首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cloning of three intermediate filament proteins expressed at the gastrula stage (kl, Y1, X1) extends the size of the IF multigene family of Branchiostoma to at least 13 members. This is one of the largest protein families established for the lancelet. Sequence comparisons indicate five keratin orthologs, three of type I (E1, k1, Y1) and two of type II (E2, D1). This assignment is confirmed by the obligatory heteropolymeric polymerisation behaviour of the recombinant proteins. In line with the hetero-coiled-coil principle IF are formed by any stoichiometric mixture of type I and II keratin orthologs. In spite of the strong sequence drift chimeric IF are formed between K8, a human keratin II, and two of the lancelet type I keratins. We discuss whether the remaining 8 IF proteins reflect three additional and potentially cephalochordate-specific subfamilies. The tissue-specific expression patterns of the 5 keratins and some other IF proteins were analysed by immunofluorescence in the adult. Keratins are primarily present in ectodermally derived tissues. Developmental control of the expression of some IF proteins is observed, but three keratins (k1, Y1, D1) and an additional IF protein (X1) detected at the gastrula stage are expressed throughout the life cycle.  相似文献   

2.
Developmental changes in keratin patterns during epidermal maturation   总被引:10,自引:0,他引:10  
The biochemical maturation of the epidermis of Xenopus laevis was examined through an identification of the keratins expressed at selected stages of development. The keratin patterns obtained were compared to those observed in the adult epidermis and two Xenopus non-epidermal, epithelial cell lines. The keratins expressed during development can be grouped into three classes: (1) keratins which are restricted to the embryonic epidermis (58 and 59 kDa); (2) keratins which are prominent during development, but become minor components of the adult epidermis (47, 48, and 60 kDa); and (3) keratins which accumulate during development to become the major keratins of the adult epidermis (49, 53, 56, and 63 kDa). The embryo-specific keratins are present at all developmental stages prior to metamorphosis which we have investigated, but disappear when the epidermis keratinizes during metamorphosis. Both class 1 and 2 keratins, while undetectable or minor components of the adult skin, are present in the two non-epidermal cell lines. In contrast, the class 3 keratins show little overlap with the keratins of these cell lines. All of the class 3 keratins appear after hatching with the exception of the 53-kDa keratin which is present at the earliest developmental stage which we have examined. All of the major keratins of the adult epidermis accumulate as metamorphosis proceeds, while the embryo-restricted keratins are gradually lost.  相似文献   

3.
The "thread keratins (TK)" alpha and gamma so far have been considered highly specialized intermediate filament (IF) proteins restricted to hagfish. From lamprey, we now have sequenced five novel IF proteins closely related to TKalpha and TKgamma, respectively. Moreover, we have detected corresponding sequences in EST and genomic databases of teleosts and amphibians. The structure of the TKalpha genes and the positions of their deduced amino acid sequences in a phylogenetic tree clearly support their classification as type II keratins. The genes encoding TKgamma show a structure typical for type III IF proteins, whereas their positions in phylogenetic trees favor a close relationship to the type I keratins. Considering that most keratin-like sequences detected in the lancelet also exhibit a gene structure typical for type III IF proteins, it seems likely that the keratin gene(s) originated from an ancient type III IF protein gene. According to EST analyses, the expression of the thread keratins in teleost fish and amphibians may be particularly restricted to larval stages, which, in conjunction with the observed absence of TKalpha and TKgamma genes in any of the available Amniota databases, indicates a thread keratin function closely related to larval development in an aquatic environment.  相似文献   

