首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An experimental study was conducted to determine whether external disturbance oscillations, such as those that could be created by hand held tools, alter the dynamic response characteristics of the human arm-muscle system. A special arm-test frame was used to induce external sinusoidal torque oscillations of various amplitudes and frequencies, while the reaction force and angular displacement were monitored. Two different output variable frequency responses were determined using input/output cross-spectrum analysis. The angular displacement of the test frame and a component of hand reaction force were the output variables used, while the test frame torque was the input. Test results from one subject are presented in this paper. Changes in the magnitude and phase angle of the frequency responses were observed for different frequencies of the disturbance torque. These changes indicate that the stability margin and response amplitude of the human arm-muscle system do change as a function of the frequency and amplitude of external disturbance oscillations. This suggests that at certain operating frequencies hand held tools can induce large reaction amplitudes or even loss of control.  相似文献   

2.
The dynamics of the canopy light environment for two poplar species (Populus tremuloides Michx., and P. fremontii Wats.) were characterized with an array of photocells in fixed positions within the canopy or attached directly to leaves and using a data logger that recorded photon flux density (PFD) at frequencies from 1 to 20 Hz. The majority of sunflecks were short in duration (<1 s) with a similar short interval between sunflecks. Sunflecks contribute as much as 90% of the total daily PFD in the lower canopy. Leaf flutter may cause high frequency (3 to 5 Hz) variations of PFD in poplar canopies. The amount of light intercepted by a fluttering leaf at the top of the canopy decreased with increasing flutter, whereas a fluttering lower canopy leaf showed no such trend. When leaves fluttered at the top of the canopy the understory light environment showed an increased number of shorter sunflecks. Leaf flutter may increase mean PFD for understory leaves. It also creates a canopy light environment that is more dynamic temporally and more evenly distributed spatially. The potential benefits of these changes in light dynamics are discussed.  相似文献   

3.
Large-scale plasma oscillations (so-called MHD oscillations) observed at the T-10 tokamak are investigated. The central electron cyclotron heating was used to enhance oscillations at the m/n = 1/1 mode with the goal of determining the internal characteristics of the process. The spatially resolved electron cyclotron emission diagnostics allowed analyzing the propagation characteristics of plasma perturbations. The experiments have revealed that excitation of oscillations in a particular mode occur simultaneously in the entire area located within the corresponding rational magnetic surface. The propagation of plasma perturbations along the torus is found to be inhomogeneous. The electron cyclotron emission diagnostics allowed finding eigen (resonance) frequencies of plasma oscillations from the parameters of their inhomogeneous propagation in the plasma core and comparing them with spectra of oscillations of the magnetic field induced by the plasma current in the edge plasma, which were recorded by magnetic probes. It is established that the frequencies of eigenmodes are independent of the electron temperature, plasma density, and auxiliary heating power. Even spatial harmonics of the principal magnetic surface are observed under strong excitation of oscillations. The rational magnetic surfaces that determine oscillation harmonics retain their position during the entire steady-state phase of the total plasma current in spite of the strong sharpening of the temperature profile due to central heating.  相似文献   

4.
This research focuses on an in vitro investigation of the stiffness changes of contracted airway smooth muscles (ASM) subjected to external longitudinal oscillations. ASM tissues were dissected from excised pig tracheas and stimulated by a chemical stimulus (acetylcholine, 10(-3) M) to produce maximum contractions. The tissues were then systematically excited with external oscillations. Various frequencies, amplitudes and durations were used in the experiments to determine stiffness changes in response to these variations. Force changes were recorded to reflect the muscle stiffness changes. Two stiffness definitions were used to quantify the results, dynamic stiffness to reflect variations during oscillation and static stiffness to reflect the net effect of oscillation. Under isometric contractions, these two stiffnesses were determined before, during and after oscillations. Incorporating an empirical stiffness equation, a two-dimensional finite element model (FEM) was developed to generalize the tissue responses to oscillation. The main outcomes from this work are: the dynamic stiffness has the tendency to decrease as the frequency and/or amplitude of external oscillation increases; the static stiffness has the tendency of decreasing with an increase in the frequency and/or amplitude of excitation until it reaches almost a constant value for frequencies at and above 25 Hz. The difference in the behavior of the dynamic and static stiffness changes may be attributed to the effect of elasticity and mass inertia that are involved in the dynamic motion. The findings of this research are in agreement with the hypothesis that oscillations exert a direct action on the contractile processes by causing an increased rate of actin-myosin detachments.  相似文献   

