首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Goldberg, R., Liberman, M., Mathieu, C, Pierron, M. and Catesson,A. M. 1987. Development of epidermal cell wall peroxidases alongthe mung bean hypocotyl: possible involvement in the cell wallstiffening process.—J. exp. Bot. 38: 1378–1390. Ultrastructural investigation showed that in the epidermis ofmung bean hypocotyls, cell wall peroxidatic activities couldbe detected mainly below the maximal elongation zone. In theepidermis the peroxidatic activities were preferentially locatedin the radial cell walls. Cell wall peroxidases were then isolatedfrom epidermal strips and further characterized. The possiblepresence of a H2O2-generating system in the epidermis of mungbean hypocotyls was also investigated. When whole segments wereprocessed for electron microscopy, H2O2 could be detected cytochemicallyin the cell walls with the CeCl3 technique. A positive reactionwas obtained in the same location when specimens were incubatedin a 3-3'-diaminobenzidine medium for peroxidases in which H2O2was replaced by its possible precursors (NADH or NAD + malate).However, isolated epidermal cell walls could not generate H2O2at the expense of NADH although they were able to oxidize thereduced nicotinamide-adenine-dinucleotide. The possible relationshipsbetween peroxidase activities, H2O2, and Ca2+ ions are discussedwith respect to their involvement in the cell wall stiffeningprocess. Key words: Epidermis, cell wall, elongation, peroxidases  相似文献   

2.
Of 16 compounds related to 1-aminocyclopropane-1-carboxylicacid (ACC), aminoisobutyric acid (AIB) inhibited the productionof endogenous ethylene in the cotyledonary segments of cocklebur(Xanthium pennsylvanicum Wallr.) seeds most strongly. AIB at4 mM inhibited the formation of ethylene by about 50%, althoughthe O2 uptake of the segments was not affected even at 20 mM.AIB also inhibited ethylene formation in the stem segments ofetiolated pea (Pisum sativum L. cv. Alaska) seedlings. Kineticanalysis with cell free extracts from etiolated pea shoots revealedthat AIB competitively inhibits the conversion of ACC into ethylene. (Received May 26, 1980; )  相似文献   

3.
IAA-induced and l-aminocyclopropane-l-carboxylic acid (ACC)-dependentethylene production in etiolated mung bean (Vigna radiata [L]Wilczek) hypocotyl sections does not occur in epidermal cells(Todaka and Imaseki 1985). Mung bean hypocotyls contain a proteinwhich inhibits auxin-induced ethylene biosynthesis in hypocotylsections (Sakai and Imaseki 1975a, b). This inhibitory proteinwas also found to inhibit ACC-dependent ethylene productionin hypocotyl sections, but not in hypocotyl sections from whichthe epidermis had been removed. Uptake of ACC by both unpeeledand peeled sections was not inhibited by the protein. Similarly,IAA-induced ethylene production was inhibited by the proteinin unpeeled hypocotyl sections, but not in peeled sections.The protein was not inactivated in peeled sections, as proteinsynthesis by peeled sections was inhibited to the same extentas in unpeeled sections. The protein inhibited incorporationof 3,4-[14C]-methionine into ACC and ethylene in unpeeled sections,but not in peeled sections, whereas oxidation of the labeledmethionine into CO2 was inhibited by the protein to a similarextent in both types of hypocotyl sections. KCN, a potent inhibitorof ethylene production, inhibited both IAA-induced and ACC-dependentethylene production in both peeled and unpeeled hypocotyl sections.It is likely that the epidermis plays some role in controllingethylene production which occurs in stem cells other than epidermalcells. (Received July 16, 1985; Accepted October 21, 1985)  相似文献   

4.
The effects of jasmonic acid (JA) on the IAA-induced elongationof segments of etiolated oat (Avena sativa L. cv. Victory) coleoptileswere studied. Exogenously applied JA substantially inhibitedIAA-induced elongation of oat coleoptile segments. The inhibitionof the growth of oat coleoptile segments due to JA appeared2 h after the application of JA with IAA. JA did not affectthe consumption of oxygen by the segments, the osmolarity ofthe cell sap or the IAA-induced loosening of cell walls, whichwas recognized as a decrease in the minimum stress-relaxationtime (T0). JA was extremely effective in preventing increasesin the amount of the cell wall polysaccharides in both the non-cellulosicfraction and the cellulosic fraction during coleoptile growthin the presence and in the absence of IAA. Inhibition of thegrowth of oat coleoptile segments induced by JA was partiallyreversed by the simultaneous addition of sucrose to the testsolution. From these results, it appears that JA inhibits IAA-inducedelongation of oat coleoptile segments by interfering with someaspects of sugar metabolism that are related to the degradationand/or the synthesis of cell wall polysaccharides. (Received March 15, 1994; Accepted August 2, 1994)  相似文献   

