首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The relationship between desiccation and the production of extracellular polysaccharides (EPS) by soil bacteria was investigated by using a Pseudomonas species isolated from soil. Cultures subjected to desiccation while growing in a sand matrix contained more EPS and less protein than those growing at high water potential, suggesting that resources were allocated to EPS production in response to desiccation. Desiccation did not have a significant effect on activity as measured by reduction of iodonitrotetrazolium. Purified EPS produced by the Pseudomonas culture contained several times its weight in water at low water potential. Sand amended with EPS held significantly more water and dried significantly more slowly than unamended sand, implying that an EPS matrix may buffer bacterial colonies from some effects of desiccation. We conclude that bacteria may use EPS production to alter their microenvironment to enhance survival of desiccation.  相似文献   

2.
Scanning electron microscopy was used to evidence the aggregated structure of a forest soil as well as the presence of fungal hyphae external to soil aggregates. The supernatant of soil suspension in water mainly contained isolated bacteria, while ultrathin sections of aggregates frequently revealed groups of bacteria surrounded by a sheath of mucilage with adhering clay minerals on the outside. These results confirm the existence of two particular biotopes in the soil studied: one is located inside aggregates, and the other, in the inter-aggregate spaces.  相似文献   

3.
Dolomite (CaMg(CO3)2) precipitation is kinetically inhibited at surface temperatures and pressures. Experimental studies have demonstrated that microbial extracellular polymeric substances (EPS) as well as certain clay minerals may catalyse dolomite precipitation. However, the combined association of EPS with clay minerals and dolomite and their occurrence in the natural environment are not well documented. We investigated the mineral and textural associations within groundwater dolocrete profiles from arid northwest Australia. Microbial EPS is a site of nucleation for both dolomite and authigenic clay minerals in this Late Miocene to Pliocene dolocrete. Dolomite crystals are commonly encased in EPS alveolar structures, which have been mineralised by various clay minerals, including montmorillonite, trioctahedral smectite and palygorskite-sepiolite. Observations of microbial microstructures and their association with minerals resemble textures documented in various lacustrine and marine microbialites, indicating that similar mineralisation processes may have occurred to form these dolocretes. EPS may attract and bind cations that concentrate to form the initial particles for mineral nucleation. The dolomite developed as nanocrystals, likely via a disordered precursor, which coalesced to form larger micritic crystal aggregates and rhombic crystals. Spheroidal dolomite textures, commonly with hollow cores, are also present and may reflect the mineralisation of a biofilm surrounding coccoid bacterial cells. Dolomite formation within an Mg-clay matrix is also observed, more commonly within a shallow pedogenic horizon. The ability of the negatively charged surfaces of clay and EPS to bind and dewater Mg2+, as well as the slow diffusion of ions through a viscous clay or EPS matrix, may promote the incorporation of Mg2+ into the mineral and overcome the kinetic effects to allow disordered dolomite nucleation and its later growth. The results of this study show that the precipitation of clay and carbonate minerals in alkaline environments may be closely associated and can develop from the same initial amorphous Ca–Mg–Si-rich matrix within EPS. The abundance of EPS preserved within the profiles is evidence of past microbial activity. Local fluctuations in chemistry, such as small increases in alkalinity, associated with the degradation of EPS or microbial activity, were likely important for both clay and dolomite formation. Groundwater environments may be important and hitherto understudied settings for microbially influenced mineralisation and for low-temperature dolomite precipitation.  相似文献   

4.
Separation and Purification of Bacteria from Soil   总被引:28,自引:9,他引:19       下载免费PDF全文
Bacteria were released and separated from soil by a simple blending-centrifugation procedure. The percent yield of bacterial cells (microscopic counts) in the supernatants varied over a wide range depending on the soil type. The superantants contained large amounts of noncellular organic material and clay particles. Further purification of the bacterial cells was obtained by centrifugation in density gradients, whereby the clay particles and part of the organic materials sedimented. A large proportion of the bacteria also sedimented through the density gradient, showing that they had a buoyant density above 1.2 g/ml. Attachment to clay minerals and humic material may account for this apparently high buoyant density. The percent yield of cells was negatively correlated with the clay content of the soils, whereas the purity was positively correlated with it. The cell size distribution and the relative frequency of colony-forming cells were similar in the soil homogenate, the supernatants after blending-centrifugation, and the purified bacterial fraction. In purified bacterial fraction from a clay loam, the microscopically measured biomass could account for 20 to 25% of the total C and 30 to 40% of the total N as cellular C and N. The amount of cellular C and N may be higher, however, owing to an underestimation of the cell diameter during fluorescence. A part of the contamination could be ascribed to extracellular structures as well as partly decayed cells, which were not revealed by fluorescence microscopy.  相似文献   