4.
The urochordate Ciona intestinalis is a well established system for embryological studies, and large scale EST sequences begin to emerge. We cloned five cytoplasmic intennediate filament (IF) cDNAs and made specific antibodies to the recombinant proteins. Self-assembly studies and immunofluorescence microscopy were used to study these proteins and their distribution. Confirming and extending previous studies in Styela, we found that Ciona protein IF-A is expressed in muscle and forms homopolymeric filaments while proteins IF-C and IF-D, which form only obligatory heteropolymeric filaments, resemble a keratin pair exclusively found in the entire epidermis. Protein IF-B and the new protein IF-F potentially reflect tunicate-specific IF proteins. They are found in the entire internal epithelia including the neural gland. We also extended the analysis to earlier developmental stages of Ciona. Protein IF-A is expressed in muscle from larval stages, whereas proteins IF-C and IF-D are found only in the tail epidermis. Protein IF-F is detected abundantly in the test cells of eggs, embryos and premetamorphic larvae. Our studies show that IF proteins could prove very useful markers in the study of cell fate determination in Ciona. They also support previous findings on the evolutionary relationships of different IF proteins. Non-vertebrate chordates have IF proteins which represent orthologs of vertebrate type I to III proteins, but also IF proteins that do not seem to fit into these classes. However, the intron positions of all tunicate IF genes are conserved with vertebrate type I to III genes, pointing to a common evolutionary origin.  相似文献   

5.
Two novel cytoplasmic intermediate filament (IF) proteins (C and D) from the tunicate (urochordate) Styela are characterised as putative keratin orthologs. The coexpression of C and D in all epidermal cells and the obligatory heteropolymeric IF assembly of the recombinant proteins argue for keratin orthologs, but the sequences do not directly reveal which protein behaves as a keratin I or II ortholog. This problem is solved by the finding that keratin 8, a type II keratin from man or Xenopus, forms chimeric IF when mixed with Styela D. Mutant proteins of Styela D and keratin 8 with a single cysteine in equivalent positions show that these chimeric IF are, like vertebrate keratin filaments, based on the hetero coiled coil. We propose that Styela D retains, in spite of its strong sequence drift, important molecular features of type I keratins. By inference Styela C reflects a type II ortholog. We discuss that type I to III IF proteins are expressed along the chordate branch of metazoa.  相似文献   

6.
We analyzed the draft genome of the cephalochordate Branchiostoma floridae (B. floridae) for genes encoding intermediate filament (IF) proteins. From 26 identified IF genes 13 were not reported before. Four of the new IF genes belong to the previously established Branchiostoma IF group A, four to the Branchiostoma IF group B, one is homologous to the type II keratin E2 while the remaining four new IF sequences N1 to N4 could not be readily classified in any of the previously established Branchiostoma IF groups. All eleven identified A and B2-type IF genes are located on the same genomic scaffold and arose due to multiple cephalochordate-specific duplications. Another IF gene cluster, identified in the B. floridae genome, contains three keratins (E1, Y1, D1), two keratin-like IF genes (C2, X1), one new IF gene (N1) and one IF unrelated gene, but does not show any similarities to the well defined vertebrate type I or type II keratin gene clusters. In addition, some type III sequence features were documented in the new IF protein N2, which, however, seems to share a common ancestry with the Branchiostoma keratins D1 and two keratin-related genes C. Thus, a few type I and type II keratin genes existed in a common ancestor of cephalochordates and vertebrates, which after separation of these two lineages gave rise to the known complexities of the vertebrate cytoplasmic type I–IV IF proteins, as well as to the multiple keratin and related IF genes in cephalochordates, due to multiple gene duplications, deletions and sequence divergences.  相似文献   

7.
I Hanukoglu  E Fuchs 《Cell》1983,33(3):915-924
We present the cDNA and amino acid sequences of a cytoskeletal keratin from human epidermis (Mr = 56K) that belongs to one of the two classes of keratins (Type I and Type II) present in all vertebrates. In these two types of keratins the central approximately 300 residue long regions share approximately 30% homology both with one another and with the sequences of other IF proteins. Within this region, all IF proteins are predicted to contain four helical domains demarcated from one another by three regions of beta-turns. The amino and carboxy termini of the Type II keratin are very different from those of microfibrillar keratins and other nonkeratin IF proteins. However, they contain unusual glycine-rich tandem repeats similar to the amino terminus of the Type I keratin. Thus the size heterogeneity among keratins appears to be a result of differences in the length of the terminal ends rather than the structurally conserved central region.  相似文献   

