stable and the other 8 plants segregated insuccessive generation.The ratio of segregating and stable plant-rows was 1.9:1 in D3 plant-rows derived from resistant plants of segregating D2-lines,and the ratio of resistant plants and susceptible plants was 3.35:1 among the segregating D3 plant-rows.The F1 -plants from crosses between stable resistant variants and susceptible parents were higgh resistant to powdery mildew.The ratio of resistant and susceptible plants was 1:1 in progenies of backcross of the F1 and susceptible parents, and this ratio was 2.8:1 in the F2 generation from the F1 selfing. Thus it can be seen that the resistance obtained is camtrolled by a pair of genes, the resistance is dominant. The results in comparison with known powdery mildew resistance genes in wheat indicated that the resistant gene obtained would be a new one from barley.  相似文献   

18.
Tomato (Lycopersicon esculentum) is susceptible to the powdery mildew Oidium lycopersici, but several wild relatives such as Lycopersicon parviflorum G1.1601 are completely resistant. An F2 population from a cross of Lycopersicon esculentum cv. Moneymaker x Lycopersicon parviflorum G1.1601 was used to map the O. lycopersici resistance by using amplified fragment length polymorphism markers. The resistance was controlled by three quantitative trait loci (QTLs). Ol-qtl1 is on chromosome 6 in the same region as the Ol-1 locus, which is involved in a hypersensitive resistance response to O. lycopersici. Ol-qtl2 and Ol-qtl3 are located on chromosome 12, separated by 25 cM, in the vicinity of the Lv locus conferring resistance to another powdery mildew species, Leveillula taurica. The three QTLs, jointly explaining 68% of the phenotypic variation, were confirmed by testing F3 progenies. A set of polymerase chain reaction-based cleaved amplified polymorphic sequence and sequence characterized amplified region markers was generated for efficient monitoring of the target QTL genomic regions in marker assisted selection. The possible relationship between genes underlying major and partial resistance for tomato powdery mildew is discussed.  相似文献   

19.
Powdery mildew caused by Podosphaera xanthii is an important foliar disease in melon. To find molecular markers for marker-assisted selection, we constructed a genetic linkage map of melon based on a population of 93 recombinant inbred lines derived from crosses between highly resistant AR 5 and susceptible ‘Earl’s Favourite (Harukei 3)’. The map spans 877 cM and consists of 167 markers, comprising 157 simple sequence repeats (SSRs), 7 sequence characterized amplified region/cleavage amplified polymorphic sequence markers and 3 phenotypic markers segregating into 20 linkage groups. Among them, 37 SSRs and 6 other markers were common to previous maps. Quantitative trait locus (QTL) analysis identified two loci for resistance to powdery mildew. The effects of these QTLs varied depending on strain and plant stage. The percentage of phenotypic variance explained for resistance to the pxA strain was similar between QTLs (R 2 = 22–28%). For resistance to pxB strain, the QTL on linkage group (LG) XII was responsible for much more of the variance (41–46%) than that on LG IIA (12–13%). The QTL on LG IIA was located between two SSR markers. Using an independent population, we demonstrated the effectiveness of these markers. This is the first report of universal and effective markers linked to a gene for powdery mildew resistance in melon.  相似文献   

20.
Powdery mildew (Blumeria graminis f. sp. tritici) is one of the major diseases of wheat (Triticum aestivum). Adult plant resistance (APR) to powdery mildew is considered more durable than resistance conferred by major race-specific resistance genes. The objective of the present study was a better understanding of the genetic basis of APR in RE714 by means of QTL analysis of several resistance scores along the growing season. A population of 160 recombinant inbred lines obtained from the cross between RE714 and Hardi (susceptible) was assessed for APR under natural infection conditions during 3 years and a genetic map with whole genome coverage was developed with microsatellite and AFLP markers in this population. Two major QTL on chromosomes 5D and 6A were detected each year, and 6 minor QTL were detected only in 1 or 2 years. The QTL on chromosome 5D was detected during all the growing season each year and its R 2 value varied between 8.5 and 56.3%, whereas the QTL on chromosome 6A was detected at 1–4 scoring dates in the 3 years, and its R 2 value varied between 6.1 and 20.5%. The two QTL explained between 24.4 and 52.1% of the phenotypic variance for AUDPC, depending on the year. The models including QTL and cofactors in the composite interval mapping explained between 29 and 72% of the variance. The molecular markers linked to the two major QTL could be used in marker-assisted selection for adult plant resistance to powdery mildew. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号