首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Continuous cultivation in a glucose-limited chemostat was used to determine the growth parameters of wild-type Bacillus subtilis and of a recombinant, riboflavin-producing strain. Maintenance coefficients of 0.45 and 0.66 mmol of glucose g-1 h-1 were determined for the wild-type and recombinant strains, respectively. However, the maximum molar growth yield of 82 to 85 g (cell dry weight)/mol of glucose was found to be almost identical in both strains. A nonlinear relationship between the specific riboflavin production rate and the dilution rate was observed, revealing a coupling of product formation and growth under strict substrate-limited conditions. Most prominently, riboflavin formation completely ceased at specific growth rates below 0.15 h-1. For molecular characterization of B. subtilis, the total amino acid composition of the wild type was experimentally determined and the complete building block requirements for biomass formation were derived. In particular, the murein sacculus was found to constitute approximately 9% of B. subtilis biomass, three- to fivefold more than in Escherichia coli. Estimation of intracellular metabolic fluxes by a refined mass balance approach revealed a substantial, growth rate-dependent flux through the oxidative branch of the pentose phosphate pathway. Furthermore, this flux is indicated to be increased in the strain engineered for riboflavin formation. Glucose catabolism at low growth rates with reduced biomass yields was supported mainly by the tricarboxylic acid cycle.  相似文献   

2.
3.
Genetic alterations of carbon flux into the acetoin biosynthesis pathway as a possible means to reduce acid accumulation were investigated in the riboflavin-producing Bacillus subtilis during growth on glucose. The lower rates of cell growth and riboflavin production were found in the pta-disrupted mutant while the rate of acetate formation was reduced. In contrast, acid accumulation was significantly reduced, to one-fifth that of the parental strain RH33::[pRB63](n), and a 50% increase in the riboflavin yield was obtained when the expression of the gene encoding acetolactate synthase was increased in the pta-disrupted mutant. Metabolic analysis, together with enzyme activity assays, indicated that the tricarboxylic acid cycle fluxes are significantly increased in response to acetolactate synthase overexpression in pta-disrupted mutant. Moreover, the intracellular ATP-to-ADP ratio also increased 5.8-fold. The high concentration of ATP could explain the increased riboflavin production.  相似文献   

4.
Stoichiometric growth model for riboflavin-producing Bacillus subtilis   总被引:1,自引:0,他引:1  
Rate equations for measured extracellular rates and macromolecular composition data were combined with a stoichiometric model to describe riboflavin production with an industrial Bacillus subtilis strain using errors in variables regression analysis. On the basis of this combined stoichiometric growth model, we explored the topological features of the B. subtilis metabolic reaction network that was assembled from a large amount of literature. More specifically, we simulated maximum theoretical yields of biomass and riboflavin, including the associated flux regimes. Based on the developed model, the importance of experimental data on building block requirements for maximum yield and flux calculations were investigated. These analyses clearly show that verification of macromolecular composition data is important for optimum flux calculations.  相似文献   

5.
6.
7.
核黄素是一种水溶性维生素,与动植物的生长密切相关,人体不能合成核黄素,需从外部摄取,因此核黄素的生产具有重要意义。介绍了核黄素的生产发展历程和产核黄素的微生物种类。对枯草芽孢杆菌的核黄素代谢途径及其诱变育种进行了总结,重点介绍了菌种的基因重组改造方法,主要是提高核黄素操纵子表达以及提高Ru5P和GTP两种前体供应量合成途径通量,介绍了近些年新的改造方法,并对未来的发展方向进行了展望。  相似文献   

8.
The incorporation of 14C-labelled guanosine and xanthosine into riboflavin was studied. It is concluded that the ribose mojety of guanosine is converted to the ribityl side chain of riboflavin. Thus the immediate precursor of riboflavin biosynthesis is a guanosine compound. Two classes of the riboflavin-dependent mutants of Bacillus subtilis were studied. They are closely linked to the lysine markers and probably correspond to the initial steps of riboflavin biosynthesis pathway.  相似文献   