5.
Soil aggregates between 2 and 5 mm from 35- and 45-year-old unreclaimed post-mining sites near Sokolov (Czech Republic) were divided into two groups: spherical and prismatic. X-ray tomography indicated that prismatic aggregates consisted of fragments of claystone bonded together by amorphous clay and roots while spherical aggregates consisted of a clay matrix and organic fragments of various sizes. Prismatic aggregates were presumed to be formed by plant roots and physical processes during weathering of Tertiary mudstone, while earthworms were presumed to contribute to the formation of spherical aggregates. The effects of drying and rewetting and glucose addition on microbial respiration, microbial biomass, and counts of bacteria in these aggregates were determined. Spherical aggregates contained a greater percentage of C and N and a higher C-to-N ratio than prismatic ones. The C content of the particulate organic matter was also higher in the spherical than in the prismatic aggregates. Although spherical aggregates had a higher microbial respiration and biomass, the growth of microbial biomass in spherical aggregates was negatively correlated with initial microbial biomass, indicating competition between bacteria. Specific respiration was negatively correlated with microbial biomass. Direct counts of bacteria were higher in spherical than in prismatic aggregates. Bacterial numbers were more stable in the center than in the surface layers of the aggregates. Transmission electron microscopy indicated that bacteria often occurred as individual cells in prismatic aggregates but as small clusters of cells in spherical aggregates. Ratios of colony forming units (cultivatable bacteria) to direct counts were higher in spherical than in prismatic aggregates. Spherical aggregates also contained faster growing bacteria.  相似文献   

6.
Extracellular polymeric substances (EPS) of microbial origin are a complex mixture of biopolymers comprising polysaccharides, proteins, nucleic acids, uronic acids, humic substances, lipids, etc. Bacterial secretions, shedding of cell surface materials, cell lysates and adsorption of organic constituents from the environment result in EPS formation in a wide variety of free-living bacteria as well as microbial aggregates like biofilms, bioflocs and biogranules. Irrespective of origin, EPS may be loosely attached to the cell surface or bacteria may be embedded in EPS. Compositional variation exists amongst EPS extracted from pure bacterial cultures and heterogeneous microbial communities which are regulated by the organic and inorganic constituents of the microenvironment. Functionally, EPS aid in cell-to-cell aggregation, adhesion to substratum, formation of flocs, protection from dessication and resistance to harmful exogenous materials. In addition, exopolymers serve as biosorbing agents by accumulating nutrients from the surrounding environment and also play a crucial role in biosorption of heavy metals. Being polyanionic in nature, EPS forms complexes with metal cations resulting in metal immobilization within the exopolymeric matrix. These complexes generally result from electrostatic interactions between the metal ligands and negatively charged components of biopolymers. Moreover, enzymatic activities in EPS also assist detoxification of heavy metals by transformation and subsequent precipitation in the polymeric mass. Although the core mechanism for metal binding and / or transformation using microbial exopolymer remains identical, the existence and complexity of EPS from pure bacterial cultures, biofilms, biogranules and activated sludge systems differ significantly, which in turn affects the EPS-metal interactions. This paper presents the features of EPS from various sources with a view to establish their role as central elements in bioremediation of heavy metals.  相似文献   

