共查询到20条相似文献,搜索用时 0 毫秒
1.
G Deckers-Hebestreit K Steffens K Altendorf 《The Journal of biological chemistry》1986,261(32):14878-14881
Subunit c of the membrane-integrated, proton-translocating F0 portion of the ATP synthase (F1F0) from Escherichia coli has been isolated under nondenaturing conditions (Schneider, E., and Altendorf, K. (1985) EMBO J. 4, 515-518) and antibodies have been raised in rabbits. The primary antisera did not recognize the antigen when present in the same buffer as used for the immunization. Surprisingly, in one of the three antisera a strong antibody binding was observed when intact F0, a.c complex or reconstituted subunit c was provided as the antigen. Incorporation of subunit c into liposomes together with subunits a and b forming an active, H+-translocating complex was not required for the recognition by the antiserum. Subunit c prepared by chloroform/methanol extraction or by chromatography in the presence of sodium dodecyl sulfate was not recognized by the anti-c antiserum when incorporated into liposomes. 相似文献
2.
O Dmitriev P C Jones W Jiang R H Fillingame 《The Journal of biological chemistry》1999,274(22):15598-15604
The structure of the N-terminal transmembrane domain (residues 1-34) of subunit b of the Escherichia coli F0F1-ATP synthase has been solved by two-dimensional 1H NMR in a membrane mimetic solvent mixture of chloroform/methanol/H2O (4:4:1). Residues 4-22 form an alpha-helix, which is likely to span the hydrophobic domain of the lipid bilayer to anchor the largely hydrophilic subunit b in the membrane. The helical structure is interrupted by a rigid bend in the region of residues 23-26 with alpha-helical structure resuming at Pro-27 at an angle offset by 20 degrees from the transmembrane helix. In native subunit b, the hinge region and C-terminal alpha-helical segment would connect the transmembrane helix to the cytoplasmic domain. The transmembrane domains of the two subunit b in F0 were shown to be close to each other by cross-linking experiments in which single Cys were substituted for residues 2-21 of the native subunit and b-b dimer formation tested after oxidation with Cu(II)(phenanthroline)2. Cys residues that formed disulfide cross-links were found with a periodicity indicative of one face of an alpha-helix, over the span of residues 2-18, where Cys at positions 2, 6, and 10 formed dimers in highest yield. A model for the dimer is presented based upon the NMR structure and distance constraints from the cross-linking data. The transmembrane alpha-helices are positioned at a 23 degrees angle to each other with the side chains of Thr-6, Gln-10, Phe-14, and Phe-17 at the interface between subunits. The change in direction of helical packing at the hinge region may be important in the functional interaction of the cytoplasmic domains. 相似文献
3.
Previously, the role of YidC in the membrane protein biogenesis of the F(0) sector of the Escherichia coli F(1)F(0) ATP synthase was investigated. Whereas subunits a and c of the F(1)F(0) ATP synthase were strictly dependent on YidC for membrane insertion, subunit b required YidC for efficient insertion (Yi, L., Jiang, F., Chen, M., Cain, B., Bolhuis, A., and Dalbey, R. E. (2003) Biochemistry 42, 10537-10544). In this paper, we investigated other protein components and energetics that are required in the membrane protein assembly of the F(0) sector subunits. We show here that the Sec translocase and the signal recognition particle (SRP) pathway are required for membrane insertion of subunits a and b. In contrast, subunit c required neither the Sec machinery nor the SRP pathway for insertion. While the proton motive force was not required for insertion of subunits b and c, it was required for translocation of the negatively charged periplasmic NH(2)-terminal tail of subunit a, whereas periplasmic loop 2 of subunit a could insert in a proton motive force-independent manner. Taken together, the in vivo data suggest that subunits a and b are inserted by the Sec/SRP pathway with the help of YidC, and subunit c is integrated into the membrane by the novel YidC pathway. 相似文献
4.