8.
Differential expression of keratin genes during mouse development   总被引:1,自引:0,他引:1  
Suprabasal layers of the newborn mouse epidermis contain two mRNAs of 2.0 and 2.4 kb which are translated into keratins of 59 and 67 kDa, respectively. To study their expression during development, cDNA sequences corresponding to the 2.0- and the 2.4-kb mRNAs were cloned, characterized by hybridization selection assay, and used as probes to detect keratin sequences in polyadenylated RNA from Day 11, 13, 15, and 17 embryos. In RNA from Day 11 of gestation, two RNAs of 2.8 and 1.8 kb were identified. They were found to have homologies with both epidermal RNAs, suggesting that they are coding for proteins of the keratin family. These two sequences were not detected in sample of later stages. RNAs comigrating with the two epidermal keratin RNAs were identified only in Day 15 and 17 embryos indicating that their expression was induced between Day 13 and 15. Finally, the localization of the 59-kDa keratin mRNA was examined by in situ hybridization. The spinous and granulous cell layers were found to be heavily covered with grains while other regions of the tissue sections were unlabeled. All these results support the hypothesis of a sequential expression of keratins during differentiation of epidermal cells and suggest that proteins related to the keratins expressed specifically in keratinizing cells are expressed earlier during development.  相似文献   

9.
Apoptosis and keratin intermediate filaments   总被引:11,自引:0,他引:11  
Intermediate filament (IF) proteins utilize central alpha-helical domains to generate polymeric fibers intermediate in size between actin microfilaments and microtubules. The regions flanking the central structural domains have diverged greatly to permit IF proteins to adopt specialized functions. Keratins represent the largest two groups of IF proteins. Most keratins serve structural functions in hair or epidermis. Intracellular epidermal keratins also provide strength to epithelial sheets. The intracellular type I keratins and other IF proteins are cleaved by caspases during apoptosis to ensure the disposal of the relatively insoluble cellular components. However, recent studies have also revealed an unexpected protective role for keratin 8 during TNF and Fas mediated apoptosis. Evidence for possible functions of keratins both upstream and downstream of apoptotic signaling are considered.  相似文献   

10.
In contrast to the simplified keratin content of bovine, rabbit, and rat esophageal epithelium (composed mainly of a 57 and 46 or 51 kD keratin, depending on the animal species), human esophageal epithelium contained a quantitatively different array of keratin proteins, ranging in molecular weight from 37 to 61 kD. The pattern of keratin proteins from human esophageal epithelium differed qualitatively and quantitatively from that of human epidermis. Human esophageal epithelium lacked the 63, 65, and 67 kD keratins characteristic of human epidermis, consistent with the absence of a granular layer and an anucleate stratum corneum. Moreover, human esophageal epithelium contained a distinctive 61 kD keratin protein which was either not present or present in only small amounts in human epidermis and variable amounts of a 37 kD keratin. Whereas the 56, 59, and 67 kD keratins were the most abundant keratins in human epidermis, the 52, 57, and 61 kD keratins predominated in human esophageal epithelium. During in vitro cultivation, both human epidermal and esophageal keratinocytes produce colonies which are stratified, but the morphologic appearance of these cultured epithelia differs. Only cultured human epidermal keratinocytes contain keratohyalin granules in the outermost layers and a prominent 67 kD keratin on immunoprecipitation. Otherwise the keratin contents appear similar. In conclusion, human esophageal epithelium exhibited intertissue and interspecies differences in the pattern of keratin proteins. During in vitro cultivation, human esophageal keratinocytes retained some aspects of their distinctive program of differentiation.  相似文献   

11.
Intermediate filaments (IF) have been recognized as ubiquitous components of the cytoskeletons of eukaryotic cells for 25 yr. Historically, the first IF proteins to be characterized were those from wool in the 1960s, when they were defined as low sulfur keratins derived from "microfibrils." These proteins are now known as the type Ia/type IIa trichocyte keratins that constitute keratin IF of several hardened epithelial cell types. However, to date, of the entire class of >40 IF proteins, the trichocyte keratins remain the only ones for which efficient in vitro assembly remains unavailable. In this paper, we describe the assembly of expressed mouse type Ia and type IIa trichocyte keratins into IF in high yield. In cross-linking experiments, we document that the alignments of molecules within reduced trichocyte IF are the same as in type Ib/IIb cytokeratins. However, when oxidized in vitro, several intermolecular disulfide bonds form and the molecular alignments rearrange into the pattern shown earlier by x-ray diffraction analyses of intact wool. We suggest the realignments occur because the disulfide bonds confer substantially increased stability to trichocyte keratin IF. Our data suggest a novel role for disulfide bond cross linking in stabilization of these IF and the tissues containing them.  相似文献   

