首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The nematode surface coat is defined as an extracuticular component on the outermost layer of the nematode body wall, visualized only by electron microscopy. Surface coat proteins of Meloidogyne incognita race 3 infective juveniles were characterized by electrophoresis and Western blotting of extracts from radioiodine and biotin-labeled nematodes. Extraction of labeled nematodes with cetyltrimethylammonium bromide yielded a principal protein band larger than 250 kDa and, with water soluble biotin, several faint bands ranging from 31 kDa to 179 kDa. The pattern of labeling was similar for both labeling methods. Western blots of unlabeled proteins were probed with a panel of biotin-lectin conjugates, but only Concanavalin A bound to the principal band. Nematodes labeled with radioiodine and biotin released ¹²⁵I and biotin-labeled molecules into water after 20 hours incubation, indicating that surface coat proteins may be loosely attached to the nematode. Antiserum to the partially purified principal protein bound to the surface of live nematodes and to several proteins on Western blots. Differential patterns of antibody labeling were obtained on immuno-blots of extracts from M. incognita race 1, 2, and 3; Meloidogyne hapla race 2; and Meloidogyne arenaria cytological race B.  相似文献   

2.
目的:建立一套适用于蛋白质双向电泳体系的线虫surface coat proteins(SCPs)样品制备技术,为今后研究线虫surfacecoat蛋白质组学及线虫病理生理学奠定基础.方法:以秀丽隐杆线虫(Caenorhabditis elegans)为研究材料,对比和分析不同的蛋白提取沉淀方法,进而采用SDS-PAGE电泳技术和双向电泳技术对所提蛋白进行评价.结果:通过35%乙醇结合TCA-丙酮沉淀法获得的质量较好的线虫SCPs,在12%的SDS-PAGE分析中该法提取的蛋白背景浅,蛋白条带多且清晰尖锐,含有丰富的蛋白信息量.通过双向电泳分析,可从提取的蛋白中鉴定出清晰蛋白点400多个.随机选择5个蛋白斑点,进行基质辅助激光解吸电离飞行时间质谱鉴定,鉴定得到高度匹配的已知线虫蛋白质2个.结论:所建立的方法可为今后研究线虫surface coat蛋白质组学及线虫病理生理学提供重要工具.  相似文献   

3.
Amphiphysin 1 and 2 are proteins implicated in the recycling of synaptic vesicles in nerve terminals. They interact with dynamin and synaptojanin via their COOH-terminal SH3 domain, whereas their central regions contain binding sites for clathrin and for the clathrin adaptor AP-2. We have defined here amino acids of amphiphysin 1 crucial for binding to AP-2 and clathrin. Overexpression in Chinese hamster ovary cells of an amphiphysin 1 fragment that binds both AP-2 and clathrin resulted in a segregation of clathrin, which acquired a diffuse distribution, from AP-2, which accumulated at patches also positive for Eps15. These effects correlated with a block in clathrin-mediated endocytosis. A fragment selectively interacting with clathrin produced a similar effect. These results can be explained by the binding of amphiphysin to the NH(2)-terminal domain of clathrin and by a competition with the binding of this domain to the beta-subunit of AP-2 and AP180. The interaction of amphiphysin 1 with either clathrin or AP-2 did not prevent its interaction with dynamin, supporting the existence of tertiary complexes between these proteins. Together with previous evidence indicating a direct interaction between amphiphysin and membrane lipids, these findings support a model in which amphiphysin acts as a multifunctional adaptor linking the membrane to coat proteins and coat proteins to dynamin and synaptojanin.  相似文献   

