首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 128 毫秒
1.
近年来的研究发现,细菌非编码小RNA (small non-coding RNA, sRNA)对其不同生理进程起到了重要的调控作用。随着大量sRNA被发现并鉴定,细菌sRNA的功能被逐步阐明,其可在转录后水平广泛调控细菌的生理代谢、毒力及耐药性等。本文综述了sRNA对细菌毒力和耐药性调控作用的研究进展,对揭示细菌转录后水平毒力及耐药性调控机制具有一定意义。  相似文献   

2.
细菌小RNA(sRNA)是一类长度在50~500 nt的调控RNA,主要通过与靶标mRNA以不完全配对方式结合来发挥调控作用,sRNA参与细菌基因的转录、翻译、mRNA稳定、成熟和加工等多个过程,因此,sRNA的发现及功能注释对了解细菌的致病机制至关重要。该文将对研究sRNA的各种计算机和实验方法进行综述,阐述各种方法的优缺点,并讨论今后的发展方向。  相似文献   

3.
sRNA(非编码小RNA)通过碱基配对的方式与靶mRNA结合,抑制或激活转录过程、调节蛋白质的表达,以核酸的形式发挥其生物学功能。随着RNA深度测序(RNAseq)技术、生物信息学预测以及实验分析手段的日渐发展和完善,数以百计的sRNA被发现并得到验证。作为转录后调控因子,sRNA因在诸多生理过程中起到了关键的调节作用而得到了广泛的关注。以革兰氏阳性菌为切入点,总结了近年来sRNA的筛选、鉴定和功能研究等方面取得的进展,梳理分析了sRNA调控与毒力因子、群体感应、铁代谢和双组分系统等之间的内在联系,并展望了sRNA未来的研究方向。  相似文献   

4.
细菌sRNA是一类长度在50~500 nt的调控小RNA(small regulatory RNA),主要通过与靶标mRNA或靶标蛋白质结合发挥多种生物学功能。目前,随着生物信息学与高通量测序的应用,发现了越来越多的细菌sRNA,开发了多个相关数据库。为了sRNA工作者系统了解与应用这些数据,本文拟对包含细菌sRNA的综合数据库和细菌sRNA专业数据库作一概述,并对sRNA数据库的未来发展进行展望。  相似文献   

5.
基于转录终点序列特征预测大肠杆菌sRNA   总被引:1,自引:0,他引:1  
细菌sRNA是一类长度在40~500nt的调控RNA,在细菌与环境相互作用中发挥重要功能,因此,细菌sRNA识别研究具有重要意义。然而,与蛋白编码基因具有易于识别的特征不同,目前细菌sRNA识别仍是一件比较困难的事。此方法介绍了一个基于已知细菌sRNA转录终点的碱基频率矩阵来识别sRNA的预测策略,并在大肠杆菌K-12 MG1655中进行了sRNA的预测。结果表明,该模型在独立测试集中具有较高的特异性和阳性检出率,因此,这一方法将为实验发现细菌sRNA提供较好的生物信息学支持。  相似文献   

6.
细菌小RNA(small RNA,sRNA)是一类长度为50~500个碱基,具有调控转录、翻译和mRNA稳定性的非编码调节性RNA。随着越来越多的sRNA被鉴定,部分细菌的sRNA功能已逐步阐明,主要参与调控细菌的基因表达、增殖、毒力及对环境的应激反应等生物学过程。本文就胞内菌(如沙门菌、李斯特菌、嗜肺军团菌等)sRNA对其自身在宿主细胞内的生长、毒力和铁水平的调控作用进行综述。  相似文献   

7.
细菌sRNA是一类长度在50~500 nt的调控小RNA(small regulatory RNA),主要通过与靶标mRNA或靶标蛋白质结合发挥多种生物学功能。目前,随着生物信息学与高通量测序的应用,发现了越来越多的细菌sRNA,开发了多个相关数据库。为了sRNA工作者系统了解与应用这些数据,本文拟对包含细菌sRNA的综合数据库和细菌sRNA专业数据库作一概述,并对sRNA数据库的未来发展进行展望。  相似文献   

8.
细菌中的非编码小RNA(small RNA,sRNA)作为一种靶向调控分子在细胞生理代谢过程中具有重要作用。sRNA作用于特定靶标,调控基因的表达。大肠杆菌大约有100种sRNA,其中1/3sRNA需要伴侣蛋白Hfq的介导。病原细菌中sRNA分子如何调控致病基因的表达,目前研究仍处于初级阶段。本文将从生物膜形成、细菌耐药性以及对宿主的影响等方面,结合新颖的sRNA的研究方法,综述sRNA在调控代谢网络及控制病原菌致病性方面的作用。  相似文献   