F0 portion of Escherichia coli ATP synthase: orientation of subunit c in the membrane 总被引:3,自引:0,他引:3
Incubation of right-side-out oriented membrane vesicles of Escherichia coli with tetranitromethane resulted in the nitration of tyrosine residues (Tyr-10 and Tyr-73) of subunit c from the ATP synthase. Cleavage of the protein with cyanogen bromide and separation of the resulting fragments, especially of the tyrosine-containing peptides, clearly demonstrated that the distribution of the nitro groups is similar at any time and at any pH value chosen for the analysis. Furthermore, the percentage of 3-nitrotyrosine present in the two peptide fragments was in good agreement with that obtained for the intact polypeptide chain. While the modification of the tyrosine residues in subunit c with the lipophilic tetranitromethane is independent of the orientation of the membrane vesicles, the subsequent partial conversion of the 3-nitrotyrosine to the amino form only occurred when membrane vesicles with right-side-out orientation were treated with the ionic, water-soluble sodium dithionite, which at certain concentrations cannot penetrate biological membranes. Cleavage of subunit c isolated from nitrated and subsequently reduced membrane vesicles and separation of the resulting fragments by high-pressure liquid chromatography showed that the 3-nitrotyrosine in the Tyr-73-containing peptides has been completely reduced, while the nitro group in peptides containing Tyr-10 remained nearly unaffected. 相似文献
5.
Modification of subunit b of the F0 complex from Escherichia coli ATP synthase by a hydrophobic maleimide and its effects on F0 functions 总被引:1,自引:0,他引:1
Purified F0 from Escherichia coli ATP synthase was labelled with N-(7-dimethylamino-4-methyl-coumarinyl)-maleimide (DACM), a hydrophobic reagent which forms a stable, strongly fluorescent adduct with SH groups. Sodium dodecyl sulfate gel electrophoresis clearly demonstrated that subunit b was exclusively labelled, most likely at Cys-21, the only cysteine residue in E. coli F0. The amount of two molecules of DACM bound per F0, which was calculated from the absorption spectrum at 380 nm, is in full agreement with the postulated stoichiometry of two copies of subunit b/F0 complex. Thus the label provides a useful tool for simply detecting subunit b in protein chemical studies. DACM-labelled F0 was incorporated into liposomes and assayed for H+ translocating activity and its capacity to bind purified F1. Whereas the initial rate of H+ uptake was inhibited about 40% the reconstitution of a dicyclohexylcarbodiimide-sensitive F1F0 ATPase activity was completely unaffected. In a second set of experiments we reconstituted an F0 complex from DACM-labelled purified subunit b and an ac complex. In contrast to the results obtained with intact, DACM-labelled F0, both H+ translocating activity and F1 binding capacity were greatly reduced. Our data indicate that cysteine-21, probably together with other amino acids, is involved in maintaining a proper interaction of the hydrophobic N-terminal region of subunit b with the ac complex. This interplay seems to be a prerequisite for at least the in vitro assembly of a functional F0 complex. 相似文献
6.
Insights into the rotary catalytic mechanism of F0F1 ATP synthase from the cross-linking of subunits b and c in the Escherichia coli enzyme 总被引:1,自引:0,他引:1
Jones PC Hermolin J Jiang W Fillingame RH 《The Journal of biological chemistry》2000,275(40):31340-31346
The transmembrane sector of the F(0)F(1) rotary ATP synthase is proposed to organize with an oligomeric ring of c subunits, which function as a rotor, interacting with two b subunits at the periphery of the ring, the b subunits functioning as a stator. In this study, cysteines were introduced into the C-terminal region of subunit c and the N-terminal region of subunit b. Cys of N2C subunit b was cross-linked with Cys at positions 74, 75, and 78 of subunit c. In each case, a maximum of 50% of the b subunit could be cross-linked to subunit c, which suggests that either only one of the two b subunits lie adjacent to the c-ring or that both b subunits interact with a single subunit c. The results support a topological arrangement of these subunits, in which the respective N- and C-terminal ends of subunits b and c extend to the periplasmic surface of the membrane and cAsp-61 lies at the center of the membrane. The cross-linking of Cys between bN2C and cV78C was shown to inhibit ATP-driven proton pumping, as would be predicted from a rotary model for ATP synthase function, but unexpectedly, cross-linking did not lead to inhibition of ATPase activity. ATP hydrolysis and proton pumping are therefore uncoupled in the cross-linked enzyme. The c subunit lying adjacent to subunit b was shown to be mobile and to exchange with c subunits that initially occupied non-neighboring positions. The movement or exchange of subunits at the position adjacent to subunit b was blocked by dicyclohexylcarbodiimide. These experiments provide a biochemical verification that the oligomeric c-ring can move with respect to the b-stator and provide further support for a rotary catalytic mechanism in the ATP synthase. 相似文献
7.