5.
NaCl stimulated hypocotyl elongation of the halophyte Salicorniaherbacea L. grown either in light or dark. Its optimal concentrationwas around 0.1–0.2 M and its promoting effect was muchmore prominent in the dark. Gibberellic acid at 10–5 Mstimulated hypocotyl elongation in light but not in the dark.Indole-3-acetic acid and kinetin were ineffective in promotinghypocotyl elongation. In light, gibberellic acid and NaCl synergisticallyenhanced hypocotyl elongation when both were given simultaneously.The action of NaCl could be replaced by KCl, but not by mannitol.Osmotic pressure of the epidermis of the Salicornia hypocotylincreased in response to gibberellic acid and/or NaCl treatment.Na+ content in the hypocotyl increased with NaCl application.Gibberellic acid and NaCl when given alone increased the extensibilityof the hypocotyl cell wall. Synergistic interaction in increasingthe extensibility was observed between gibberellic acid andNaCl. Stress-relaxation analysis of mechanical properties ofthe hypocotyl wall revealed that gibberellic acid and NaCl actedsynergistically in decreasing minimum relaxation time. Basedon these results, a possible mechanism by which gibberellicacid and NaCl regulate hypocotyl elongation of Salicornia herbaceaL., a typical halophilic plant, is discussed. 1 Present address: Laboratory of Biology, Tezukayama College,Gakuen Minami, Nara 631, Japan. (Received June 13, 1978; )  相似文献   

6.
Cell Wall Acidification and its Role in Auxin-Stimulated Growth   总被引:2,自引:0,他引:2  
The role of cell wall acidification in auxin-stimulated growthwas examined in abraded hypocotyl segments of etiolated Cucumis.sativus seedlings. Acidification of the medium by these segmentswas strongly inhibited by a pretreatment and the continued presenceof 1?0 mol m–3 vanadate, widely used as an inhibitor ofplasma membrane ATPase activity. Elongation of segments in pH6?5 buffer was almost completely inhibited by such a treatmentwith vanadate, and the promotion of growth by indole-3-aceticacid (IAA) seen in the absence of vanadate was completely abolished.However, both inhibited and uninhibited segments showed a pronouncedelongation in response to pH 4?0) buffer. In pH 4?0 buffer,in contrast to the results obtained at pH 6?5, IAA significantlypromoted growth in both the presence and absence of vanadate.The results indicate that IAA can promote growth in the absenceof endogenous acidification, but that an acid wall is necessaryfor wall loosening to occur. Key words: Acidification, auxin-stimulated growth, Cucumis sativus, vanadate  相似文献   

7.
The regulation of elongation growth in excised segments of Vignahypocotyl under osmotic stress was investigated by means ofthe xylem perfusion and pressure-jump method. When subjectedto osmotic stress in the absence of absorbable solutes (100mM sorbitol only) or in the presence of absorbable solutes (70mM sorbitol plus 30 mM sucrose, or 70 mM sorbitol plus 15 mMKC1), the hypocotyl segments immediately began to shrink. Thehyper-polarizations of the transmembrane potentials (Vpx andVps) took place at once. Within 40–60 minutes, the segmentsresumed growth. In the presence of absorbable solute, therewas an obvious increase in the effective turgor (Pi–Y'),but the physiological wall extensibility () increased only slightly.Conversely, in the absence of absorbable solute, increasedsignificantly but (Pi–Y') decreased. The results suggestthat the recovery of growth of an excised segment under osmoticstress is mainly due to the change in in the absence of absorbablesolute, and to the change in (P1–Y') in the presence ofabsorbable solute, and that the two respiration-dependent protonpumps play important roles in these recovery processes. (Received April 28, 1989; Accepted August 24, 1989)  相似文献   