9.
枯草芽孢杆菌ccpA基因敲除及对其核黄素产量的影响   总被引:3,自引:0,他引:3  
应明  班睿 《微生物学报》2006,46(1):23-27
CcpA蛋白是介导枯草芽孢杆菌碳分解代谢物阻遏(CCR)的全局调控因子,由ccpA基因编码。CCR效应的存在影响B.subtilis对葡萄糖的利用,降低B.subtilis生产发酵产品的效率。采用基因重组技术敲除了核黄素发酵菌株B.subtilis24/pMX45的ccpA基因,构建了CcpA缺陷株B.subtilis24A1/pMX45。发酵结果显示:B.subtilis24A1/pMX45能够在70h内基本耗尽10%的葡萄糖,生物量达到1.5×109个细胞/mL,溢流代谢产物积累量减少,在8%和10%葡萄糖浓度下,B.subtilis24A1/pMX45核黄素产量分别比B.subtilis24/pMX45提高了62%和95%。CcpA的缺陷,可以缓解葡萄糖引起的CCR效应,显著提高菌株的核黄素产量。  相似文献   

10.
Carbon flow in Bacillus subtilis through the pentose phosphate (PP) pathway was modulated by overexpression of glucose-6-phosphate dehydrogenase (G6PDH) under the control of the inducible Pxyl promoter in B. subtilis PY. Alteration of carbon flow into the PP pathway will affect the availability of ribulose-5-phosphate (Ru5P) and the riboflavin yield. Overexpression of G6PDH resulted in the glucose consumption rate increasing slightly, while the specific growth rate was unchanged. An improvement by 25% ± 2 of the riboflavin production was obtained. Compared to by-products formation in flask culture, low acid production (acetate and pyruvate) and more acetoin were observed. Metabolic analysis, together with carbon flux redistribution, indicated that the PP pathway fluxes are increased in response to overexpression of G6PDH. Moreover, increased flux of the PP pathway is associated with an increased intracellular pool of Ru5P, which is a precursor for riboflavin biosynthesis. The high concentrations of Ru5P could explain the increased riboflavin production.  相似文献   

11.
麦芽糖和葡萄糖对粪产碱杆菌发酵合成凝胶多糖有着显著的影响,为了详细分析两种底物对凝胶多糖合成的影响机制,利用恒化培养实验及稳态碳平衡代谢分析,研究发现在稀释速率为0.1h-1时,利用麦芽糖和葡萄糖为碳源底物的条件下粪产碱杆菌的微观代谢途径通量有较大的差异。以麦芽糖为底物时凝胶多糖的摩尔得率为53.8%,比葡萄糖为碳源时的摩尔得率(36.9%)高出了45.8%以上。同时以麦芽糖为碳源时HMP途径的绝对代谢通量比葡萄糖时的通量提升了40%以上。这条途径通量的增加,提升了NADPH还原力供给速率,促进了依赖于还原力NADPH的凝胶多糖合成途径通量,提升了碳源底物向产物的摩尔转化速率。而且代谢流分析结果显示ED途径通量和能量提供也是影响粪产碱杆菌凝胶多糖合成效率的关键因素。麦芽糖作为碳源底物过程中维持的较低的残留葡萄糖浓度解除了高葡萄糖浓度条件下对凝胶多糖合成的抑制,能够实现更高通量的ATP能量提供效率,更加促进了凝胶多糖合成通量。  相似文献   

12.
Zhu Y  Chen X  Chen T  Shi S  Zhao X 《Biotechnology letters》2006,28(20):1667-1672
Ribulose 5-phosphate is a precursor for riboflavin biosynthesis. Alteration of carbon flow into the pentose phosphate pathway will affect the availability of ribulose 5-phosphate and the riboflavin yield. We have modulated carbon flow in Bacillus subtilis through the gluconate bypass by over-expression of glucose dehydrogenase under the control of the constitutively expressed P43 promoter. Over-expression of glucose dehydrogenase resulted in low acid production (acetate and pyruvate). The substantial reduction in acid production is accompanied by increased riboflavin production and an increased rate of growth while glucose consumption remained unchanged. Metabolic analysis indicated that over-expression of glucose dehydrogenase increased intracellular pool of ribulose 5-phosphate. The high concentrations of ribulose 5-phosphate could explain the increased riboflavin production.  相似文献   