The nucleotide sequence of the atp genes coding for the F0 subunits a, b, c and the F1 subunit delta of the membrane bound ATP synthase of Escherichia coli 总被引:35,自引:0,他引:35
Jørgen Nielsen Flemming G. Hansen Jürgen Hoppe Peter Friedl Kaspar von Meyenburg 《Molecular & general genetics : MGG》1981,184(1):33-39
Summary The nucleotide sequence has been determined of a 2.500 base pair segment of the E. coli chromosome located between 3.75 and 6.25 kb counterclockwise of the origin of replication at 83.5 min. The sequence contains the atp genes coding for subunits a-, b-, c-, - and part of the -subunit of the membrane bound ATP synthase. The precise start positions of the atpE (c), atpF (b), atpH () and atpA () genes have been defined by comparison of the potential coding sequences with the known amino acid sequence of the c-subunit and the determined N-terminal amino acid sequences of the respective subunits. The genes are expressed in the counterclockwise direction. Their order (counterclockwise) is: atpB (a), atpE (c), atpF (b), atpH () and atpA (). The coding sequences for subunits b and yield polypeptides of 156 and 177 amino acids, respectively, in accordance with the established sizes of these subunits; the one for the c-subunit, the DCCD binding protein, fits perfectly with its known sequence of 79 amino acids. The a-subunit is comprised within a coding sequence yielding a polypeptide of 271 amino acids. It is suggested, however, that the a-subunit (atpB) contains only 201 amino acids, in accordance with its known size, starting from a translation initiation site within the larger coding sequence. The stoichiometry of the F0 sector subunits is discussed and a model is proposed for the functioning of the highly charged b-subunit of the F0 sector as the actual proton conductor.Abbreviations
atp
denotes genes coding for the ATP synthase subunits. This symbol has been proposed as a replacement of unc (von Meyenburg and Hansen 1980; Hansen et al. 1981 b); the alternative symbol pap has also been proposed (Kanazawa et al. 1981). For other genetic symbols see Bachmann and Low (1980)
-
bp
basepair
-
kb
kilobase (pair)
-
kD
kilo Dalton
-
DCCD N
N,N-Dicyclohexylcarbodiimide
-
SDS
Sodium Dodecyl Sulphate 相似文献
8.
Deckers-Hebestreit G Greie J Stalz W Altendorf K 《Biochimica et biophysica acta》2000,1458(2-3):364-373
In this review we discuss recent work from our laboratory concerning the structure and/or function of the F(0) subunits of the proton-translocating ATP synthase of Escherichia coli. For the topology of subunit a a brief discussion gives (i) a detailed picture of the C-terminal two-thirds of the protein with four transmembrane helices and the C terminus exposed to the cytoplasm and (ii) an evaluation of the controversial results obtained for the localization of the N-terminal region of subunit a including its consequences on the number of transmembrane helices. The structure of membrane-bound subunit b has been determined by circular dichroism spectroscopy to be at least 75% alpha-helical. For this purpose a method was developed, which allows the determination of the structure composition of membrane proteins in proteoliposomes. Subunit b was purified to homogeneity by preparative SDS gel electrophoresis, precipitated with acetone, and redissolved in cholate-containing buffer, thereby retaining its native conformation as shown by functional coreconstitution with an ac subcomplex. Monoclonal antibodies, which have their epitopes located within the hydrophilic loop region of subunit c, and the F(1) part are bound simultaneously to the F(0) complex without an effect on the function of F(0), indicating that not all c subunits are involved in F(1) interaction. Consequences on the coupling mechanism between ATP synthesis/hydrolysis and proton translocation are discussed. 相似文献
9.
Subunit b of the Escherichia coli ATP synthase was isolated by preparative gel electrophoresis, acetone precipitated and after ion-pair extraction redissolved in a buffer either containing n-dodecyl-beta-D-maltoside or sodium cholate. The secondary structure of isolated subunit b was shown to be the same as within the FO complex, but was strongly dependent on the detergent used for replacement of the phospholipid environment. This was shown by an identical tryptic digestion pattern, which was strongly influenced by the detergent used for solubilization. An influence of the detergent n-dodecyl-beta-D-maltoside on the secondary structure of the hydrophilic part of subunit b was also shown for the soluble part of the polypeptide comprising residues Val25 to Leu156 (bsol) using CD spectroscopy. In order to determine the secondary structure of subunit b in its native conformation, isolated subunit b was reconstituted into E. coli lipid vesicles and analyzed with CD spectroscopy. The resulting spectrum revealed a secondary structure composition of 80% alpha helix together with 14% beta turn conformation. These results suggest that subunit b is not a rigid rod-like alpha helix simply linking F1 to FO, but rather provides an inherent flexibility for the storage of elastic energy within the second stalk generated by rotational movements within the F1FO complex. 相似文献
10.