4.
Hypochlorite-treated Clostridium botulinum 12885A spores, but not buffer-treated spores, could be germinated with lysozyme, indicating that their coats are made permeable to lysozyme by hypochlorite treatment so that the cortex is accessible. Hypochlorite-treated spores and spores extracted with 8 M urea-2-mercaptoethanol (pH 3.0) were sensitive to certain components of recovery media, but spores sensitized to lysozyme by other treatments were not. These data indicate that hypochlorite does more than increase coat permeability to lysozyme. Scanning electron microscopy revealed a more open-appearing surface of hypochlorite-treated spores, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated that a greater amount of protein was removed from hypochlorite-treated and other lysozyme-sensitized spores than from buffer-treated spores. The data suggest that spore coat proteins may be removed by hypochlorite treatment, and this may be responsible for the sensitivity of spores and for their observed ability to germinate in lysozyme.  相似文献   

5.
Hepatitis B virus particles contain three related viral envelope proteins, the small, middle, and large S (surface) proteins. All three proteins contain the small S amino acid sequence at their carboxyl terminus. It is not clear which of these S proteins functions as the viral attachment protein, binding to a target cell receptor and initiating infection. In this report, recombinant hepatitis B surface antigen (rHBsAg) particles, which contain only virus envelope proteins, were radioactively labeled, and their attachment to human liver membranes was examined. Only the rHBsAg particles containing the large S protein were capable of directly attaching to liver plasma membranes. The attachment was saturable and could be prevented by competition with unlabeled particles or by a monoclonal antibody specific for the large S protein. In the presence of polymerized human serum albumin, both large and middle S protein-containing rHBsAg particles were capable of attaching to the liver plasma membranes. Small S protein-containing rHBsAg particles were not able to attach even in the presence of polymerized human serum albumin. These results indicate that the large S protein may be the viral attachment protein for hepatocytes, binding directly to liver plasma membranes by its unique amino-terminal (pre-S1) sequence. These results also indicate that polymerized human serum albumin or a similar molecule could act as an intermediate receptor, attaching to liver plasma membranes and to the amino acid sequence (pre-S2) shared by the middle and large S proteins but not contained in the small S protein.  相似文献   

6.
Nonenveloped viruses provide the chemist with large, preassembled polyvalent protein scaffolds for modification. These structures are typically porous to small molecules but not to large ones. The solution-phase structures and reactivities of such assemblies may be substantially different than indicated by X-ray crystal structures. Here, the attachment of organic compounds to either the inside or outside surface of the cowpea mosaic virus (CPMV) coat protein was verified with an indicating antibody-antigen interaction. Antibody binding was subsequently blocked by the installation of poly(ethylene glycol) chains. These results typify the type of site-specific control that is available with CPMV and related virus building blocks.  相似文献   

7.
The coated pit-coated vesicle system has a key role in the uptake of plasma low density lipoprotein (LDL) and other receptor-bound proteins in human fibroblasts. To study the distribution of coated pits and coated vesicles in fibroblasts by immunochemical techniques at both the light and electron microscopic levels, we immunized rabbits with coat protein extracted from bovine brain-coated vesicles. The resulting anti-coat protein antibody was directed predominantly against clathrin, the 180,ooo dalton protein that constitutes the major component of coat protein. By indirect immunoperoxidase electron microscopy, the anti-coat protein antibody was observed to bind specifically to coated pits on the surface of human fibroblasts and to coated vesicles within the cell. Indirect immunofluorescence and immunoperoxidase staining techniques at the light microscopic level revealed that the coat protein was distributed in fibroblasts in two distinctive patterns: as discrete foci on or near the cell surface that were linearly aligned in association with phase-dense cellular fibers (first pattern), and as intracellular foci that were randomly arranged around the cell nucleus (second pattern). The distribution of coat protein in fibroblasts was compared with the distribution of ferritin-labeled LDL, which was studied with the use of similar electron microscopic and immunofluorescence techniques. As previously reported, electron microscopic studies revealed that the LDL-ferritin binding sites at 4 degrees C were clustered in coated pits. By immunofluorescence microscopy, the LDL-ferritin that was bound to receptors within coated pits was shown to be arranged linearly over the cell surface in a pattern that was similar to the linear arrangement of coat protein (first pattern). Considered together, the current data indicate that coated pits in human fibroblasts contain a protein analogous to clathrin, and that those coated pits which contain receptors for LDL are located over intracellular fibers most likely corresponding to stress fibers. These observationa may have relevance to the mechanisms by which the coated pit-coated vesicle system efficiently delivers recptor-bound ligands to lysosomes.  相似文献   

