首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
2.
Phytochrome A (phyA) and phytochrome B (phyB) share the control of many processes but little is known about mutual signaling regulation. Here, we report on the interactions between phyA and phyB in the control of the activity of an Lhcb1*2 gene fused to a reporter, hypocotyl growth and cotyledon unfolding in etiolated Arabidopsis thaliana. The very-low fluence responses (VLFR) induced by pulsed far-red light and the high-irradiance responses (HIR) observed under continuous far-red light were absent in the phyA and phyA phyB mutants, normal in the phyB mutant, and reduced in the fhy1 mutant that is defective in phyA signaling. VLFR were also impaired in Columbia compared to Landsberg erecta. The low-fluence responses (LFR) induced by red-light pulses and reversed by subsequent far-red light pulses were small in the wild type, absent in phyB and phyA phyB mutants but strong in the phyA and fhy1 mutants. This indicates a negative effect of phyA and FHY1 on phyB-mediated responses. However, a pre-treatment with continuous far-red light enhanced the LFR induced by a subsequent red-light pulse. This enhancement was absent in phyA, phyB, or phyA phyB and partial in fhy1. The levels of phyB were not affected by the phyA or fhy1 mutations or by far-red light pre-treatments. We conclude that phyA acting in the VLFR mode (i.e. under light pulses) is antagonistic to phyB signaling whereas phyA acting in the HIR mode (i.e. under continuous far-red light) operates synergistically with phyB signaling, and that both types of interaction require FHY1.  相似文献   

3.
4.
Phytochromes play a key role in the perception of light signals by plants. In this study, the three classical phytochrome action modes, i.e. very-low-fluence responses (VLFR), low-fluence responses (LFR) and high-irradiance responses (HIR), were genetically dissected using phyA and phyB mutants of Arabidopsis thaliana (respectively lacking phytochrome A or phytochrome B) and a polymorphism between ecotypes Landsberg erecta and Columbia. Seed germination and potentiation of greening, hypocotyl growth inhibition and cotyledon unfolding in etiolated seedlings of the ecotype Landsberg erecta showed biphasic responses to the calculated proportion of active phytochrome established by one light pulse or repeated light pulses. The first phase, i.e. the VLFR, was absent in the phyA mutant, normal in the phyB mutant (both in the Landsberg erecta background) and severely deficient in Columbia. The second phase, i.e. the LFR, was present in the phyA mutant, deficient in the phyB mutant and normal in Columbia. Under continuous far-red light, HIR of etiolated seedlings were absent in phyA and normal in phyB and Columbia. The segregation of VLFR in recombinant inbred lines derived from a cross between Landsberg erecta and Columbia was analysed by MAPMAKER/QTL. Two quantitative trait loci, one on chromosome 2 ( VLF1 ) and another on chromosome 5 ( VLF2 ), were identified as responsible for the polymorphism. Phytochrome A is proposed to initiate two transduction pathways, VLFR and HIR, involving different cells and/or different molecular steps. This is the first application of the analysis of quantitative trait loci polymorphic between ecotypes to dissect transduction chains of environmental signals.  相似文献   

5.
Phytochrome A signaling shows two photobiologically discrete outputs: so-called very-low-fluence responses (VLFR) and high-irradiance responses (HIR). By modifying previous screening protocols, we isolated two Arabidopsis mutants retaining VLFR and lacking HIR. Phytochrome A negatively or positively regulates phytochrome B signaling, depending on light conditions. These mutants retained the negative but lacked the positive regulation. Both mutants carry the novel phyA-302 allele, in which Glu-777 (a residue conserved in angiosperm phytochromes) changed to Lys in the PAS2 motif of the C-terminal domain. The phyA-302 mutants showed a 50% reduction in phytochrome A levels in darkness, but this difference was compensated for by greater stability under continuous far-red light. phyA-302:green fluorescent protein fusion proteins showed normal translocation from the cytosol to the nucleus under continuous far-red light but failed to produce nuclear spots, suggesting that nuclear speckles could be involved in HIR signaling and phytochrome A degradation. We propose that the PAS2 domain of phytochrome A is necessary to initiate signaling in HIR but not in VLFR, likely via interaction with a specific partner.  相似文献   