12.
In the course of studies on local keratin phenotypes in the epidermis of the adult mouse, we have identified a new 65 kD and 48 kD keratin pair. In mouse skin, this keratin pair is only expressed in suprabasal cells of adult mouse tail scale epidermis which is characterized by the complete absence of a granular layer and the formation of a remarkably compact stratum corneum. A second site in which the 65 kD and 48 kD keratin pair is suprabasally expressed and whose morphology corresponds to that of tail scale epidermis is found in the posterior unit of the complex filiform papillae of mouse tongue. The causal relationship of the expression of the 65 kD and 48 kD keratins with this particular type of a non-pathological epithelial parakeratosis is emphasized by the suppression of the mRNA synthesis of the two keratins during retinoic acid mediated orthokeratotic conversion of tail scale epidermis. Apart from tail scale epidermis and the posterior unit of the filiform papillae, the 65 kD and 48 kD keratin pair is, however, also coexpressed with "hard" alpha keratins in suprabulbar cells of hair follicles and in suprabasal cells of the central core unit of the lingual filiform papillae. The non alpha-helical domains of the two new keratins are rich in cysteine and proline residues and lack the typical subdomains into which epithelial keratins of both types can be divided. This structural resemblance of the 65 kD and 48 kD keratins to "hard" alpha keratins is supported by comparative flexibility predictions for their non alpha-helical domains. Phylogenetic investigations then show that the 65 kD and 48 kD keratin pair has evolved together with hair keratins, but has diverged from these during evolution to constitute an independent branch of a pair of hair-related keratins. In view of this exceptional position of the 65 kD and 48 kD keratins within the keratin multigene family, their expression has apparently been adopted by rare anatomical sites in which an orthokeratinized stratum corneum would be too soft and a hard keratinized structure would be too rigid to meet the functional requirement of the respective epithelia.  相似文献   

13.
The isolation of genes for alpha‐keratins and keratin‐associated beta‐proteins (formerly beta‐keratins) has allowed the production of epitope‐specific antibodies for localizing these proteins during the process of cornification epidermis of reptilian sauropsids. The antibodies are directed toward proteins in the alpha‐keratin range (40–70 kDa) or beta‐protein range (10–30 kDa) of most reptilian sauropsids. The ultrastructural immunogold study shows the localization of acidic alpha‐proteins in suprabasal and precorneous epidermal layers in lizard, snake, tuatara, crocodile, and turtle while keratin‐associated beta‐proteins are localized in precorneous and corneous layers. This late activation of the synthesis of keratin‐associated beta‐proteins is typical for keratin‐associated and corneous proteins in mammalian epidermis (involucrin, filaggrin, loricrin) or hair (tyrosine‐rich or sulfur‐rich proteins). In turtles and crocodilians epidermis, keratin‐associated beta‐proteins are synthesized in upper spinosus and precorneous layers and accumulate in the corneous layer. The complex stratification of lepidosaurian epidermis derives from the deposition of specific glycine‐rich versus cysteine‐glycine‐rich keratin‐associated beta‐proteins in cells sequentially produced from the basal layer and not from the alternation of beta‐ with alpha‐keratins. The process gives rise to Oberhäutchen, beta‐, mesos‐, and alpha‐layers during the shedding cycle of lizards and snakes. Differently from fish, amphibian, and mammalian keratin‐associated proteins (KAPs) of the epidermis, the keratin‐associated beta‐proteins of sauropsids are capable to form filaments of 3–4 nm which give rise to an X‐ray beta‐pattern as a consequence of the presence of a beta‐pleated central region of high homology, which seems to be absent in KAPs of the other vertebrates. J. Morphol., 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