8.
The possible involvement of active oxygen species and an apoplasticendopeptidase (EP) in the digestion of cell wall proteins wasstudied in extracellular fluid (EF) from hypocotyls of Phaseolusvulgaris at different stages of elongation. EF proteins underwentsignificant changes in polypeptide pattern during hypocotylgrowth, which were characterized by increases in 35, 39, 40and 50 kDa peptides and appearance of 61, 70 and 75 kDa peptidesat the exponential growth phase. EFs also contain endopeptidase[Gómez et al. (1994) Agriscientia 11:3]. Autolysis experimentswithout or with purified EP revealed that many cell wall polypeptidesare liable to degradation by the protease. Besides, EF polypeptidesincreased their susceptibility to EP during hypocotyl elongation.The 50 and 40 kDa polypeptydes were poorly degraded when extractedfrom hypocotyls in active growth, but greatly hydrolyzed whenextracted from fully elongated tissues, suggesting that in thecourse of growth proteins underwent modifications that renderedthem more prone to proteolytic attack. These modifications seemedto involve active oxygen species, as indicated by: (a) H2O2level rised when protein susceptibility to EP increased; and(b) EF proteins from growing hypocotyls (comparatively lesssusceptible to EP) treated with H2O2 were rapidly degraded bythe protease. (Received April 27, 1995; Accepted July 31, 1995)  相似文献   

9.
The peroxidase activity in Phaseolus mungo hypocotyl sectionsfloated on water decreased during the first 3 h and then increasedagain. The activity of this enzyme was reduced by heliangineand cyeloheximide in vivo, but not in vitro. Peroxidase activityis inhibited by heliangine and cycloheximide since the enzymeis not synthesized. Disk gel electrophoresis studies revealed that at least sixspecies of proteins, soluble in Tris-HCl, pH 7.6, were synthesizedin Phaseolus hypocotyl sections during 24 h incubation on water.Heliangine inhibited the synthesis of two of them, a speciesof peroxidase and another protein. Heliangine inhibited the incorporation of radioactive leucineinto the cell wall fraction, suggesting that it inhibits synthesisof cell wall proteins. It did not, however, inhibit the incorporationof labelled proline into the cell wall fraction. The resultssuggest that heliangine inhibits the synthesis of only someproteins.  相似文献   

10.
Lettuce hypocotyl elongation caused by gibberellic acid wasstrongly inhibited by coumarin and dichlobenil, known inhibitorsof cellulose biosyndiesis. Stress-relaxation analysis of thecell wall revealed that gibberellic acid induces a decreasein both minimum relaxation time (To) and relaxation rate (b)and an increase in maximum relaxation time (Tm), when gibberellicacid stimulates hypocotyl elongation. Both coumarin and dichlobenilnullified the effect of gibberellic acid on changes in To, Tmand b values. The content of pectic, hemicellulosic and cellulosic substancesin the cell wall increased per hypocotyl but decreased per unithypocotyl length, in response to gibberellic acid treatment.Particularly, gibberellic acid caused a substantial increasein cellulose content per hypocotyl but a decrease per unit length.A good correlation existed between the decrease in To and thedecrease in hemicellulose content per unit lengdi of the cellwall. The increase in Tm was correlated with the decrease incellulose content per unit length of the cell wall. The decreasein b was correlated with the decrease in the content of bothcellulose and hemicellulose per unit length. Based on these results, we discuss the role of polysaccharidemetabolism of the cell wall in gibberellic acid-induced lettucehypocotyl elongation and the nature of gibberellic acid-inducedbiochemical modifications of the cell wall, which are representedby changes in stress-relaxation properties of the cell wall. 1Present address: Department of Anatomy, Aichi Medical University,Nagakutecho, Aichigun, Aichi 480-11, Japan. (Received September 22, 1975; )  相似文献   