6.
The occurrence of phytochrome-mediated highirradiance responses (HIR), previously characterised largely in dicotyledonous plants, was investigated in Triticum aestivum L., Zea mays L., Lolium multiflorum Lam. and in both wild-type Oryza sativa L. and in transgenic plants overexpressing oat phytochrome A under the control of a 35S promoter. Coleoptile growth was promoted (maize, ryegrass) or inhibited (wild-type rice) by continuous far-red light (FRc). However, at equal fluences, hourly pulses of far-red light (FRp) were equally effective, indicating that the growth responses to FRc were not true HIR. In contrast, in maize and rice, FRc increased anthocyanin content in the coleoptile in a fluence-rate dependent manner. This response was a true HIR as FRp had reduced effects. In maize, anthocyanin levels were significantly higher under FRc than under continuous red light. In rice, overexpression of phytochrome A increased the inhibition of coleoptile growth and the levels of anthocyanin under FRc but not under FRp or under continuous red light. The effect of FRc was fluence-rate dependent. In light-grown rice, overexpression of phytochrome A reduced leaf-sheath length, impaired the response to supplementary far-red light, but did not affect the response to canopy shade-light. In grasses, typical HIR, i.e. fluence-rate dependent responses showing reciprocity failure, can be induced by FRc. Under FRc, overexpressed phytochrome A operates through this action mode in transgenic rice.Abbreviations FR far-red light - FRc continuous far-red light - FRp pulses of far-red light - HIR high-irradiance responses - LFR low-fluence responses - OPHYA transgenic rice overexpressing oat phytochrome A - Pfr far-red light-absorbing form of phytochrome - phyA phytochrome A - R red light - Rc continuous red light - VLFR very low-fluence responses - WT wildtype We thank Marcelo J. Yanovsky for his help with the photographs and Professor Rodolfo A. Sanchez for providing a reprint of the paper by P.J.A.L. de Lint. This work was supported by grants from UBA (AG041) and Fundacion Antorchas (A-13218/1-15) to J.J.C.  相似文献   

7.
Etiolated seedlings of tobacco (Nicotiana tabacum L.) were exposed to single light pulses predicted to establish different proportions of phytochrome in its far-red absorbing form (Pfr/P). The angle between the cotyledons was compared in wild-type and transgenic seedling overexpressing Avena phytochrome A over the range of both very low-fluence responses (VLFR) and low-fluence responses (LFR). The unfolding of the cotyledons increased linearly for 24 h after the light pulse. At this time the Pfr/P-response curve showed two linear segments. The segment below a calculated Pfr/P = 3% (i.e. VLFR) was steeper than the segment above 3% (i.e. LFR). In the VLFR range the slope was almost threefold higher in transgenic than wild-type seedlings. However, in the LFR range the difference was less than 50%. From these data we propose that Avena phytochrome A makes a higher contribution to VLFR than LFR in etiolated tobacco seedlings.Abbreviations FR far-red light - LFR low-fluence response - Pfr/P proportion of phytochrome (P) in its FR-absorbing form (Pfr) - R red light - VLFR very low-fluence response Financial support was provided by the University of Buenos Aires and Fundación Antorchas (Argentina) to J.J.C., CONICET (Argentina) to R.A.S. and the U.S. Department of Energy (DE-FG02-88ER13968) to R.D.V.  相似文献   

8.
Phytochromes (phy) A and B provide higher plants the ability to perceive divergent light signals. phyB mediates red/far-red light reversible, low fluence responses (LFR). phyA mediates both very-low-fluence responses (VLFR), which saturate with single or infrequent light pulses of very low fluence, and high irradiance responses (HIR), which require sustained activation with far-red light. We investigated whether VLFR, LFR, and HIR are genetically coregulated. The Arabidopsis enhanced very-low-fluence response1 mutant, obtained in a novel screening under hourly far-red light pulses, showed enhanced VLFR of hypocotyl growth inhibition, cotyledon unfolding, blocking of greening, and anthocyanin synthesis. However, eve1 showed reduced LFR and HIR. eve1 was found allelic to the brassinosteroid biosynthesis mutant dim/dwarf1. The analysis of both the brassinosteroid mutant det2 in the Columbia background (where VLFR are repressed) and the phyA eve1 double mutant indicates that the negative effect of brassinosteroid mutations on LFR requires phyA signaling in the VLFR mode but not the expression of the VLFR. Under sunlight, hypocotyl growth of eve1 showed little difference with the wild type but failed to respond to canopy shadelight. We propose that the opposite regulation of VLFR versus LFR and HIR could be part of a context-dependent mechanism of adjustment of sensitivity to light signals.  相似文献   