5.
During contractures of the turtle ventricle rapid changes in length induce sinusoidal oscillations under isotonic conditions. They are due to delayed responses to stretching and release, which can be demonstrated also under isometric conditions. Oscillations of two distinct frequencies are produced under different conditions and are distinguished as high- and low-frequency oscillations. In depolarized muscles the frequency is such that the duration of one cycle is about the same as that of a normal twitch, while in high-Ca solutions the duration can be the same as in high-K solutions or about six times lower. As reported previously, twitches are followed by weak mechanical and electrical oscillations. Their frequency agrees with the high-frequency oscillations. The same effects can also be induced by stretching and release. It is suggested that the phenomena observed are due to feedback mechanisms which originate in the contractile mechanism. The high-frequency oscillations are similar to those observed previously in other muscles, particularly insect fibrillar muscle, and are not due to changes in Ca concentration. The other mechanisms involve the membrane and possibly the intracellular Ca stores.  相似文献   

6.
Rapid periodic pulses have been observed in yeast cell walls and these pulsations must be accompanied by coherent oscillations of energy. Such energy oscillations are likely to be a common feature in cells and we explore other consequences, either known or unknown, that may originate from chemical oscillations of small amplitude. We do not consider specific mechanisms for the energy oscillations, but here we accept their existence as a fact following from the yeast experiments. Chemical oscillators are treated as generic quantum oscillators and this model predicts that observed frequencies should have a simple volume-dependence where smaller cells exhibit higher frequencies than their larger counterparts. An extension to multicellular organisms then affords a derivation of the celebrated Kleiber law that evaluates both the numerical coefficient and the 34 exponent of mass. Calculations of activation energies and efficiencies at experimental temperatures follow. Finally, the model is applied to derive established expressions for blood flow and pulse rate. We conclude that the model reflects some common metabolic process insofar as it agrees with diverse quantitative findings while using minimal input data and without introducing free parameters.  相似文献   

7.

The effect of dipole-dipole interactions of free electrons on the spectral characteristics of simple metals and their nanoparticles is analyzed using Drude theory and the model of the Lorentz local field. It is established that accounting for the dispersion of a local field under conditions of one-dimensional (1D) confinement based on the optical constants of the bulk metal allows the determination of its spectral micro-characteristics in the frequency region of the longitudinal collective motions of the free electrons. This corresponds to the spectra of the dielectric losses of bulk plasma oscillations. A similar procedure for three-dimensional (3D) confinement produces the spectrum of dielectric losses at the frequency of localized plasma oscillations. Using a number of simple metal examples, viz., Li, Na, and K, and also Al, Be, and Mg, it is shown that the frequencies of volume and localized plasma oscillations obtained from a model of dispersion of the local field in the long-wave limit are in good agreement with the actual frequencies of the plasma oscillations of the corresponding metals and the absorption maxima of their nanoparticles with a radius of 2–20 nm. It is shown that the frequencies of the main mode of longitudinal plasma oscillations and the absorption frequency of localized plasmons are well described using the dynamic theory of crystal lattice vibrations.

  相似文献   

8.
Oscillations are an important aspect of neuronal activity. Interestingly, oscillatory patterns are also observed in behaviour, such as in visual performance measures after the presentation of a brief sensory event in the visual or another modality. These oscillations in visual performance cycle at the typical frequencies of brain rhythms, suggesting that perception may be closely linked to brain oscillations. We here investigated this link for a prominent rhythm of the visual system (the alpha-rhythm, 8–12 Hz) by applying rhythmic visual stimulation at alpha-frequency (10.6 Hz), known to lead to a resonance response in visual areas, and testing its effects on subsequent visual target discrimination. Our data show that rhythmic visual stimulation at 10.6 Hz: 1) has specific behavioral consequences, relative to stimulation at control frequencies (3.9 Hz, 7.1 Hz, 14.2 Hz), and 2) leads to alpha-band oscillations in visual performance measures, that 3) correlate in precise frequency across individuals with resting alpha-rhythms recorded over parieto-occipital areas. The most parsimonious explanation for these three findings is entrainment (phase-locking) of ongoing perceptually relevant alpha-band brain oscillations by rhythmic sensory events. These findings are in line with occipital alpha-oscillations underlying periodicity in visual performance, and suggest that rhythmic stimulation at frequencies of intrinsic brain-rhythms can be used to reveal influences of these rhythms on task performance to study their functional roles.  相似文献   