Interactions between subunit a and the c subunits of the Escherichia coli ATP synthase are thought to control proton translocation through the F(o) sector. In this study cysteine substitution mutagenesis was used to define the cytoplasmic ends of the first three transmembrane spans of subunit a, as judged by accessibility to 3-N-maleimidyl-propionyl biocytin. The cytoplasmic end of the fourth transmembrane span could not be defined in this way because of the limited extent of labeling of all residues between 186 and 206. In contrast, most of the preceding residues in that region, closer to transmembrane span 3, were labeled readily. The proximity of this region to other subunits in F(o) was tested by reacting mono-cysteine mutants with a photoactivated cross-linker. Residues 165, 169, 173, 174, 177, 178, and 182-184 could all be cross-linked to subunit c, but no sites were cross-linked to b subunits. Attempts using double mutants of subunit a to generate simultaneous cross-links to two different c subunits were unsuccessful. These results indicate that the cytoplasmic loop between transmembrane spans 3 and 4 of subunit a is in close proximity to at least one c subunit. It is likely that the more highly conserved, carboxyl-terminal region of this loop has limited surface accessibility due to protein-protein interactions. A model is presented for the interaction of subunit a with subunit c, and its implications for the mechanism of proton translocation are discussed. 相似文献
11.
Rotary catalysis in F(1)F(0) ATP synthase is powered by proton translocation through the membrane-embedded F(0) sector. Proton binding and release occurs in the middle of the membrane at Asp-61 on transmembrane helix 2 of subunit c. Previously, the reactivity of cysteines substituted into F(0) subunit a revealed two regions of aqueous access, one extending from the periplasm to the middle of the membrane and a second extending from the middle of the membrane to the cytoplasm. To further characterize aqueous accessibility at the subunit a-c interface, we have substituted Cys for residues on the cytoplasmic side of transmembrane helix 2 of subunit c and probed the accessibility to these substituted positions using thiolate-reactive reagents. The Cys substitutions tested were uniformly inhibited by Ag(+) treatment, which suggested widespread aqueous access to this generally hydrophobic region. Sensitivity to N-ethylmaleimide (NEM) and methanethiosulfonate reagents was localized to a membrane-embedded pocket surrounding Asp-61. The cG58C substitution was profoundly inhibited by all the reagents tested, including membrane impermeant methanethiosulfonate reagents. Further studies of the highly reactive cG58C substitution revealed that NEM modification of a single c subunit in the oligomeric c-ring was sufficient to cause complete inhibition. In addition, NEM modification of subunit c was dependent upon the presence of subunit a. The results described here provide further evidence for an aqueous-accessible region at the interface of subunits a and c extending from the middle of the membrane to the cytoplasm. 相似文献
12.
J Hermolin O Y Dmitriev Y Zhang R H Fillingame 《The Journal of biological chemistry》1999,274(24):17011-17016
We have previously shown that the E31C-substituted epsilon subunit of F1 can be cross-linked by disulfide bond formation to the Q42C-substituted c subunit of F0 in the Escherichia coli F1F0-ATP synthase complex (Zhang, Y., and Fillingame, R. H. (1995) J. Biol. Chem. 270, 24609-24614). The interactions of subunits epsilon and c are thought to be central to the coupling of H+ transport through F0 to ATP synthesis in F1. To further define the domains of interaction, we have introduced additional Cys into subunit epsilon and subunit c and tested for cross-link formation following sulfhydryl oxidation. The results show that Cys, in a continuous stretch of residues 26-33 in subunit epsilon, can be cross-linked to Cys at positions 40, 42, and 44 in the polar loop region of subunit c. The results are interpreted, and the subunit interaction is modeled using the NMR and x-ray diffraction structures of the monomeric subunits together with information on the packing arrangement of subunit c in a ring of 12 subunits. In the model, residues 26-33 form a turn of antiparallel beta-sheet which packs between the polar loop regions of adjacent subunit c at the cytoplasmic surface of the c12 oligomer. 相似文献
13.