9.
Phytochrome A (phyA) is a versatile plant photoreceptor that mediates responses to brief light exposures (very low fluence responses, VLFR) as well as to prolonged irradiation (high irradiance responses, HIR). We identified the phyA-303 mutant allele of Arabidopsis thaliana bearing an R384K substitution in the GAF subdomain of the N-terminal half of phyA. phyA-303 showed reduced phyA spectral activity, almost normal VLFR, and severely impaired HIR. Recombinant N-terminal half oat of PHYA bearing the phyA-303 mutation showed poor incorporation of chromophore in vitro, despite the predicted relatively long distance (>13 A) between the mutation and the closest ring of the chromophore. Fusion proteins bearing the N-terminal domain of oat phyA, beta-glucuronidase, green fluorescent protein, and a nuclear localization signal showed physiological activity in darkness and mediated VLFR but not HIR. At equal protein levels, the phyA-303 mutation caused slightly less activity than the fusions containing the wild-type sequence. Taken together, these studies highlight the role of the N-terminal domain of phyA in signaling and of distant residues of the GAF subdomain in the regulation of phytochrome bilin-lyase activity.  相似文献   

10.
11.
To analyse the control of rice phytochrome A (phyA) overexpression (wild type or variously mutated) on gene regulation, transgenic tobacco lines overexpressing various rice phyA constructs were crossed with transgenic tobacco lines containing mustard Lhcb1 or Chs1 promoters fused to the uidA reporter gene (-glucuronidase). It was demonstrated that the temporal pattern of competence to respond to phytochrome was not altered by rice phyA overexpression. Also, overexpression of rice phyA did not change the spatial pattern of gene expression. The responsiveness to red and far-red light, on the other hand, depended on the type of overexpressed rice phyA in a structure-function relation: the serine-to-alanine mutant mediated an enhanced response both under continuous red and far-red light, whereas the N-terminal deletion mutant showed a dominant negative effect under continuous far-red light and even after red light pulses. However, the effectiveness of rice phyA overexpression depended on the promoter construct and the developmental stage of the seedlings. The Lhcb1 promoter also conferred -glucuronidase activity in etiolated seedlings. This dark expression could be decreased by a long-wavelength farred light pulse given early in development (24 h after sowing), indicating that this phenomenon is under the control of stable types of phytochrome.Abbreviations Chs1 chalcone synthase - GUS -glucuronidase - Lhcb1 type 1 light-harvesting chlorophyll a/b-binding protein - NTD N-terminal deletion mutant of rice phyA - phyA phytochrome A - phyB phytochrome B - Pfr far-red absorbing form of phytochrome - Pr red-absorbing form of phytochrome - RW rice wild-type phyA - S/A serine-to-alanine mutant of rice phyA - XAN wild-type tobacco cv. Xanthi We thank N.-H. Chua (Rockefeller Univ., New York, USA) and J. Stockhaus (Heinrich-Heine-Universität, Düsseldorf, Germany) for providing seeds from tobacco lines overexpressing the diverse rice phyA proteins. The work was supported by a grant from the Human Frontier Science Program and a grant from Deutsche Forschungsgemeinschaft (SFB 388). K.E. is a recipient of a Landesgraduierten-förderung fellowship  相似文献   