9.
Various mechanisms have been suggested to explain cardiac force-length Ca2+ relations. The existence of a cooperativity mechanism, whereby cross-bridge (XB) recruitment is affected by the number of active XBs, suggests that the force response to length oscillations should lag length oscillations. Consequently, the oscillatory force response should be larger during shortening than during lengthening. To test this prediction, force responses to large-sarcomere length (SL) oscillations (36.7 +/- 16.0 nm) at different SLs (n = 6) and frequencies (n = 7) were studied in intact tetanized trabeculae dissected from rat right ventricle (n = 13). Stable tetani were obtained by utilizing 30 microM cyclopiazonic acid in Krebs-Henseleit solution containing 6 mM extracellular Ca(2+) at 25 degrees C. SL was measured by laser diffraction techniques (Dalsa). Force was measured by silicone strain gauge. Instantaneous dynamic stiffness during large oscillations was measured by superimposing additional fast (50 or 200 Hz) and small-amplitude (2.25 +/- 0.25 nm) oscillations. The force responses lagged the SL oscillations at slow frequencies (112 +/- 41 ms at 1 Hz), and counterclockwise hystereses were obtained in the force-length plane: the force was higher during shortening than during lengthening. The delay in the force response decreased as the frequency of the SL oscillation was increased. Clockwise hysteresis, where the force preceded the SL, was obtained at frequencies >4 Hz. Similar hysteresis characteristics were obtained in the force-SL and stiffness-SL planes. Maximal lag was observed at the shortest SL, and the delay decreased with sarcomere elongation: 131.1 +/- 31.7 ms at 1.78 +/- 0.03 microm vs. 14.7 +/- 18.5 ms at 1.99 +/- 0.015 microm. The results establish the ability of cardiac fiber to adapt XB recruitment to changes in prevailing loading conditions. This study supports the stipulated existence of a cooperativity mechanism that regulates XB recruitment and highlights an additional method to characterize regulation of the force-length relation.  相似文献   

10.
To understand complex sensory-motor behavior related to object perception by echolocating bats, precise measurements are needed for echoes that bats actually listen to during flight. Recordings of echolocation broadcasts were made from flying bats with a miniature light-weight microphone and radio transmitter (Telemike) set at the position of the bat's ears and carried during flights to a landing point on a wall. Telemike recordings confirm that flying horseshoe bats (Rhinolophus ferrumequinum nippon) adjust the frequency of their sonar broadcasts to compensate for echo Doppler shifts. Returning constant frequency echoes were maintained at the bat's reference frequency +/-83 Hz during flight, indicating that the bats compensated for frequency changes with an accuracy equivalent to that at rest. The flying bats simultaneously compensate for increases in echo amplitude as target range becomes shorter. Flying bats thus receive echoes with both stabilized frequencies and stabilized amplitudes. Although it is widely understood that Doppler-shift frequency compensation facilitates detection of fluttering insects, approaches to a landing do not involve fluttering objects. Combined frequency and amplitude compensation may instead be for optimization of successive frequency modulated echoes for target range estimation to control approach and landing.  相似文献   

11.
12.
Surfactant dysfunction plays a major role in respiratory distress syndrome (RDS). This research seeks to determine whether the use of natural surfactant, Curosurf? (Cheisi Farmaceutici, Parma, Italy), accompanied with pressure oscillations at the level of the alveoli can reduce the surface tension in the lung, thereby making it easier for infants with RDS to maintain the required level of functional residual capacity (FRC) without collapse. To simulate the alveolar environment, dynamic surface tension measurements were performed on a modified pulsating bubble surfactometer (PBS) type device and showed that introducing superimposed oscillations about the tidal volume excursion between 10 and 70 Hz in a surfactant bubble lowers interfacial surface tension below values observed using tidal volume excursion alone. The specific mechanisms responsible for this improvement are yet to be established; however it is believed that one mechanism may be the rapid transient changes in the interfacial area increase the number of interfacial binding sites for surfactant molecules, increasing adsorption and diffusion to the interface, thereby decreasing interfacial surface tension. Existing mathematical models in the literature reproduce trends noticed in experiments in the range of breathing frequencies only. Thus, a modification is introduced to an existing model to both incorporate superimposed pressure oscillations and demonstrate that these may improve the dynamic surface tension in the alveoli.  相似文献   