Targeted mutagenesis of the b subunit of F1F0 ATP synthase in Escherichia coli: Glu-77 through Gln-85. 下载免费PDF全文
Subunit b of Escherichia coli F1F0 ATP synthase contains a large hydrophilic region thought to be involved in the interaction between F1 and F0. Oligonucleotide-directed mutagenesis was used to evaluate the functional importance of a segment of this region from Glu-77 through Gln-85. The mutagenesis procedure employed a phagemid DNA template and a doped oligonucleotide primer designed to generate a predetermined collection of missense mutations in the target segment. Sixty-one mutant phagemids were identified and shown to contain nucleotide substitutions encoding 37 novel missense mutations. Mutations were isolated singly or in combinations of up to four mutations per recombinant phagemid. F1F0 ATP synthase function was studied by mutant phagemid complementation of a novel E. coli strain in which the uncF (b) gene was deleted. Complementation was assessed by observing growth on solid succinate minimal medium. Many phagemid-encoded uncF (b) gene mutations in the targeted segment resulted in growth phenotypes indistinguishable from those of strains expressing the native b subunit, suggesting abundant F1F0 ATP synthase activity. In contrast, several specific mutations were associated with a loss of enzyme function. Phagemids specifying the Ala-79----Pro, Arg-82----Pro, Arg-83----Pro, or Gln-85----Pro mutation failed to complement uncF (b) gene-deficient E. coli. F1F0 ATP synthase displayed the greatest sensitivity to mutations altering a single site in the target segment, Ala-79. The evidence suggests that Ala-79 occupies a restricted position in the enzyme complex. 相似文献
14.
Mutations in the delta subunit influence the assembly of F1F0 ATP synthase in Escherichia coli. 下载免费PDF全文
Missense mutations affecting Asp-161 and Ser-163 in the delta subunit of F1F0 ATP synthase have been generated. Although most substitutions allowed substantial enzyme function, the delta Asp-161-->Pro substitution resulted in a loss of enzyme activity. The loss of activity was attributable to a structural failure altering assembly of the enzyme complex. 相似文献
15.
R Birkenh?ger J C Greie K Altendorf G Deckers-Hebestreit 《European journal of biochemistry》1999,264(2):385-396
The antigenic determinants of mAbs against subunit c of the Escherichia coli ATP synthase were mapped by ELISA using overlapping synthetic heptapeptides. All epitopes recognized are located in the hydrophilic loop region and are as follows: 31-LGGKFLE-37, 35-FLEGAAR-41, 36-LEGAAR-41 and 36-LEGAARQ-42. Binding studies with membrane vesicles of different orientation revealed that all mAbs bind to everted membrane vesicles independent of the presence or absence of the F1 part. Although the hydrophilic region of subunit c and particularly the highly conserved residues A40, R41, Q42 and P43 are known to interact with subunits gamma and epsilon of the F1 part, the mAb molecules have no effect on the function of F0. Furthermore, it could be demonstrated that the F1 part and the mAb molecule(s) are bound simultaneously to the F0 complex suggesting that not all c subunits are involved in F1 interaction. From the results obtained, it can be concluded that this interaction is fixed, which means that subunits gamma and epsilon do not switch between the c subunits during catalysis and furthermore, a complete rotation of the subunit c oligomer modified with mAb(s) along the stator of the F1F0 complex, proposed to be composed of at least subunits b and delta, seems to be unlikely. 相似文献
16.
J?rg-Christian Greie Thomas Heitkamp Karlheinz Altendorf 《European journal of biochemistry》2004,271(14):3036-3042
Subunit b is indispensable for the formation of a functional H(+)-translocating F(O) complex both in vivo and in vitro. Whereas the very C-terminus of subunit b interacts with F(1) and plays a crucial role in enzyme assembly, the C-terminal region is also considered to be necessary for proper reconstitution of F(O) into liposomes. Here, we show that a synthetic peptide, residues 1-34 of subunit b (b(1-34)) [Dmitriev, O., Jones, P.C., Jiang, W. & Fillingame, R.H. (1999) J. Biol. Chem.274, 15598-15604], corresponding to the membrane domain of subunit b was sufficient in forming an active F(O) complex when coreconstituted with purified ac subcomplex. H(+) translocation was shown to be sensitive to the specific inhibitor N,N'-dicyclohexylcarbodiimide, and the resulting F(O) complexes were deficient in binding of isolated F(1). This demonstrates that only the membrane part of subunit b is sufficient, as well as necessary, for H(+) translocation across the membrane, whereas the binding of F(1) to F(O) is mainly triggered by C-terminal residues beyond Glu34 in subunit b. Comparison of the data with former reconstitution experiments additionally indicated that parts of the hydrophilic portion of the subunit b dimer are not involved in the process of ion translocation itself, but might organize subunits a and c in F(O) assembly. Furthermore, the data obtained functionally support the monomeric NMR structure of the synthetic b(1-34). 相似文献
17.