8.
Chemical composition, origin, and biological role of the surface coat (SC) of plant-parasitic nematodes are described and compared with those of animal-parasitic and free-living nematodes. The SC of the plant-parasitic nematodes is 5-30 nm thick and is characterized by a net negative charge. It consists, at least in part, of glycoproteins and proteins with various molecular weights, depending upon the nematode species. The lability of its components and the binding of human red blood cells to the surface of many tylenchid plant-parasitic nematodes, as well as the binding of several neoglycoproteins to the root-knot nematode Meloidogyne, suggest the presence of carbohydrate-recognition-domains for host plants and parasitic or predatory soil microorganisms (Pasteuria penetrans and Dactylaria spp., for example). These features may also assist in nematode adaptations to soil environments and to plant hosts with defense mechanisms that depend on reactions to nematode surfaces. Surface coat proteins can be species and race specific, a characteristic with promising diagnostic potential.  相似文献   

9.
真核细胞内膜泡运输的分子机制   总被引:1,自引:0,他引:1  
真核细胞内一些蛋白质需靠膜泡进行定向运输,膜泡是在外衣蛋白的作用下形成的,根据外衣蛋白的不同,膜泡分为笼蛋白,COPⅠ和COPⅡ外衣膜泡,这些外衣膜泡分别在细胞内不同供膜(donor membrane)处形成,因为被运输蛋白具有分选信号可与供膜上相应的受体结合,所以能被包裹在特异的膜泡之中,在膜泡形成过程中,外衣蛋白在“芽生”膜泡的细胞质侧组装成笼状外衣,帮助“芽生”膜泡从供膜处脱落,一旦笼状外衣膜泡脱离供膜,笼状外衣蛋白便发生解聚而成为无衣膜泡,无衣膜泡在Rab蛋白的调控下可定向运输蛋白质,而解聚后的外衣蛋白可重新介导新的外衣膜泡形成。  相似文献   

10.
Intercellular transfer of cell surface proteins is widespread and facilitates several recently discovered means for immune cell communication. Here, we examined the molecular mechanism for intercellular exchange of the natural killer (NK) cell receptor KIR2DL1 and HLA-C, prototypical proteins that swap between NK cells and target cells. Transfer was contact dependent and enhanced for cells expressing cognate receptor/ligand pairs but did not depend on KIR2DL1 signaling. To a lesser extent, proteins transferred independent from specific recognition. Intracellular domains of transferred proteins were not exposed to the extracellular environment and transferred proteins were removed by brief exposure to low pH. By fluorescence microscopy, transferred proteins localized to discrete regions on the recipient cell surface. Higher resolution scanning electron micrographs revealed that transferred proteins were located within specific membranous structures. Transmission electron microscopy of the immune synapse revealed that membrane protrusions from one cell interacted with the apposing cell surface within the synaptic cleft. These data, coupled with previous observations, lead us to propose that intercellular protein transfer is mediated by membrane protrusions within and surrounding the immunological synapse.  相似文献   