7.
Exopolysaccharides (EPS) produced by Gordonia alkanivorans CC-JG39 was used to stimulate cell floating, cell growth, and diesel biodegradation of indigenous or commercial-available, diesel-degrading bacteria. Addition of EPS-containing supernatant into the culture medium resulted in floatation of the non-floating bacteria and allowed a 40-45% and 38-42% increase in diesel degradation and cell growth, respectively. The EPS-stimulating effect on cell growth and diesel degradation positively correlated with the EPS dosage. Thus, the EPS may act as a biostimulant for bioremediation of oil-contaminated water or soil.  相似文献   

8.
Formation of aggregates by plant roots in homogenised soils   总被引:4,自引:0,他引:4  
The influence of root growth and water regime on the formation of aggregates was studied in modified minirhizotrons under controlled conditions. Two soils, a black earth (67% clay) and a red-brown earth (19% clay) were ground and forced through a 0.5 mm sieve. Ryegrass, pea and wheat were grown for fifteen wetting and drying (wd) cycles for 5 months. Another set of minirhizotrons was not planted and served as a control. Measurements of aggregate size distribution (ASD), aggregate tensile strength (ATS), aggregate stability (AS), aggregate bulk density (ABD) and organic carbon (OC) were made on single aggregates of the 2–4 mm fraction. The results showed that aggregates of the black earth which has a high clay content and shrink/swell properties had more smaller aggregates with higher ATS, AS and ABD than those from the red-brown earth. It was also found that for both soils: (1) w/d cycles and higher root length density (RLD) increased the proportions of smaller aggregates and aggregate strength; (2) differences in the ability of the plant species to influence aggregation was evident and seemed to be related to the RLD. The RLD was in the order ryegrass > wheat > pea. Mechanisms likely to be involved in processes of aggregate formation and stabilization are discussed. They include cracking of soil due to tensile stresses generated during drying of a shrinking soil; changes in pore water pressure within the soil mass caused by water uptake by plant roots generating effective stresses; and biological processes associated with plant roots and root exudates.  相似文献   

9.
Bacteria and fungi are ecologically important contributors to various functioning of forest ecosystems. In this study, we examined simultaneously the bacterial and fungal distributions in response to elevation changes of a forest. By using clone library analysis from genomic DNA extracted from forest humic clay soils, the composition and diversity of bacterial and fungal communities were determined across an elevation gradient from low via medium to high, in a subtropical forest in the Mountain Lushan, China. Our results showed that soil water content and nutrient availability, specifically total carbon, differed significantly with elevation changes. Although the soil acidity did not differ significantly among the three sites, low pH (around 4) could be an important selection factor selecting for acidophilic Acidobacteria and Alphaproteobacteria, which were the most abundant bacterial clones. As the majority of the fungi recovered, both Basidiomycota and Ascomycota, and their relative abundance were most closely associated with the total carbon. Based on the Shannon–Weaver diversity index and ∫-libshuff analysis, the soil at medium elevation contained the highest diversity of bacteria compared with those at high and low elevations. However, it is difficult to predict overall fungal diversity along elevation. The extreme high soil moisture content which may lead to the formation of anaerobic microhabitats in the forest soils potentially reduces the overall bacterial and fungal diversity.  相似文献   

10.
Diatoms as important phytoplankton components interact with and are colonized by heterotrophic bacteria. This colonization has been studied extensively in the past but a distinction between the bacterial colonization directly on diatom cells or on the aggregated organic material, exopolymeric substances (EPS), was little addressed. Here we show that the diatom Thalassiosira rotula and EPS were differently colonized by strains of Roseobacteraceae and Flavobacteriaceae in two and tree partner treatments and an enriched natural bacterial community as inoculum. In two partner treatments, the algae and EPS were generally less colonized than in the three partner treatments. Two strains benefitted greatly from the presence of another partner as the proportions of their subpopulations colonizing the diatom cell and the EPS were much enhanced relative to their two partner treatments. Highest proportions of bacteria colonizing the diatom and EPS occurred in the treatment inoculated with the enriched natural bacterial community. Dissolved organic carbon, amino acids and carbohydrates produced by T. rotula were differently used by the bacteria in the two and three partner treatments and most efficiently by the enriched natural bacterial community. Our approach is a valid model system to study physico-chemical bacteria-diatom interactions with increasing complexity.  相似文献   