13.
Rhythmical modulations in insect echoes caused by the moving wings of fluttering insects are behaviourally relevant information for bats emitting CF-FM signals with a high duty cycle. Transmitter and receiver of the echolocation system in flutter detecting foragers are especially adapted for the processing of flutter information. The adaptations of the transmitter are indicated by a flutter induced increase in duty cycle, and by Doppler shift compensation (DSC) that keeps the carrier frequency of the insect echoes near a reference frequency. An adaptation of the receiver is the auditory fovea on the basilar membrane, a highly expanded frequency representation centred to the reference frequency. The afferent projections from the fovea lead to foveal areas with an overrepresentation of sharply tuned neurons with best frequencies near the reference frequency throughout the entire auditory pathway. These foveal neurons are very sensitive to stimuli with natural and simulated flutter information. The frequency range of the foveal areas with their flutter processing neurons overlaps exactly with the frequency range where DS compensating bats most likely receive echoes from fluttering insects. This tight match indicates that auditory fovea and DSC are adaptations for the detection and evaluation of insects flying in clutter.  相似文献   

14.
Negative frequency‐dependent selection (NFDS) is one of the most powerful selective forces maintaining genetic polymorphisms in nature. Recently many prospective cases of polymorphisms by NFDS have been reported. Some of them are very complicated, although strongly supportive of the NFDS. Here we investigate NFDS in wild populations of the dimorphic damselfly Ischnura senegalensis, in which females occur as andromorphs and gynomorphs. Specifically, we (1) test fitness responses to morph frequencies, (2) built a simple population genetic model, and (3) compare the observed and predicted morph‐frequency dynamics. Fitnesses of the two morphs are an inverse function of its own frequency in a population, and are about equal when their frequencies are similar. Thus the conditions necessary for NFDS are satisfied. The long‐term field surveys show that the morph frequencies oscillate with a period of two generations. Morph frequencies in a small population undergo large oscillations whereas those in a large population do small oscillations. The demographic properties of the observed dynamics agree well with those of our model. This example is one of the simplest confirmed cases of NFDS maintaining genetic polymorphisms in nature.  相似文献   

15.
Cerebral autoregulation (CA) is an important vascular control mechanism responsible for relatively stable cerebral blood flow despite changes of systemic blood pressure (BP). Impaired CA may leave brain tissue unprotected against potentially harmful effects of BP fluctuations. It is generally accepted that CA is less effective or even inactive at frequencies >∼0.1 Hz. Without any physiological foundation, this concept is based on studies that quantified the coupling between BP and cerebral blood flow velocity (BFV) using transfer function analysis. This traditional analysis assumes stationary oscillations with constant amplitude and period, and may be unreliable or even invalid for analysis of nonstationary BP and BFV signals. In this study we propose a novel computational tool for CA assessment that is based on nonlinear dynamic theory without the assumption of stationary signals. Using this method, we studied BP and BFV recordings collected from 39 patients with chronic ischemic infarctions and 40 age-matched non-stroke subjects during baseline resting conditions. The active CA function in non-stroke subjects was associated with an advanced phase in BFV oscillations compared to BP oscillations at frequencies from ∼0.02 to 0.38 Hz. The phase shift was reduced in stroke patients even at > = 6 months after stroke, and the reduction was consistent at all tested frequencies and in both stroke and non-stroke hemispheres. These results provide strong evidence that CA may be active in a much wider frequency region than previously believed and that the altered multiscale CA in different vascular territories following stroke may have important clinical implications for post-stroke recovery. Moreover, the stroke effects on multiscale cerebral blood flow regulation could not be detected by transfer function analysis, suggesting that nonlinear approaches without the assumption of stationarity are more sensitive for the assessment of the coupling of nonstationary physiological signals.  相似文献   

16.
The equations of a chemostat in which one microbial population grows on multiple rate-limiting nutrients are formulated. The dynamics of a chemostat involving growth on complementary nutrients is studied through stability analysis of the system of equations. Some conditions are derived that relate the dynamic behavior of the chemostat to its operating conditions and can be applied to any model for the specific growth rate of the population. It is shown that, if maintenance of the population is neglected, the system exhibits no sustained or damped oscillations. If maintenance of the population is considered, damped oscillations are observed for some operating conditions.  相似文献   