11.
The filamentous bacteriophage f1 can be transformed into a spherical particle (spheroid) or an intermediate shortened filament with a flared end (I-forms) by exposure to a chloroform-water interface at 22 or 4 degrees C, respectively. The protein composition of bacteriophage f1 spheroids and I-forms was examined by separating the proteins from the purified. [35S]cysteine-labeled particles by sodium dodecyl sulfate-urea-polyacrylamide gel electrophoresis. Quantitation of the radioactivity on the gels showed that I-forms and spheroids contain the same complement of minor coat proteins as do untreated f1 phage. This composition is unchanged after removal of the DNA, either by digestion with micrococcal nuclease or by centrifugation of the particles through CsCl density gradients, indicating that none of the minor coat proteins is held in the particles solely through an interaction with the DNA. We also examined the location of the A protein in I-forms by decoration with ferritin-conjugated antibodies and examination under the electron microscope and found that the A protein is located specifically at the flared end of the I-form particle, through which the DNA is extruded and at which contraction into spheroids begins. The implications of these results with regard to the orientation of the DNA within the capsid and the process of infection are discussed.  相似文献   

12.
The synthesis and localization of an endospore surface epitope associated with the development of Pasteuria penetrans was determined using a monoclonal antibody (MAb) as a probe. Nematodes, uninfected or infected with P. penetrans, were harvested at 12, 16, 24, and 38 days after inoculation (DAI) and then examined to determine the developmental stage of the bacterium. Vegetative growth of P. penetrans was observed only in infected nematodes harvested at 12 and 16 DAI, whereas cells at different stages of sporulation and mature endospores were observed at 24 and 38 DAI. ELISA and immunoblot analysis revealed that the adhesin-associated epitope was first detected at 24 DAI, and increased in the later stages of sporogenesis. These results indicate that the synthesis of adhesin-related proteins occurred at a certain developmental stage relative to the sporulation process, and was associated with endospore maturation. Immunofluorescence microscopy indicated that the distribution of the epitope is nearly uniform on the periphery of each spore, as defined by parasporal fibers. Immunocytochemistry at the ultrastructural level indicated a distribution of the epitope over the parasporal fibers. The epitope also was detected over other structures such as sporangium and exosporium during the sporogenesis process, but it was not observed over the cortex, inner-spore coat, outer-spore coat, or protoplasm. The appearance of the adhesin epitope first at stage III of sporogenesis and its presence on the parasporal fibers are consistent with an adhesin-related role in the attachment of the mature endospore to the cuticle of the nematode host.  相似文献   

13.
Spores of Bacillus subtilis have a thick outer layer of relatively insoluble protein called the coat, which protects spores against a number of treatments and may also play roles in spore germination. However, elucidation of precise roles of the coat in spore properties has been hampered by the inability to prepare spores lacking all or most coat material. In this work, we show that spores of a strain with mutations in both the cotE and gerE genes, which encode proteins involved in coat assembly and expression of genes encoding coat proteins, respectively, lack most extractable coat protein as seen by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, as well as the great majority of the coat as seen by atomic force microscopy. However, the cotE gerE spores did retain a thin layer of insoluble coat material that was most easily seen by microscopy following digestion of these spores with lysozyme. These severely coat-deficient spores germinated relatively normally with nutrients and even better with dodecylamine but not with a 1:1 chelate of Ca(2+) and dipicolinic acid. These spores were also quite resistant to wet heat, to mechanical disruption, and to treatment with detergents at an elevated temperature and pH but were exquisitely sensitive to killing by sodium hypochlorite. These results provide new insight into the role of the coat layer in spore properties.  相似文献   

14.
The Bacillus subtilis spore coat is a multilayer, proteinaceous structure that consists of more than 50 proteins. Located on the surface of the spore, the coat provides resistance to potentially toxic molecules as well as to predation by the protozoan Tetrahymena thermophila. When coat-defective spores are fed to Tetrahymena, the spores are readily digested. However, a residue termed a "rind" that looks like coat material remains. As observed with a phase-contrast microscope, the rinds are spherical or hemispherical structures that appear to be devoid of internal contents. Atomic force microscopy and chemical analyses showed that (i) the rinds are composed of insoluble protein largely derived from both outer and inner spore coat layers, (ii) the amorphous layer of the outer coat is largely responsible for providing spore resistance to protozoal digestion, and (iii) the rinds and intact spores do not contain significant levels of silicon.  相似文献   