14.
Three monoclonal antibodies (AE1, AE2, and AE3) were prepared against human epidermal keratins and used to study keratin expression during normal epidermal differentiation. Immunofluorescence staining data suggested that the antibodies were specific for keratin-type intermediate filaments. The reactivity of these antibodies to individual human epidermal keratin polypeptides (65-67, 58, 56, and 50 kdaltons) was determined by the immunoblot technique. AE1 reacted with 56 and 50 kdalton keratins, AE2 with 65-67 and 56-kdalton keratins, and AE3 with 65-67 and 58 kdalton keratins. Thus all major epidermal keratins were recognized by at least one of the monoclonal antibodies. Moreover, common antigenic determinants were present in subsets of epidermal keratins. To correlate the expression of specific keratins with different stages of in vivo epidermal differentiation, the antibodies were used for immunohistochemical staining of frozen skin sections. AE1 reacted with epidermal basal cells, AE2 with cells above the basal layer, and AE3 with the entire epidermis. The observation that AE1 and AE2 antibodies (which recognized a common 56 kdalton keratin) stained mutually exclusive parts of the epidermis suggested that certain keratin antigens must be masked in situ. This was shown to be the case by direct analysis of keratins extracted from serial, horizontal skin sections using the immunoblot technique. The results from these immunohistochemical and biochemical approaches suggested that: (a) the 65- to 67-kdalton keratins were present only in cells above the basal layer, (b) the 58-kdalton keratin was detected throughout the entire epidermis including the basal layer, (c) the 56- kdalton keratin was absent in the basal layer and first appeared probably in the upper spinous layer, and (d) the 50-kdalton keratin was the only other major keratin detected in the basal layer and was normally eliminated during s. corneum formation. The 56 and 65-67- kdalton keratins, which are characteristic of epidermal cells undergoing terminal differentiation, may be regarded as molecular markers for keratinization.  相似文献   

15.
Vimentin and keratin are coexpressed in many cells, but they segregate into two distinct intermediate filament (IF) networks. To understand the molecular basis for the sorting out of these IF subunits, we genetically engineered cDNAs encoding hybrid IF proteins composed of part vimentin and part type I keratin. When these cDNAs were transiently expressed in cells containing vimentin, keratin, or both IFs, the hybrid IF proteins all recognized one or the other or both networks. The ability to distinguish networks was dependent upon which segments of IF proteins were present in each construct. Constructs containing sequences encoding either helix 1B or helix 2B seemed to be the most critical in conferring IF recognition. At least for type I keratins, recognition was exerted at the level of dimer formation with wild-type type II keratin, as demonstrated by anion exchange chromatography. Interestingly, despite the fact that swapping of helical domains was not as deleterious to IF structure/function as deletion of helical domains, keratin/vimentin hybrids still caused structural aberrations in one or more of the cytoplasmic IF network. Thus, sequence diversity among IF proteins seems to influence not only coiled-coil but also higher ordered associations leading to 10-nm filament formation and/or IF interactions with other cellular organelles/proteins.  相似文献   

16.
We report here the isolation and characterization of three antisera, each of which is specific for a single keratin from one of the three different pairs (K1/K10, K14/K5, K16/K6) that are differentially expressed in normal human epidermis and in epidermal diseases of hyperproliferation. We have used these antisera in conjunction with monospecific cRNA probes for epidermal keratin mRNAs to investigate pathways of differentiation in human epidermis and epidermal diseases in vivo and in epidermal cells cultured from normal skin and from squamous cell carcinomas in vitro. Specifically, our results suggest that: (a) the basal-specific keratin mRNAs are down-regulated upon commitment to terminal differentiation, but their encoded proteins are stable, and can be detected throughout the spinous layers; (b) the hyperproliferation-associated keratin mRNAs are expressed at a low level throughout normal epidermis when their encoded proteins are not expressed, but are synthesized at high levels in the suprabasal layers of hyperproliferating epidermis, coincident with the induced expression of the hyperproliferation-associated keratins in these cells; and (c) concomitantly with the induction of the hyperproliferation-associated keratins in the suprabasal layers of the epidermis is the down-regulation of the expression of the terminal differentiation-specific keratins. These data have important implications for our understanding of normal epidermal differentiation and the deviations from this process in the course of epidermal diseases of hyperproliferation.  相似文献   