11.
Partial submergence or treatment with either ethylene or gibberellicacid (GA3 induces rapid growth in deepwater rice (Oryza sativaL.). We correlated the synthesis of two cell wall componentswith two phases of internodal elongation, namely (13,14)-ß-glucanformation with cell elongation and lignification with differentiationof the secondary cell wall and cessation of growth. The contentof ß-glucan was highest in the zone of cell elongationin internodes of air-grown plants and plants that were inducedto grow rapidly by submergence. In the intercalary meristemand in the differentiation zone of the internode, ß-glucanlevels were ca. 70% lower than in the zone of cell elongation.The outer cell layers, enriched in epidermis, contained moreß-glucan in submerged, rapidly growing internodesthan in air-grown, control internodes. The ß-glucancontent of the inner, parenchymal tissue was unaffected or slightlylowered by submergence. The epidermis appears to be the growth-limitingstructure of rapidly growing rice internodes. We hypothesizethat elevated levels of ß-glucan contribute to elongationgrowth by increasing the extensibility of the cell wall. Lignificationwas monitored by measuring the content of lignin and the activitiesof two enzymes of the lignin biosynthetic pathway, coniferylalcohol dehydrogenase (CAD) and phenylalanine ammonia-lyase(PAL), in growing and non-growing regions of the internode.Using submerged whole plants and GA3-treated excised stem segments,we showed that lignin content and CAD activity were up to sixfoldlower in newly formed internodal tissue of rapidly growing ricethan in slowly growing tissue. No differences were observedin parts of the internode that had been formed prior to inductionof growth. PAL activity was reduced throughout the internodeof submerged plants. We conclude that lignification is one ofthe processes that is suppressed to permit rapid growth. 1 This work was supported by the National Science Foundationthrough grants No. DCB-8718873 and DCB-9103747 and by the Departmentof Energy through grant No. DE-FGO2-90ER20021. M.S. was therecipient of a fellowship from the Max Kade Foundation.  相似文献   

12.
Stress-relaxation parameters were compared under different experimentalconditions using 5th internode segments of light-grown pea seedlingsand coleoptile segments of dark-grown Avena seedlings. The followingresults were obtained. 1. In a short incubation period at 25?C, IAA caused a decreasein the minimum relaxation time, To, of the epidermal cell wallof pea internodes when it induced elongation; the optimum concentrationof IAA for decreasing To was 10 mg/liter. 2. At all concentrations of IAA used, 0.1–1000 mg/liter,the relationship between the To value of the epidermal cellwall peeled from segments incubated for 2 hr and the subsequentelongation rate in 2–3 hr incubation was linear, indicatingthat the To value of the cell wall at a certain time regulatesthe rate of the following elongation. 3. When segments of pea epicotyls or Avena coleoptiles wereincubated in mannitol solution of various concentrations inthe presence and absence of IAA and then allowed to grow inthe absence of both mannitol and IAA, the segments extendeddifferently depending upon the mannitol concentration, whichwas less than 0.3 M, given during preincubation. 4. The To and b (relaxation rate, S/log t) values were smallerin the cell wall of segments which extended more, than in thosewhich extended less. In this case, 0.2 M mannitol solution wasmost effective, since it inhibited IAA-induced elongation duringpre-incubation and the segments thus incubated extended themost afterward. 5. Extensibility, mm/gr, seemed to parallel the elongation whichhad occurred during pre-incubation, indicating that this value,contrary to To, represented at least partly the result of elongation. From these results we concluded that the growth rate to followis regulated by the minimum stress relaxation time, To, andpossibly by the relaxation rate, b, of the cell wall beforeextension, and these parameters may represent certain biochemicalmodifications of the cell wall components needed for cell extension. (Received August 12, 1974; )  相似文献   

13.
Auxin activates pumping of protons from the symplast to theapoplast and causes hyperpolarization of the symplast membranein the elongation zone of Vigna stems prior to the accelerationof growth. This auxin-induced hyperpolarization has been studiedin most cases in hypocotyl segments excised from the elongationzone. In the present study, mature-zone segments were perfusedwith IAA by the xylem perfusion technique in an effort to determinewhether or not IAA has any effects in the mature zone. Althoughno hyperpolarization of the symplast membrane was observed uponthe perfusion with auxin alone, auxin-induced hyperpolarizationwas observed when mature-zone segments had been pretreated withGA3, in the absence of an increase in the growth rate. Theseresults suggest that cells in the mature zone have lost theability to activate the proton-pumping machinery in responseto auxin but that this ability can be restored by treatmentwith GA3. This effect of GA3 suggests the possibility that theconcentration of gibberellin in a tissue controls one of thecell's responses to auxin, namely, activation of the protonpump. (Received January 10, 1994; Accepted June 11, 1994)  相似文献   