15.
Here we describe the functional relationship between YabG and transglutaminase (Tgl), enzymes that modify the spore coat proteins of Bacillus subtilis. In wild-type spores at 37 degrees C, Tgl mediates the crosslinking of GerQ into higher molecular mass forms; however, some GerQ multimers are found in tgl mutant spores, indicating that Tgl is not essential. Immunoblotting showed that spores isolated from a yabG mutant after sporulation at 37 degrees C contain only very low levels of GerQ multimers. Heat treatment for 20 min at 60 degrees C, which maximally activates the enzymatic activity of Tgl, caused crosslinking of GerQ in isolated yabG spores but not in tgl/yabG double-mutant spores. In addition, the germination frequency of the tgl/yabG spores in the presence of l-alanine with or without heat activation at 60 degrees C was lower than that of wild-type spores. These findings suggest that Tgl cooperates with YabG to mediate the temperature-dependent modification of the coat proteins, a process associated with spore germination in B. subtilis.  相似文献   

16.
The chaplin proteins ChpA-H enable the filamentous bacterium Streptomyces coelicolor to form reproductive aerial structures by assembling into surface-active amyloid-like fibrils. We here demonstrate that chaplins also mediate attachment of S. coelicolor to surfaces. Attachment coincides with the formation of fimbriae, which are connected to the cell surface via spike-shaped protrusions. Mass spectrometry, electron microscopy and Congo red treatment showed that these fimbriae are composed of bundled amyloid fibrils of chaplins. Attachment and fimbriae formation were abolished in a strain in which the chaplin genes chpA–H were inactivated. Instead, very thin fibrils emerged from the spike-shaped protrusions in this mutant. These fibrils were susceptible to cellulase treatment. This enzymatic treatment also released wild-type fimbriae from the cell surface, thereby abolishing attachment. The reduced attachment of a strain in which the gene of a predicted cellulose synthase was inactivated also indicates a role of cellulose in surface attachment. We propose that the mechanism of attachment via cellulose-anchored amyloidal fimbriae is widespread in bacteria and may function in initiation of infection and in formation of biofilms.  相似文献   

17.
Rowland MM  Bostic HE  Gong D  Speers AE  Lucas N  Cho W  Cravatt BF  Best MD 《Biochemistry》2011,50(51):11143-11161
Phosphatidylinositol polyphosphate lipids, such as phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P?], regulate critical biological processes, many of which are aberrant in disease. These lipids often act as site-specific ligands in interactions that enforce membrane association of protein binding partners. Herein, we describe the development of bifunctional activity probes corresponding to the headgroup of PI(3,4,5)P? that are effective for identifying and characterizing protein binding partners from complex samples, namely cancer cell extracts. These probes contain both a photoaffinity tag for covalent labeling of target proteins and a secondary handle for subsequent detection or manipulation of labeled proteins. Probes bearing different secondary tags were exploited, either by direct attachment of a fluorescent dye for optical detection or by using an alkyne that can be derivatized after protein labeling via click chemistry. First, we describe the design and modular synthetic strategy used to generate multiple probes with different reporter tags of use for characterizing probe-labeled proteins. Next, we report initial labeling studies using purified protein, the PH domain of Akt, in which probes were found to label this target, as judged by in-gel detection. Furthermore, protein labeling was abrogated by controls including competition with an unlabeled PI(3,4,5)P? headgroup analogue as well as through protein denaturation, indicating specific labeling. In addition, probes featuring linkers of different lengths between the PI(3,4,5)P? headgroup and photoaffinity tag led to variations in protein labeling, indicating that a shorter linker was more effective in this case. Finally, proteomic labeling studies were performed using cell extracts; labeled proteins were observed by in-gel detection and characterized using postlabeling with biotin, affinity chromatography, and identification via tandem mass spectrometry. These studies yielded a total of 265 proteins, including both known and novel candidate PI(3,4,5)P?-binding proteins.  相似文献   

