首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The major online single nucleotide polymorphism (SNP) databases freely available as research tools for genetic analysis are explained, reviewed, and compared. An outline is given of the search strategies that can be used with the most extensive current SNP databases: National Centre for Biotechnology Information (NCBI) dbSNP and HapMap to help the user secure the most appropriate data for the research needs of clinical genetics and population genetics research. A range of online tools that can be useful in designing SNP genotyping assays are also detailed.  相似文献   

2.
3.
4.
5.
6.
SNP analysis to dissect human traits   总被引:5,自引:0,他引:5  
The analysis of complex human diseases has been spurred by the number of published genomic sequence variants - many identified in the course of sequencing the human genome. But, to be useful for genetic analysis, variants have to be mapped accurately, their frequencies in various populations determined, and automated high-throughput assay techniques developed. Recently proposed methods address these issues: the use of 'reduced representation shotgun' methods for more efficient detection of single nucleotide polymorphisms (SNPs), the employment of high-throughput genotyping techniques, the development of SNP maps that incorporate information about linkage disequilibrium, and the use of SNPs in identifying susceptibility genes for common illnesses.  相似文献   

7.
  1. Download : Download high-res image (108KB)
  2. Download : Download full-size image
  相似文献   

8.
Antimicrobial peptides (AMPs), as evolutionarily conserved components of innate immune system, protect against pathogens including bacteria, fungi, viruses, and parasites. In general, AMPs are relatively small peptides (<10 kDa) with cationic nature and amphipathic structure and have modes of action different from traditional antibiotics. Up to now, there are more than 19 000 AMPs that have been reported, including those isolated from nature sources or by synthesis. They have been considered to be promising substitutes of conventional antibiotics in the quest to address the increasing occurrence of antibiotic resistance. However, most AMPs have modest direct antimicrobial activity, and their mechanisms of action, as well as their structure–activity relationships, are still poorly understood. Computational strategies are invaluable assets to provide insight into the activity of AMPs and thus exploit their potential as a new generation of antimicrobials. This article reviews the advances of AMP databases and computational tools for the prediction and design of new active AMPs. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

9.
Single nucleotide polymorphisms (SNPs) are the most widely used marker in studies to assess associations between genetic variants and complex traits or diseases. They are also becoming increasingly important in the study of the evolution and history of humans and other species. The analysis and processing of SNPs obtained thanks to high-throughput technologies imply the time consuming and costly use of different, complex and usually format-incompatible software. SNPator is a user-friendly web-based SNP data analysis suite that integrates, among many other algorithms, the most common steps of a SNP association study. It frees the user from the need to have large computer facilities and an in depth knowledge of genetic software installation and management. Genotype data is directly read from the output files of the usual genotyping platforms. Phenotypic data on the samples can also be easily uploaded. Many different quality control and analysis procedures can be performed either by using built-in SNPator algorithms or by calling standard genetic software. AVAILABILITY: Access is granted from the SNPator webpage http://www.snpator.org.  相似文献   

10.
SNP2CAPS: a SNP and INDEL analysis tool for CAPS marker development   总被引:7,自引:0,他引:7  
With the influx of various SNP genotyping assays in recent years, there has been a need for an assay that is robust, yet cost effective, and could be performed using standard gel-based procedures. In this context, CAPS markers have been shown to meet these criteria. However, converting SNPs to CAPS markers can be a difficult process if done manually. In order to address this problem, we describe a computer program, SNP2CAPS, that facilitates the computational conversion of SNP markers into CAPS markers. 413 multiple aligned sequences derived from barley ESTs were analysed for the presence of polymorphisms in 235 distinct restriction sites. 282 (90%) of 314 alignments that contain sequence variation due to SNPs and InDels revealed at least one polymorphic restriction site. After reducing the number of restriction enzymes from 235 to 10, 31% of the polymorphic sites could still be detected. In order to demonstrate the usefulness of this tool for marker development, we experimentally validated some of the results predicted by SNP2CAPS.  相似文献   

11.