13.
It is well recognized that metabolic fluxes are the key variables that must be determined in order to understand metabolic regulation and patterns. However, owing to difficulties in measuring the flux values, evaluation of metabolic fluxes has not been an integral part of the most metabolic studies. Flux values for metabolites of glycolysis, tricarboxylic acid (TCA) cycle, and hexose monophosphate (HMP) pathway were obtained for batch and glucose-limited continuous cultures of Bacillus subtilis by combining the information from the stoichiometry of key biosynthetic reactions with the experimental data on concentrations of glucose and metabolic by-products, CO(2) evolution, and oxygen uptake rates. The results indicate that (1) the metabolic fluxes and energetic yield as well as the extent of flux mismatch in metabolic activity of glycolysis and the TCA cycle reactions can be accurately quantified; (2) the flux through the TCA cycle in continuous culture is much in excess of cell energetic and biosynthetic demands for precursors; (3) for the range of growth rates examined the TCA cycle flux increases almost in proportion to growth rate and is significantly repressed only at very high growth rates of batch cultures; and (4) for continuous cultures the isocitrate dehydrogenase catalyzed reaction of the TCA cycle is the major source of the reduced form of nicotinamide-adenine dinucleotide phosphate (NADPH) used in biosynthesis. (c) 1993 John Wiley & Sons, Inc.  相似文献   

14.
Chemical riboflavin production, successfully used for decades, is in the course of being replaced by microbial processes. These promise to save half the costs, reduce waste and energy requirements, and use renewable resources like sugar or plant oil. Three microorganisms are currently in use for industrial riboflavin production. The hemiascomycetes Ashbya gossypii, a filamentous fungus, and Candida famata, a yeast, are naturally occurring overproducers of this vitamin. To obtain riboflavin production with the Gram-positive bacterium Bacillus subtilis requires at least the deregulation of purine synthesis and a mutation in a flavokinase/FAD-synthetase. It is common to all three organisms that riboflavin production is recognizable by the yellow color of the colonies. This is an important tool for the screening of improved mutants. Antimetabolites like itaconate, which inhibits the isocitrate lyase in A. gossypii, tubercidin, which inhibits purine biosynthesis in C. famata, or roseoflavin, a structural analog of riboflavin used for B. subtilis, have been applied successfully for mutant selections. The production of riboflavin by the two fungi seems to be limited by precursor supply, as was concluded from feeding and gene-overexpression experiments. Although flux studies in B. subtilis revealed an increase both in maintenance metabolism and in the oxidative part of the pentose phosphate pathway, the major limitation there seems to be the riboflavin pathway. Multiple copies of the rib genes and promoter replacements are necessary to achieve competitive productivity. Received: 19 November 1999 / Accepted: 21 December 1999  相似文献   

15.
Dihydrodipicolinate reductase in Bacillus subtilis PCI 219 had FMN as a prosthetic group, and the hydrogen transfer pathway is considered to be NADPH yields FMN yields dihydrodipicolinate. Linewaver-Burk plots of the reciprocal of the activity against the reciprocal of the concentration of either of the two substrates, dihydrodipocolinate and NADPH, are consistent with a reaction mechanism involving interconversion of two free forms of the enzyme by the two substrates. The Km values obtained from the secondary plots are 0.77 mM for dihydrodipicolinate and 72 muM for NADPH. Inhibition by dipicolinate is competitive with NADPH and noncompetitive with dihydrodipicolinate, and shows positive cooperativity. The possible metabolic role of the reductase in sporulating Bacillus subtilis is discussed in connection with regulation of the biosyntheses of dipicolinate and diaminopimelate.  相似文献   