11.
亚热带红壤区森林土壤剖面微生物残体碳分布及影响因素   总被引:1,自引:0,他引:1  
土壤剖面中20cm以下土壤有机碳(SOC)储量占土壤剖面总SOC储量50%左右,由于土壤微生物残体碳(MRC)是稳定土壤碳库的重要来源,因此研究土壤剖面中MRC对SOC的贡献对于评估土壤碳储量具有重要意义。然而,目前关于MRC含量及其对SOC贡献的研究多数集中在土壤表层,在土壤剖面和母质中尚不清楚。选取江西省千烟洲亚热带典型森林红壤剖面,通过氨基糖与磷脂脂肪酸(PLFA)微生物标志物分析方法,分析红壤剖面和母质中MRC的影响机制及其对SOC贡献的分布特征。研究结果表明:(1)MRC含量随着土壤剖面深度增加而显著降低(P<0.05),在整个土壤剖面中,细菌MRC对SOC贡献为6%—12%,真菌MRC对SOC贡献为12%—36%,MRC对SOC贡献为18%—46%。从土壤表层至母质,真菌MRC对SOC贡献高于细菌MRC。(2)结构方程模型结果表明,在土壤剖面中,MRC含量主要受到微生物-PLFA含量、容重和溶解态有机碳含量的影响。研究量化了红壤剖面中MRC对SOC的贡献,表明在20cm以下土壤及母质中,微生物残体碳对红壤地区生态系统碳库具有重要贡献。  相似文献   

12.
The behavior of collections of oceanic bacteria is controlled by metabolic (chemotaxis) and physical (fluid motion) processes. Some sulfur-oxidizing bacteria, such as Thiovulum majus, unite these two processes via a material interface produced by the bacteria and upon which the bacteria are transiently attached. This interface, termed a bacterial veil, is formed by exo-polymeric substances (EPS) produced by the bacteria. By adhering to the veil while continuing to rotate their flagella, the bacteria are able to exert force on the fluid surroundings. This behavior induces a fluid flow that, in turn, causes the bacteria to aggregate leading to the formation of a physical pattern in the veil. These striking patterns are very similar in flavor to the classic convection instability observed when a shallow fluid is heated from below. However, the physics are very different since the flow around the veil is mediated by the bacteria and affects the bacterial densities.  相似文献   

13.
The dual roles of capsular extracellular polymeric substances (EPS) in the photocatalytic inactivation of bacteria were demonstrated in a TiO2-UVA system, by comparing wild-type Escherichia coli strain BW25113 and isogenic mutants with upregulated and downregulated production of capsular EPS. In a partition system in which direct contact between bacterial cells and TiO2 particles was inhibited, an increase in the amount of EPS was associated with increased bacterial resistance to photocatalytic inactivation. In contrast, when bacterial cells were in direct contact with TiO2 particles, an increase in the amount of capsular EPS decreased cell viability during photocatalytic treatment. Taken together, these results suggest that although capsular EPS can protect bacterial cells by consuming photogenerated reactive species, it also facilitates photocatalytic inactivation of bacteria by promoting the adhesion of TiO2 particles to the cell surface. Fluorescence microscopy and scanning electron microscopy analyses further confirmed that high capsular EPS density led to more TiO2 particles attaching to cells and forming bacterium-TiO2 aggregates. Calculations of interaction energy, represented by extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) potential, suggested that the presence of capsular EPS enhances the attachment of TiO2 particles to bacterial cells via acid-base interactions. Consideration of these mechanisms is critical for understanding bacterium-nanoparticle interactions and the photocatalytic inactivation of bacteria.  相似文献   