12.
Phytochrome (phy) A mediates two distinct photobiological responses in plants: the very-low-fluence response (VLFR), which can be saturated by short pulses of very-low-fluence light, and the high-irradiance response (HIR), which requires prolonged irradiation with higher fluences of far-red light (FR). To investigate whether the VLFR and HIR involve different domains within the phyA molecule, transgenic tobacco (Nicotiana tabacum cv Xanthi) and Arabidopsis seedlings expressing full-length (FL) and various deletion mutants of oat (Avena sativa) phyA were examined for their light sensitivity. Although most mutants were either partially active or inactive, a strong differential effect was observed for the Delta6-12 phyA mutant missing the serine-rich domain between amino acids 6 and 12. Delta6-12 phyA was as active as FL phyA for the VLFR of hypocotyl growth and cotyledon unfolding in Arabidopsis, and was hyperactive in the VLFR of hypocotyl growth and cotyledon unfolding in tobacco, and the VLFR blocking subsequent greening under white light in Arabidopsis. In contrast, Delta6-12 phyA showed a dominant-negative suppression of HIR in both species. In hypocotyl cells of Arabidopsis irradiated with FR phyA:green fluorescent protein (GFP) and Delta6-12 phyA:GFP fusions localized to the nucleus and coalesced into foci. The proportion of nuclei with abundant foci was enhanced by continuous compared with hourly FR provided at equal total fluence in FL phyA:GFP, and by Delta6-12 phyA mutation under hourly FR. We propose that the N-terminal serine-rich domain of phyA is involved in channeling downstream signaling via the VLFR or HIR pathways in different cellular contexts.  相似文献   

13.
Mutations in a component of phytochrome A (phyA)-specific light signal transduction, SPA1, result in enhanced responsiveness of Arabidopsis seedlings to red and far-red light. Here, we have examined the effects of spa1 mutations on the two known modes of phyA function, the high-irradiance responses (HIRs) to continuous irradiation with far-red light and the very-low-fluence responses (VLFRs) to inductive pulses of light that establish only a small proportion of active phyA. spa1 mutants exhibited an enhanced VLFR under hourly pulses of far-red light for hypocotyl growth inhibition, cotyledon unfolding, anthocyanin accumulation, block of greening in subsequent white light and negative regulation of phyB signaling. We provide evidence that the phenotype of spa1 mutants in red light is also caused by an increase in the VLFR. Taken together, our results indicate that light-induced hypocotyl growth inhibition in spa1 mutants is primarily due to a VLFR. While wild-type seedlings required hourly pulses of far-red light to induce a VLFR, infrequent irradiation with far-red pulses (every 12 h) was sufficient to induce a strong VLFR of hypocotyl elongation in spa1 mutants. This shows that the effect of the VLFR was more persistent in spa1 mutants than in the wild type. We, therefore, propose that SPA1 has an important function in reducing the persistence of phyA signaling. spa1 mutations also enhanced the HIRs of anthocyanin accumulation and of phyA-mediated responsivity amplification towards phyB. Thus, our results suggest that spa1 mutations amplify both the phyA-mediated VLFR and the HIR.  相似文献   

14.
15.
The fhy3 mutation of Arabidopsis impairs phytochrome A (phyA)-mediated inhibition of hypocotyl growth without affecting the levels of phyA measured spectrophotometrically or immunochemically. We investigated whether the fhy3-1 mutation has similar effects on very low fluence responses (VLFR) and high irradiance responses (HIR) of phyA. When exposed to hourly pulses of far-red light, etiolated seedlings of the wild type or of the fhy3-1 mutant showed similar inhibition of hypocotyl growth, unfolding of the cotyledons, anthocyanin synthesis, and greening upon transfer to white light. In the wild type, continuous far-red light was significantly more effective than hourly far-red pulses (at equal total fluence). In the fhy3-1 mutant, hourly pulses were as effective as continuous far-red light, i.e. the failure of reciprocity typical of HIR was not observed. Germination was similarly promoted by continuous or pulsed far-red in wild-type and fhy3-1 seeds. Thus, for hypocotyl growth, cotyledon unfolding, greening, and seed germination, the fhy3-1 mutant retains VLFR but is severely impaired in HIR. These data are consistent with the idea that VLFR and HIR involve divergent signaling pathways of phyA.  相似文献   