Chemical modification of the F0 part of the ATP synthase (F1F0) from Escherichia coli. Effects on proton conduction and F1 binding 总被引:4,自引:0,他引:4
K Steffens E Schneider B Herkenhoff R Schmid K Altendorf 《European journal of biochemistry》1984,138(3):617-622
The purified F0 part of the ATP synthase complex from Escherichia coli was incorporated into liposomes and chemically modified by various reagents. The modified F0-liposomes were assayed for H+ uptake and, after reconstitution with F1, for total and dicyclohexylcarbodiimide-sensitive ATPase activity. The water-soluble carbodiimide, 1-ethyl-3-(-3-dimethylaminopropyl)carbodiimide methiodide, (1.2 mM), inhibited H+ uptake to a great extent. Binding of F1 was almost unaffected, but the hydrolysis of ATP was uncoupled from H+ transport. This is reflected by the inhibition of dicyclohexylcarbodiimide-sensitive ATPase activity. Woodward's reagent K, N-ethyl-5-phenylisoxazolium-3'-sulfonate, inhibited both H+ uptake and total ATPase activity. Modification of arginine residues by phenylglyoxal (20 mM) was followed by inhibition of the F1 binding activity by 80% of the control. H+ translocation was reduced to 70%. Diethylpyrocarbonate (3 mM) exhibited a strong inhibiting effect on H+ uptake but not on F1 binding. Modification of tyrosine (by tetranitromethane) as well as lysine residues (by succinic anhydride) did not affect F0 functions. From the data presented we conclude that carboxyl-groups, different from the dicyclohexylcarbodiimide-binding site, are involved in H+ translocation through F0 and, in part, in the functional binding of F1. Furthermore, for the latter function, also arginine residues seem to be important. The role of histidine residues remains unclear at present. 相似文献
18.
T J Norwood D A Crawford M E Steventon P C Driscoll I D Campbell 《Biochemistry》1992,31(27):6285-6290
Nuclear magnetic resonance (NMR) studies of the c subunit of F1F0 ATP synthase from Escherichia coli are presented. A combination of homonuclear (1H-1H) and heteronuclear (1H-15N) 2D and 3D methods was applied to the 79-residue protein, dissolved in trifluoroethanol. Resonance assignment for all the backbone amide groups and many C alpha H side-chain protons was achieved. Analysis of inter- and intraresidue 1H-1H nuclear Overhauser effect (NOE) data and scalar coupling constant information indicates that this protein contains two extended regions of predominant alpha-helical character (residues 10-40 and 48-77) separated by an eight-residue segment which displays little evidence of ordered secondary structure. This model is consistent with information about the molecular motion of the protein deduced from 15N-1H heteronuclear NOE data and observed pKa values of carboxylic acid groups. 相似文献
19.
Stalz WD Greie JC Deckers-Hebestreit G Altendorf K 《The Journal of biological chemistry》2003,278(29):27068-27071
The addition of a His6 tag to the N terminus of subunit a of the F0 complex of the Escherichia coli ATP synthase allowed the purification of an ab2 subcomplex after solubilization of membranes with n-dodecyl-beta-d-maltoside and subsequent nickel-nitrilotriacetic acid affinity chromatography. After co-reconstitution of the ab2 subcomplex with purified subunit c, passive proton translocation rates as well as coupled ATPase activities after binding of F1 were measured that were comparable with those of wild type F0. The interaction between subunits a and b, which has been shown to be stoichiometric and functional, is not triggered by any cross-linking reagent and therefore reflects subunit interactions occurring within the F0 complex in vivo. 相似文献
20.
Construction and plasmid-borne complementation of strains lacking the epsilon subunit of the Escherichia coli F1F0 ATP synthase. 下载免费PDF全文
Two strains of Escherichia coli that lack the epsilon subunit of the F1F0 ATP synthase have been constructed. They are shown to be viable but with very low growth yields (28%). These strains can be complemented by plasmids carrying wild-type uncC, but not when epsilon is overproduced. These results indicate that epsilon is not essential for growth on minimal glucose medium and that the level of its expression affects the assembly of the ATP synthase. 相似文献