14.
Soil represents a very heterogeneous environment for its microbiota. Among the soil inhabitants, bacteria and fungi are important organisms as they are involved in key biogeochemical cycling processes. A main energy source driving the system is formed by plants through the provision of plant-fixed (reduced) carbon to the soil, whereas soil nitrogen and phosphorus may move from the soil back to the plant. The carbonaceous compounds released form the key energy and nutrient sources for the soil microbiota. In the grossly carbon-limited soil, the emergence of plant roots and the formation of their associated mycorrhizae thus create nutritional hot spots for soil-dwelling bacteria. As there is natural (fitness) selection on bacteria in the soil, those bacteria that are best able to benefit from the hot spots have probably been selected. The purpose of this review is to examine the interactions of bacteria with soil fungi in these hot spots and to highlight the key mechanisms involved in the selection of fungal-responsive bacteria. Salient bacterial mechanisms that are involved in these interactions have emerged from this examination. Thus, the efficient acquisition for specific released nutrients, the presence of type-III secretion systems and the capacity of flagellar movement and to form a biofilm are pinpointed as key aspects of bacterial life in the mycosphere. The possible involvement of functions present on plasmid-borne genes is also interrogated.  相似文献   

15.
The short term impact of 50 μM Hg(II) on soil bacterial community structure was evaluated in different microenvironments of a silt loam soil in order to determine the contribution of bacteria located in these microenvironments to the overall bacterial response to mercury spiking. Microenvironments and associated bacteria, designated as bacterial pools, were obtained by successive soil washes to separate the outer fraction, containing loosely associated bacteria, and the inner fraction, containing bacteria retained into aggregates, followed by a physical fractionation of the inner fraction to separate aggregates according to their size (size fractions). Indirect enumerations of viable heterotrophic (VH) and resistant (Hg(R)) bacteria were performed before and 30 days after mercury spiking. A ribosomal intergenic spacer analysis (RISA), combined with multivariate analysis, was used to compare modifications at the community level in the unfractionated soil and in the microenvironments. The spatial heterogeneity of the mercury impact was revealed by a higher increase of Hg(R) numbers in the outer fraction and in the coarse size fractions. Furthermore, shifts in RISA patterns of total community DNA indicated changes in the composition of the dominant bacterial populations in response to Hg(II) stress in the outer and in the clay size fractions. The heterogeneity of metal impact on indigenous bacteria, observed at a microscale level, is related to both the physical and chemical characteristics of the soil microenvironments governing mercury bioavailability and to the bacterial composition present before spiking.  相似文献   

16.
Mercury is a toxic substance that is widely distributed throughout the hydrosphere, biosphere, and lithosphere. Mine waste environments and mine waters support a wide diversity of microbial life. The microbial ecology of environments where mine waters are polluted with heavy metals is poorly understood. Here, we describe the features of bacteria in mercury-contaminated gold panning ponds in a small-scale gold mine (Geita) near Lake Victoria, Tanzania using energy filtering transmission electron microscopy (EF-TEM) and scanning transmission electron microscopy equipped with energy dispersive X-ray spectroscopy (STEM-EDX). Most bacteria in the panning pond showed thick exopolysaccharides (EPSs), and many clay minerals attached onto the surface of EPSs. The clay minerals and EPSs might act as protective layers for the bacteria against toxic materials. The clay minerals were composed of smectite, halloysite, and kaolinite associated with calcite and goethite. Scanning electron microscopy equipped with energy dispersive X-ray spectroscopy indicated that the bulk soil samples contained abundant Si, Al, K, Ca, and Fe with heavy metals such as Au, Ti, and Ag. The results indicate that Hg pollution from panning ponds is caused by not only volatilization of Hg from Au-Hg amalgams, but Hg is also released into the air as dust mixed with dry fine clays, suggesting high long-term environmental risks. Mercury-resistant bacteria associated with clay minerals may have a significant effect on the weathering processes of the ore during long-term bioremediation. The clay mineral complexes on the surface of bacterial cell walls are a stimulator for Hg-resistant bacterial growth in mud ponds contaminated with the Au-Hg materials.  相似文献   

17.
In an incubation experiment the development dynamics of bacterial and fungal communities as well as the level of phytotoxicity were analysed in sand and three soils differing in mechanical structure and amended with corn residues and mineral nitrogen. Bacterial biomass was positively correlated with the degree of dispersion of the solid phase of the soil, whereas the ratio of fungal to bacterial biomass (F:B) was found to be negatively correlated. Fungi were much more tolerant to carbon or nitrogen deficit than bacteria. Introduction of the plant material alone, characterized by a broad carbon to nitrogen ratio, led to the domination of fungi in microbial communities. The level of soil phytotoxicity built up with increasing level of crop residues. Phytotoxicity was observed for the longest time period in soil with the highest silt and clay content. The narrowing of the C:N ratio at introduction of the appropriate amount of mineral nitrogen (larger in heavier soils) resulted in accelerated disappearance of phytotoxicity and at the same time favoured bacterial development. This points to a significant participation of bacteria in the degradation of phytotoxic substances in the soil.  相似文献   