16.
枯草芽孢杆菌基因修饰生产核黄素   总被引:1,自引:1,他引:0  
【目的】研究枯草芽孢杆菌核黄素合成途径、木糖代谢相关基因修饰对核黄素合成的影响。【方法】单独过表达或共同过表达核黄素操纵子中的基因、过表达木糖代谢相关基因构建相应的重组菌株。通过测定和比较重组菌株摇瓶发酵的核黄素产量和生物量,表征各个基因修饰的效应。采用摇瓶和5 L罐发酵,考察木糖作为主要碳源以及木糖与蔗糖共代谢对核黄素发酵的影响。【结果】ribA基因单独过表达,使核黄素产量提高99%,但生物量降低30%,出现细胞自溶现象。ribA-ribH基因共表达,使核黄素产量提高280%,并且无细胞自溶和生物量下降现象。1.5%蔗糖与6.5%木糖作为碳源,5 L发酵罐发酵70 h,核黄素产量达到3.6 g/L,与8%蔗糖为碳源的发酵相比,核黄素产量提高80%。木糖代谢相关基因过表达,均明显降低核黄素产量。【结论】与ribA基因单独过表达相比,ribA-ribH基因共表达可有效避免细胞自溶现象,并能进一步提高核黄素产量。蔗糖与木糖共代谢,能够改善前体物供给,有利于提高核黄素产量。  相似文献   

17.
In strains of Bacillus subtilis able to synthesize purines de novo, massive sporulation is suppressed by the combination of excess ammonia, glucose and phosphate. Purine auxotrophs, blocked in the general or the guanine-specific portion of the branched purine pathway, sporulated in such a medium when the purine required for normal growth was removed from the medium. The resulting spore titre and the sporulation frequency increased with the residual growth rate in the purine-free medium, i.e. with the leakiness of the purine mutation. Sporulation was further increased by allowing residual growth in growth-limiting amounts of guanosine. None-leaky purine mutants blocked before 5'-phosphoribosyl-5-amino-4-imidazole carboxamide also sporulated well when supplied with 5-amino-4-imidazole carboxamide at concentrations (2 mM) that supported growth at a suboptimal rate.  相似文献   

18.
The mevalonic acid (MVA) and methylerythritol phosphate (MEP) pathways for isoprenoid biosynthesis both culminate in the production of the two-five carbon prenyl diphosphates: dimethylallyl diphosphate (DMAPP) and isopentenyl diphosphate (IPP). These are the building blocks for higher isoprenoids, including many that have industrial and pharmaceutical applications. With growing interest in producing commercial isoprenoids through microbial engineering, reports have appeared of toxicity associated with the accumulation of prenyl diphosphates in Escherichia coli expressing a heterologous MVA pathway. Here we explored whether similar prenyl diphosphate toxicity, related to MEP pathway flux, could also be observed in the bacterium Bacillus subtilis. After genetic and metabolic manipulations of the endogenous MEP pathway in B. subtilis, measurements of cell growth, MEP pathway flux, and DMAPP contents suggested cytotoxicity related to prenyl diphosphate accumulation. These results have implications as to understanding the factors impacting isoprenoid biosynthesis in microbial systems.  相似文献   

19.
In this paper, we report the identification, cloning, and complete nucleotide sequence of four genes from Actinobacillus pleuropneumoniae that are involved in riboflavin biosynthesis. The cloned genes can specify production of large amounts of riboflavin in Escherichia coli, can complement several defined genetic mutations in riboflavin biosynthesis in E. coli, and are homologous to riboflavin biosynthetic genes from E. coli, Haemophilus influenzae, and Bacillus subtilis. The genes have been designated A. pleuropneumoniae ribGBAH because of their similarity in both sequence and arrangement to the B. subtilis ribGBAH operon.  相似文献   

20.
All the structural genes of riboflavin biosynthesis are shown to be located on the 2.8 MD DNA fragment, using the collection of plasmids, carrying the Bacillus subtilis riboflavin operon fragments and Bacillus subtilis strains, containing various deletions of rib-operon for analysis. The proximal Bgl II site is shown to be located between promoter P1 and the first structural gene ribG. The distal Hind III site of fragment C is the left bound of the rib-operon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号