14.
  1. Effects of auxin on elongation and cell wall properties werestudied using 5th internode segments of light-grown pea epicotyl.The results were:
  2. The optimum concentration of 2,4-D for elongationinductionwas about 1 µg/ml, both for unpeeled and peeledsegments.
  3. Using stress-relaxation analysis, mechanical propertiesof thecell wall were expressed by the parameters 1/1, To andTm. Unpeeledsegments were first treated with 2,4-D, then theepidermis waspeeled off. Parameters of the epidermal cell wallwere conspicuouslychanged by 2,4-D but those of the inner tissuewere not.
  4. Actinomycin D and cycloheximide inhibited 2,4-D-inducedchangesin cell wall parameters, as well as in elongation, ofunpeeledsegments apd of the epidermis.
  5. 2,4-D did not induceelongation of the isolated epidermis butpromoted that of peeledsegments. This promotion was smalleras compared with unpeeledsegments. 2,4-D did not significantlyinfluence the diffusionpressure deficit of peeled segmentsbut did increase their elasticand plastic extensibilities.
  6. We conclude that auxin primarilyinduces cell wall looseningof the epidermis, most likely throughnucleic acid and proteinsynthesis.
1 Present address: Biological Institute, Department of GeneralEducation, Nagoya City University, Mizuho-ku, Mizuho-cho, Nagoya467, Japan. (Received April 22, 1971; )  相似文献   

15.
Fresh and dry weights and leaf size of Poa pratensis were reducedwhen treated with 6-azauracil (AzU), (2-chloroethyl)phosphonicacid (CEPA), or (2-chloroethyl)trimethylammonium chloride (CCC).AzU and CEPA inhibited epidermal cell division without inhibitingcell elongation, while CCC inhibited mainly cell elongationand cell division to a small extent. The ratio of blade lengthto sheath length and the blade length/width ratio were reduced,but leaf emergence and tillering were increased by AzU and CEPA.CCC affected only the latter three features. Like GA3, CEPAinduced stem formation, but internodes were shorter. GA3 was ineffective in preventing leaf-growth inhibition byAzU, which inhibited Ga3-induced cell elongation. The inhibitoryeffect of CEPA on leaf growth was apparently reversed by GA3,but this was due solely to increased cell elongation, the reductionin cell number being unaffected. Ga3 reversed the effect ofCCC on leaf length, as well as on cell size and number. Simultaneousapplication of the inhibitors produced a complex interactionin reducing leaf length and number and size of epidermis cells.It is postulated that AzU, CEPA, and CCC have different modesof action because they have specific effects on plant growthand different effects on GA3-induced cell elongation.  相似文献   

16.
Hypocotyl growth of seedlings of dark-grown squash (Cucurbitamaxima Duch.) was greatly reduced by the addition of 60mM polyethyleneglycol (PEG) to hydroponic solution (water stress). Apoplastic solution (A) and cell sap (C) were separately collectedfrom the hypocotyl segments by a centrifugation method. Theosmotic potentials of A (A) and C (c), and (=cA) ofstressed hypocotyls were always lower than those of unstressedhypocotyls. Suction force was measured by immersing the segments into solutionsof different concentrations of mannitol. Suction force was significantlycorrelated with C (r= –0.99). The mechanical properties of the cell wall of hypocotyl segmentswere measured by stressrelaxation technique. Minimum stressrelaxation time (To), relaxation rate (R) and residual stressof unstressed hypocotyls were low during the growth period andincreased when the growth ceased. To and R of stressed hypocotylsdecreased one day after the stress treatment, but the residualstress was not decreased by the water stress throughout theexperiment. These results suggest that the suppressed growth of dark-grownsquash hypocotyls under water stress was due neither to thereduction of the osmotic potential difference between innerand outer space of the cell, nor to the decrease in suctionforce, but was partly due to the unchanged mechanical propertiesof the cell wall, as represented by one stress-relaxation parameter,residual stress. (Received February 5, 1988; Accepted September 8, 1988)  相似文献   