18.
A Umeda  Y Ueki    K Amako 《Journal of bacteriology》1987,169(6):2482-2487
The fine structure of the Staphylococcus aureus cell wall was determined by electron microscopy with the new technique of rapid freezing and substitution fixation. The surface of the cell wall was covered with a fuzzy coat which consisted of fine fibers or an electron-dense mass. Morphological examination of the cell wall, which was treated sequentially with sodium dodecyl sulfate, trypsin, and trichloroacetic acid, revealed that this coat was partially removed by trypsin digestion and was completely removed by trichloroacetic acid extraction but was not affected by sodium dodecyl sulfate treatment, suggesting that the fuzzy coat consists mostly of a complex of teichoic acids and proteins. This was confirmed by the application of the concanavalin A-ferritin technique for teichoic acid and antiferritin immunoglobulin G technique for protein A.  相似文献   

19.
AIMS: Daily exposure to 100 p.p.m. chlorine dioxide of single species and binary biofilms of dairy-associated Bacillus cereus DL5 and Pseudomonas fluorescens M2, attached to stainless steel surfaces in a laboratory flow system, was studied. METHODS AND RESULTS: Surfaces were sampled daily before and after sanitizer treatment and cells and spores dislodged and enumerated by standard methods. Duplicate surfaces were prepared for confocal scanning laser microscopy (CSLM) and scanning electron microscopy. Higher counts of Ps. fluorescens M2 were obtained in single species biofilms, microcolonies stained green (viable) in CSLM images and were closely packed on attachment surfaces. By contrast, higher counts of B. cereus DL5 were obtained in binary biofilms, microcolonies stained green in CSLM images, but were more spread out. Lower spore counts were obtained for B. cereus DL5 in binary biofilms. The survival of Ps. fluorescens M2 cells after exposure to chlorine dioxide was apparently enhanced by the presence of B. cereus DL5 in binary biofilms. By contrast, B. cereus DL5 showed increased susceptibility to sanitizer treatment in the presence of Ps. fluorescens M2. CONCLUSIONS: Co-cultured bacteria in biofilms influence each other with respect to attachment capabilities and sanitizer resistance/susceptibility. SIGNIFICANCE AND IMPACT OF THE STUDY: Binary biofilms endemic in food-processing industries can survive sanitation regimes and may represent reservoirs of product contamination leading to subsequent spoilage and/or food safety risks.  相似文献   

20.
Summary Coated membranes in two types of gill epithelial cell of adult lamprey, Lampetra japonica, were studied by electron microscopy. The type 3 gill epithelial cells possess well-developed microvilli or microfolds, apical vesicles and abundant mitochondria. The cytoplasmic surface of the microvillous plasma membrane is covered by a coat of regularly spaced particles with a center-to-center distance of about 15 nm. Each particle consists of a bulbous free end, about 10 nm in diameter, and a connecting piece, about 5 nm long. Apical vesicles are covered by a surface coat which consists of fine filamentous material but lack any special coating on their cytoplasmic surface.The type 4 cells (chloride cells) are characterized by apical vesicles, abundant mitochondria and cytoplasmic tubules. These tubules possess a coat on their luminal surface which consists of spirally wound parallel rows of electron-dense materials. The rows are about 16 nm apart and wound at a pitch of about 45°. The cytoplasmic surface of these tubules does not display a special coat. These coated membranes are assumed to be the sites of active ion transport across the plasma membrane. In particular, particles in type 3 cells and linear coat materials in chloride cells may be either loci of transport enzymes or energy generating systems. Apical vesicles lack any coating on their cytoplasmic surface but a fine filamentous coat is present on their luminal surface. They contain intraluminal vesicles and are continuous with apical ends of cytoplasmic tubules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号