Background  

During this recent decade, microarray-based single nucleotide polymorphism (SNP) data are becoming more widely used as markers for linkage analysis in the identification of loci for disease-associated genes. Although microarray-based SNP analyses have markedly reduced genotyping time and cost compared with microsatellite-based analyses, applying these enormous data to linkage analysis programs is a time-consuming step, thus, necessitating a high-throughput platform.  相似文献   

12.
种质资源作为生物资源的重要组成部分,是培育作物优质、高产、抗病(虫)、抗逆新品种的物质基础。近年来,为满足我国种业飞速发展的需要,我国不断从国外引入大量的种质资源,种质资源相比其他植物产品携带有害生物的风险更高。种质资源引进过程中不可避免地携带有害生物,可能会带来严重危害。目前,美国、澳大利亚等国家已制定了关于种质资源的风险分析方法,但我国缺少针对种质资源有害生物统一的风险分析方法。本文分析了国际植物检疫措施标准、主要的贸易国家及我国有害生物风险分析标准方法的主要内容,针对引进种质资源过程中亟需解决的有害生物风险分析问题开展讨论,并对种质资源有害生物风险分析系统其未来展开工作提出以下建议:设置符合种质资源风险分析特性的指标;采用半定量风险评估方法对种质资源进行风险分析;根据不断的学习和实际工作的需要,对风险评估指标体系进行验证和适当修改。  相似文献   

13.
14.
The field of metabolic engineering is primarily concerned with improving the biological production of value-added chemicals, fuels and pharmaceuticals through the design, construction and optimization of metabolic pathways, redirection of intracellular fluxes, and refinement of cellular properties relevant for industrial bioprocess implementation. Metabolic network models and metabolic fluxes are central concepts in metabolic engineering, as was emphasized in the first paper published in this journal, “Metabolic fluxes and metabolic engineering” (Metabolic Engineering, 1: 1–11, 1999). In the past two decades, a wide range of computational, analytical and experimental approaches have been developed to interrogate the capabilities of biological systems through analysis of metabolic network models using techniques such as flux balance analysis (FBA), and quantify metabolic fluxes using constrained-based modeling approaches such as metabolic flux analysis (MFA) and more advanced experimental techniques based on the use of stable-isotope tracers, i.e. 13C-metabolic flux analysis (13C-MFA). In this review, we describe the basic principles of metabolic flux analysis, discuss current best practices in flux quantification, highlight potential pitfalls and alternative approaches in the application of these tools, and give a broad overview of pragmatic applications of flux analysis in metabolic engineering practice.  相似文献   

15.
Centralisation of tools for analysis of genomic data is paramount in ensuring that research is always carried out on the latest currently available data. As such, World Wide Web sites providing a range of online analyses and displays of data can play a crucial role in guaranteeing consistency of in silico work. In this respect, the protozoan parasite research community is served by several resources, either focussing on data and tools for one species or taking a broader view and providing tools for analysis of data from many species, thereby facilitating comparative studies. In this paper, we give a broad overview of the online resources available. We then focus on the GeneDB project, detailing the features and tools currently available through it. Finally, we discuss data curation and its importance in keeping genomic data 'relevant' to the research community.  相似文献   

16.
17.
18.
The phylum Apicomplexa comprises over 5000 species of obligate intracellular parasites, many responsible for diseases that significantly impact human health and economics. To aid drug development programs, global sequencing initiatives are generating increasing numbers of apicomplexan genomes. The challenge is how best to exploit these resources to identify effective therapeutic targets. Because of its important role in growth and maintenance, much interest has centred on metabolism. However, in the absence of detailed biochemical data, reconstructing the metabolic potential from a fully sequenced genome remains problematic. In this review current resources and tools facilitating the metabolic reconstruction for apicomplexans are examined. Furthermore, how these datasets can be utilized to explore the metabolic capabilities of apicomplexans are discussed and targets for therapeutic intervention are prioritized.  相似文献   

19.
Humility is the medical virtue most difficult to understand and practice. This is especially true in contemporary medicine, which has developed a culture more characterized by arrogance and entitlement than by self-effacement and moderation. In such a culture, humility suggests weakness, indecisiveness, or even deception, as in false modesty. Nonetheless, an operational definition of medical humility includes four distinct but closely related personal characteristics that are central to good doctoring: unpretentious openness, honest self-disclosure, avoidance of arrogance, and modulation of self-interest. Humility, like other virtues, is best taught by means of narrative and role modeling. We may rightly be proud of contemporary medical advances, while at the same time experiencing gratitude and humility as healers.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号