18.
Most marine bacteria produce exopolysaccharides (EPS), and bacterial EPS represent an important source of dissolved organic carbon in marine ecosystems. It was proposed that bacterial EPS rich in uronic acid is resistant to mineralization by microbes and thus has a long residence time in global oceans. To confirm this hypothesis, bacterial EPS rich in galacturonic acid was isolated from Alteromonas sp. JL2810. The EPS was used to amend natural seawater to investigate the bioavailability of this EPS by native populations, in the presence and absence of ammonium and phosphate amendment. The data indicated that the bacterial EPS could not be completely consumed during the cultivation period and that the bioavailability of EPS was not only determined by its intrinsic properties, but was also determined by other factors such as the availability of inorganic nutrients. During the experiment, the humic-like component of fluorescent dissolved organic matter (FDOM) was freshly produced. Bacterial community structure analysis indicated that the class Flavobacteria of the phylum Bacteroidetes was the major contributor for the utilization of EPS. This report is the first to indicate that Flavobacteria are a major contributor to bacterial EPS degradation. The fraction of EPS that could not be completely utilized and the FDOM (e.g., humic acid-like substances) produced de novo may be refractory and may contribute to the carbon storage in the oceans.  相似文献   

19.
The phyllosphere of floating macrophytes in paddy soil ecosystems, a unique habitat, may support large microbial communities but remains largely unknown. We took Wolffia australiana as a representative floating plant and investigated its phyllosphere bacterial community and the underlying driving forces of community modulation in paddy soil ecosystems using Illumina HiSeq 2000 platform-based 16S rRNA gene sequence analysis. The results showed that the phyllosphere of W. australiana harbored considerably rich communities of bacteria, with Proteobacteria and Bacteroidetes as the predominant phyla. The core microbiome in the phyllosphere contained genera such as Acidovorax, Asticcacaulis, Methylibium, and Methylophilus. Complexity of the phyllosphere bacterial communities in terms of class number and α-diversity was reduced compared to those in corresponding water and soil. Furthermore, the bacterial communities exhibited structures significantly different from those in water and soil. These findings and the following redundancy analysis (RDA) suggest that species sorting played an important role in the recruitment of bacterial species in the phyllosphere. The compositional structures of the phyllosphere bacterial communities were modulated predominantly by water physicochemical properties, while the initial soil bacterial communities had limited impact. Taken together, the findings from this study reveal the diversity and uniqueness of the phyllosphere bacterial communities associated with the floating macrophytes in paddy soil environments.  相似文献   

20.
The phycosphere is a unique niche that fosters complex interactions between microalgae and associated bacteria. The formation of this extracellular environment, and the associated bacterial biodiversity, is heavily influenced by the secretion of extracellular polymers, primarily driven by phototrophic organisms. The exopolysaccharides (EPS) represent the largest fraction of the microalgae-derived exudates, which can be specifically used by heterotrophic bacteria as substrates for metabolic processes. Furthermore, it has been proposed that bacteria and their extracellular factors play a role in both the release and composition of the EPS. In this study, two model microorganisms, the diatom Phaeodactylum tricornutum CCAP 1055/15 and the bacterium Pseudoalteromonas haloplanktis TAC125, were co-cultured in a dual system to assess how their interactions modify the phycosphere chemical composition by analyzing the EPS monosaccharide profile released in the culture media by the two partners. We demonstrate that microalgal–bacterial interactions in this simplified model significantly influenced the architecture of their extracellular environment. We observed that the composition of the exo-environment, as described by the EPS monosaccharide profiles, varied under different culture conditions and times of incubation. This study reports an initial characterization of the molecular modifications occurring in the extracellular environment surrounding two relevant representatives of marine systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号