16.
Contrary to the established notion that the apical hook of dark-grown dicotyledonous seedlings opens in response to light, we found in tomato (Solanum lycopersicum L.) that the apical hook curvature is exaggerated by light. Experiments with several tomato cultivars and phytochrome mutants, irradiated with red and far-red light either as a brief pulse (Rp, FRp) or continuously (Rc, FRc), revealed: the hook-exaggeration response is maximal at the emergence of the hypocotyl from the seed; the effect of Rp is FRp-reversible; fluence–response curves to a single Rp or FRp show an involvement of low and very low fluence responses (LFR, VLFR); the effect of Rc is fluence-rate dependent, but that of FRc is not; the phyA mutant (phyA hp-1) failed to respond to an Rp of less than 10−2 μmol m−2 and to an FRp of all fluences tested as well as to FRc, thus indicating that the hook-exaggeration response involves phyA-mediated VLFR. The Rp fluence–response curve with the same mutant also confirmed the presence of an LFR mediated by phytochrome(s) other than phyA, although the phyB1 mutant (phyB1 hp-1) still showed full response probably due to other redundant phytochrome species (e.g., phyB2). Simulation experiments led to the possible significance of hook exaggeration in the field that the photoresponse may facilitate the release of seed coat when seeds germinate at some range of depth in soil. It was also observed that seed coat and/or endosperm are essential to the hook exaggeration.  相似文献   

17.
The phytochrome (phy) photoreceptor family regulates almost all aspects of plant development in a broad range of light environments including seed germination, onset of the photomorphogenic program in seedling stage, the shade avoidance syndrome in competing plant communities, flowering induction and senescence of adult plants. During evolution two clearly distinct classes of phy-s emerged covering these very different physiological tasks.1 PhyA is rapidly degraded in its activated state. PhyA functions in controlling seed germination at very low light intensities (very low fluence response, VLFR) and seedling establishment under photosynthetic shade conditions (high irradiance response, HIR) where the far-red portion of the transmitted light to understorey habitats is substantially enhanced. Arabidopsis phyB together with phyC, D and E belongs to the relatively stable sensor class in comparison to the light labile phyA. PhyB functions at all stages of development including seed germination and seedling establishment, mediates classical red/far-red reversible low fluence responses (LFR) as well as red light high irradiance responses, and it is considered to be the dominating phytochrome sensor of its class.  相似文献   

18.
Phytochrome kinase substrate1 (PKS1) is a cytoplasmic protein that interacts physically with, and is phosphorylated by, the plant photoreceptor phytochrome. Here, we show that light transiently increases PKS1 mRNA levels and concentrates its expression to the elongation zone of the hypocotyl and root. This response is mediated by phytochrome A (phyA) acting in the very low fluence response (VLFR) mode. In the hypocotyl, PKS1 RNA and protein accumulation are maintained only under prolonged incubation in far-red light, the wavelength that most effectively activates phyA. Null mutants of PKS1 and its closest homolog, PKS2, show enhanced phyA-mediated VLFR. Notably, a pks1 pks2 double mutant has no phenotype, whereas overexpression of either PKS1 or PKS2 results in the same phenotype as the pks1 or pks2 single null mutant. We propose that PKS1 and PKS2 are involved in a growth regulatory loop that provides homeostasis to phyA signaling in the VLFR. In accordance with this idea, PKS1 effects are larger in the pks2 background (and vice versa). Moreover, the two proteins can interact with each other, and PKS2 negatively regulates PKS1 protein levels specifically under VLFR conditions.  相似文献   

19.
20.
Extended dark treatments of light-grown plants of both Lemna gibba and Arabidopsis thaliana resulted in substantial increases in abscisic acid (ABA) concentrations. The concentration of ABA could be negatively regulated by phytochrome action in Lemna. As has been noted in other species, ABA treatment reduced Lemna rbcS and Lhcb RNA levels, which are positively regulated by phytochrome in many species. In view of these observations, the possibility that phytochrome effects on gene expression may be mediated primarily by changes in ABA was tested using a transient assay in intact plants. The phytochrome responsiveness of the Lemna Lhcb2*1 promoter was still apparent in the presence of exogenous ABA. Additionally, when 2-bp mutations were introduced into this promoter so that phytochrome responsiveness was lost, a response to exogenous ABA was still present. We conclude that phytochrome- and ABA-response elements are separable in the Lhcb2*1 promoter. We tested whether the effects of ABA on RNA abundance could be inhibited by treatment with gibberellin and found no evidence for such an inhibition. We have also found that the ABA-responsive Em promoter of wheat can be negatively regulated by phytochrome action. It is likely that this regulation is mediated at least in part by phytochrome-induced changes in ABA levels. Our results demonstrate that it is essential to take into account that dark treatments and the phytochrome system can affect ABA levels when interpreting studies of light-regulated genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号