17.
Auxin-induced changes in the mechanical properties of cell wallwere examined by both positive and negative pressure jump methodsusing hypocotyl segments excised from the 3-day-old seedlingsof cowpea that has been treated with uniconazole, a potent inhibitorof the biosynthesis of gibberellins. In such segments (U-segments)that were deficient in endogenous gibberellin, auxin increasedonly the effective turgor (Pi–Y) and did not change theextensibility () of cell wall. As a result, the extent of theauxin-induced promotion of growth was halved. However, auxinwas able to increase of U-segments that has been pretreatedfor two hours with GA3 prior to the application of IAA. Measurementof intracellular pressure (Pi) with a pressure probe revealedthat auxin did not change Pi in either U-segments or GA3-pretreatedsegments. The results suggest that auxin can decrease the yieldthreshold of the cell wall (Y) independently of gibberellinbut can increase only in the presence of gibberellin. The differencebetween and Y in terms of their requirement for gibberellinto respond to auxin suggests that they are mutually separablemechanical properties that originate from different molecularprocesses that occur in the architecture of yielding cell walls. 3Present address: Ohishi, Enden, Mori-machi, Shuchi-gun, Shizuoka,437-02 Japan  相似文献   

18.
Protoplasts of cotton cotyledons were isolated and culturedto undergo cell wall regeneration and cell division. DNA contentand cell cycle parameters of nuclei from cotyledons and/or protoplastswere determined by flow cytometry. The DNA content of cotton,Gossypium hirsutum L., was estimated to be 4·34±0·12pg DNA per nucleus. There was a strong positive correlation between G2 or Sand G2,and cell wall regeneration and cell division and a strong negativecorrelation between G1, and cell wall regeneration and celldivision of cotton cotyledon protoplasts. The cell cycle statusof cotyledons changes during their development; as the cotyledonsenlarge, the proportion of cells in G0 and G1 phases of thecell cycle increases. The implication of these results in relationto protoplast growth and development is discussed. Key words: Cell cycle parameters, cell wall regeneration, cell division, flow cytometry, Gossypium  相似文献   

19.
Four 13-hydroxygibberellins, gibberellin A1 (GA1), 3-epi-GA1,GA19 and GA20 were identified by full-scan GC/MS in extractsof lettuce seedlings (Lactuca sativa L. cv. Grand Rapids). Theresults suggest that the early-13-hydroxylation biosyntheticpathway to GA1 functions in the lettuce seedlings. It was alsofound that GA1 is active per se in the control of hypocotylelongation in lettuce seedlings. To investigate the relationshipbetween control by light of hypocotyl elongation and levelsof endogenous GAs in lettuce, endogenous levels of GAs werequantified by radioimmunoassay in seedlings that had been grownfor 5 days in the dark (5D) and in those that had been grownfor 4 days in the dark and then under white light for 1 day(4D1L). The endogenous level of GA1 in the upper and lower partsof hypocotyls in 5D seedlings was about four times higher thanthat in 4D1L seedlings. The response of explants (hypocotylsegments with cotyledons) from dark-grown seedlings to GA1 isknown to be similar in the dark and under white light when theexplants are treated with inhibitors of the biosynthesis ofGA. Therefore, the above information suggests that the highlevel of GA1 in hypocotyls of dark-grown seedlings is responsiblefor the rapid elongation of hypocotyl, while irradiation bywhite light decreases the endogenous level of GA1 in the hypocotylswith a resultant decrease in the rate of hypocotyl elongation. (Received March 13, 1992; Accepted May 21, 1992)  相似文献   

20.
TAUTVYDAS  K. J. 《Annals of botany》1979,44(4):503-509
The interaction of light, gibberellic acid (GA3), and phlorizinin the growth of lettuce (Lactuca sativa L. cv. ‘GrandRapids’) hypocotyls was investigated. At all concentrationsof GA3, phlorizin enhanced GA3-induced growth at luminous intensitiesabove 50 ft-c (continuous light). Without GA3, phlorizin hadno effect on hypocotyl growth in the light but it inhibitedgrowth in the dark. Both seedlings and hypocotyl sections respondedto phlorizin in the presence of GA3. There was no iteractionbetween phlorizin and KCl. Water-growth was severly inhibitedby light. GA3,-induced growth was slightly inhibited by light,and then only at luminous intensities above 50 ft-c. Thus, relativeto H2O-growth, GA3-induced growth increased with increasingluminous intensity up to 450 ft-c, where it reached saturation.It seems that a synergism may exist between light and GA3 aswell as between phlorizin and GA3. Lactuca sativa L, lettuce, hypocotyl elongation, gibberellic acid, phlorizin, light  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号