9.
细菌中的非编码小RNA(small RNA, sRNA)作为一种靶向调控分子在细胞生理代谢过程中具有重要作用。sRNA作用于特定靶标,调控基因的表达。大肠杆菌大约有100种sRNA,其中1/3 sRNA需要伴侣蛋白Hfq的介导。病原细菌中sRNA分子如何调控致病基因的表达,目前研究仍处于初级阶段。本文将从生物膜形成、细菌耐药性以及对宿主的影响等方面,结合新颖的sRNA的研究方法,综述sRNA在调控代谢网络及控制病原菌致病性方面的作用。  相似文献   

10.
小RNA(sRNA)或非编码RNA(ncRNA)在原核生物和真核生物中广泛分布。迄今,在各种细菌中共发现超过150种sRNA,在大肠杆菌中发现了约80种sRNA。sRNA通过与靶mRNA配对而发生作用,导致mRNA翻译和稳定性的变化;sRNA的功能涉及从结构调节到催化作用,影响生物体内各种各样的加工过程,一个单独的sRNA就能调控大量的基因并对细胞生理产生深远影响。目前,对sRNA的研究主要采用生物信息学预测结合分子生物学实验的方法。  相似文献   

11.
sRNAs that act by base pairing were first discovered in plasmids, phages and transposons, where they control replication, maintenance and transposition. Since 2001, however, computational searches were applied that led to the discovery of a plethora of sRNAs in bacterial chromosomes. Whereas the majority of these chromsome-encoded sRNAs have been investigated in Escherichia coli, Salmonella and other Gram-negative bacteria, only a few well-studied examples are known from Gram-positive bacteria. Here, the author summarizes our current knowledge on plasmid- and chromosome-encoded sRNAs from Gram-positive species, thereby focusing on regulatory mechanisms used by these RNAs and their biological role in complex networks. Furthermore, regulatory factors that control the expression of these RNAs will be discussed and differences between sRNAs from Gram-positive and Gram-negative bacteria highlighted. The main emphasis of this review is on sRNAs that act by base pairing (i.e., by an antisense mechanism). Thereby, both plasmid-encoded and chromosome-encoded sRNAs will be considered.  相似文献   

12.
13.
14.
How to find small non-coding RNAs in bacteria   总被引:11,自引:0,他引:11  
Vogel J  Sharma CM 《Biological chemistry》2005,386(12):1219-1238
  相似文献   

15.
16.
17.
Small RNAs (sRNAs) are important gene regulators in bacteria, but it is unclear how new sRNAs originate and become part of regulatory networks that coordinate bacterial response to environmental stimuli. Using a covariance modeling-based approach, we analyzed the presence of hundreds of sRNAs in more than a thousand genomes across Enterobacterales, a bacterial order with a confluence of factors that allows robust genome-scale sRNA analyses: several well-studied organisms with fairly conserved genome structures, an established phylogeny, and substantial nucleotide diversity within a narrow evolutionary space. We discovered that a majority of sRNAs arose recently, and uncovered protein-coding genes as a potential source from which new sRNAs arise. A detailed investigation of the emergence of OxyS, a peroxide-responding sRNA, revealed that it evolved from a fragment of a peroxidase messenger RNA. Importantly, although it replaced the ancestral peroxidase, OxyS continues to be part of the ancestral peroxide-response regulon, indicating that an sRNA that arises from a protein-coding gene would inherently be part of the parental protein’s regulatory network. This new insight provides a fresh framework for understanding sRNA origin and regulatory integration in bacteria.  相似文献   

18.
19.
20.
Recently, many small non-coding RNAs (sRNAs) with important regulatory roles have been identified in bacteria. As their eukaryotic counterparts, a major class of bacterial trans-encoded sRNAs acts by basepairing with target mRNAs, resulting in changes in translation and stability of the mRNA. RNA interference (RNAi) has become a powerful gene silencing tool in eukaryotes. However, such an effective RNA silencing tool remains to be developed for prokaryotes. In this study, we described first the use of artificial trans-encoded sRNAs (atsRNAs) for specific gene silencing in bacteria. Based on the common structural characteristics of natural sRNAs in Gram-negative bacteria, we developed the designing principle of atsRNA. Most of the atsRNAs effectively suppressed the expression of exogenous EGFP gene and endogenous uidA gene in Escherichia coli. Further studies demonstrated that the mRNA base pairing region and AU rich Hfq binding site were crucial for the activity of atsRNA. The atsRNA-mediated gene silencing was Hfq dependent. The atsRNAs led to gene silencing and RNase E dependent degradation of target mRNA. We also designed a series of atsRNAs which targeted the toxic genes in Staphyloccocus aureus, but found no significant interfering effect. We established an effective method for specific gene silencing in Gram-negative bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号