17.
Neuronal gamma oscillations have been described in local field potentials of different brain regions of multiple species. Gamma oscillations are thought to reflect rhythmic synaptic activity organized by inhibitory interneurons. While several aspects of gamma rhythmogenesis are relatively well understood, we have much less solid evidence about how gamma oscillations contribute to information processing in neuronal circuits. One popular hypothesis states that a flexible routing of information between distant populations occurs via the control of the phase or coherence between their respective oscillations. Here, we investigate how a mismatch between the frequencies of gamma oscillations from two populations affects their interaction. In particular, we explore a biophysical model of the reciprocal interaction between two cortical areas displaying gamma oscillations at different frequencies, and quantify their phase coherence and communication efficiency. We observed that a moderate excitatory coupling between the two areas leads to a decrease in their frequency detuning, up to ~6 Hz, with no frequency locking arising between the gamma peaks. Importantly, for similar gamma peak frequencies a zero phase difference emerges for both LFP and MUA despite small axonal delays. For increasing frequency detunings we found a significant decrease in the phase coherence (at non-zero phase lag) between the MUAs but not the LFPs of the two areas. Such difference between LFPs and MUAs behavior is due to the misalignment between the arrival of afferent synaptic currents and the local excitability windows. To test the efficiency of communication we evaluated the success of transferring rate-modulations between the two areas. Our results indicate that once two populations lock their peak frequencies, an optimal phase relation for communication appears. However, the sensitivity of locking to frequency mismatch suggests that only a precise and active control of gamma frequency could enable the selection of communication channels and their directionality.  相似文献   

18.
Glucose-induced membrane potential and Ca(2+) oscillations in isolated pancreatic beta-cells occur over a wide range of frequencies, from >6/min (fast) to <1/min (slow). However, cells within intact islets generally oscillate with periods of 10-60 s (medium). The phantom bursting concept addresses how beta-cells can generate such a wide range of frequencies. Here, we explore an updated phantom bursting model to determine how heterogeneity in a single parameter can explain both the broad frequency range observed in single cells and the rarity of medium oscillations. We then incorporate the single-cell model into an islet model with parameter heterogeneity. We show that strongly coupled islets must be composed of predominantly medium oscillating single cells or a mixture of fast and slow cells to robustly produce medium oscillations. Surprisingly, we find that this constraint does not hold for moderate coupling, and that robustly medium oscillating islets can arise from populations of single cells that are essentially all slow or all fast. Thus, with coupled phantom bursters, medium oscillating islets can be constructed out of cells that are either all fast, all slow, or a combination of the two.  相似文献   

19.
Suzuki M  Kimura T  Ogawa H  Hotta K  Oka K 《PloS one》2011,6(4):e18244
Squid can rapidly change the chromatic patterns on their body. The patterns are created by the expansion and retraction of chromatophores. The chromatophore consists of a central pigment-containing cell surrounded by radial muscles that are controlled by motor neurons located in the central nervous system (CNS). In this study we used semi-intact squid (Sepioteuthis lessoniana) displaying centrally controlled natural patterns to analyze spatial and temporal activities of chromatophores located on the dorsal mantle skin. We found that chromatophores oscillated with miniature expansions/retractions at various frequencies, even when the chromatic patterns appear macroscopically stable. The frequencies of this miniature oscillation differed between "feature" and "background" areas of chromatic patterns. Higher frequencies occurred in feature areas, whereas lower frequencies were detected in background areas. We also observed synchronization of the oscillation during chromatic pattern expression. The expansion size of chromatophores oscillating at high frequency correlated with the number of synchronized chromatophores but not the oscillation frequency. Miniature oscillations were not observed in denervated chromatophores. These results suggest that miniature oscillations of chromatophores are driven by motor neuronal activities in the CNS and that frequency and synchrony of this oscillation determine the chromatic pattern and the expansion size, respectively.  相似文献   

20.
Pulsed nuclear magnetic resonance relaxation curves (T2 and T1) of potassium (39K) have been measured in detail on whole body newborn mice when alive, and on the same mice after death. The T2 curves are simple exponential with respect to time, but are shorter than for 39K in simple solutions. The T1 curves are not exponential decays, but show large oscillations that may be described approximately as the sum of two separate sine waves of different frequencies. Large T1 oscillations of complex waveform were previously observed by us with 39K in cancer tissues. Gyroscopic motion of adsorbed magnetoelectric dipoles is proposed as a possible physical mechanism accounting for the experimental observations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号