17.
From the nucleotide sequences of specific cDNA clones, we present partial amino acid sequences (75-90% of the total) of 67-kDa type II keratin subunits expressed in terminally differentiating mouse and human epidermis. Analysis of the sequence information reveals that their secondary structures conform to the pattern common for all intermediate filament (IF) subunits. Together with the previously published sequence of the mouse 59-kDa type I keratin (Steinert, P. M., Rice, R. H., Roop, D. R., Trus, B. L., and Steven, A. C. (1983) Nature 302, 794-800) these data allow us to make comparisons between two keratins which are coexpressed in an epithelial cell type and which coassemble into the same IF. Moreover, these comparisons suggest a systematic plan for the general organization of the end domains of other keratin subunits. We postulate that each end domain consists of a set of subdomains which are distributed with bilateral symmetry with respect to the central alpha-helical domain. Type II (but not type I) keratins contain short globular sequences, H1 and H2, immediately adjacent to the central domain, that have been conserved in size and sequence and which account for most of the difference in mass between coexpressed type II and type I keratins. These are flanked by subdomains V1 and V2 that are highly variable in both length and sequence, often contain tandem peptide repeats, and are conspicuously rich in glycines and/or serines. At the termini are strongly basic subdomains (N and C, respectively) that are variable in sequence. Among keratins of a given type, their variability in mass appears to reside in the size of their V1 and V2 subdomains. However, coexpressed type I and type II keratins have generally similar V1 and/or V2 sequences. By virtue of the ease with which large portions of these subdomain sequences can be removed from intact keratin IF by limited proteolysis, we hypothesize that they lie on the periphery of the IF where they participate in interactions with other constituents of epithelial cells.  相似文献   

18.
We have investigated keratin interactions in vivo by sequentially extracting water-insoluble proteins from normal human epidermis with increasing concentrations of urea (2, 4, 6, and 9.5 M) and examining each extract by one- and two-dimensional gel electrophoresis, immunoblot analysis using monoclonal anti-keratin antibodies, and EM. The viable layers of normal human epidermis contain keratins K1, K2, K5, K10/11, K14, and K15, which are sequentially expressed during the course of epidermal differentiation. Only keratins K5, K14, and K15, which are synthesized by epidermal basal cells, were solubilized in 2 M urea. Extraction of keratins K1, K2, and K10/11, which are expressed only in differentiating suprabasal cells, required 4-6 M urea. Negative staining of the 2-M urea extract revealed predominantly keratin filament subunits, whereas abundant intermediate-sized filaments were observed in the 4-urea and 6-M urea extracts. These results indicate that in normal human epidermis, keratins K5, K14, and K15 are more soluble than the differentiation-specific keratins K1, K2, and K10/11. This finding suggests that native keratin filaments of different polypeptide composition have differing properties, despite their similar morphology. Furthermore, the observation of stable filaments in 4 and 6 M urea suggests that epidermal keratins K1, K2, and K10/11, which ultimately form the bulk of the protective, nonviable stratum corneum, may comprise filaments that are unusually resistant to denaturation.  相似文献   

19.
Concerted gene duplications in the two keratin gene families   总被引:1,自引:0,他引:1  
Summary Evolutionary trees were derived from the keratin protein sequences using the Phylogeny Analysis Using Parsimony (PAUP) set of programs. Three major unexpected conclusions were derived from the analysis: The smallest keratin protein subunit, K#19 (Moll et al. 1982), is not the most primitive one, but has evolved to fulfill a highly specialized function, presumably to redress the unbalanced synthesis of keratin subunits. Second, the ancestors of keratins expressed in the early embryonic stages, K#8 and K#18, were the first to diverge from the ancestors of all the other keratins. The branches leading to these two keratins are relatively short, indicating a comparatively strong selection against changes in the sequences of these two proteins. Third, the two keratin families show extraodinary parallelism in their patterns of gene duplications. In both families the genes expressed in embryos diverged first, later bursts of gene duplications created the subfamilies expressed in various differentiated cells, and relatively recent gene duplications gave rise to the hair keratin genes and separated the basal cell-specific keratin from those expressed under hyperproliferative conditions. The parallelism of gene duplications in the two keratin gene families implies a mechanism in which duplications in one family influence duplication events in the other family.  相似文献   

20.
The conversion of the larval to adult epidermis during metamorphosis of tadpoles of bullfrog, Rana catesbeiana, was investigated utilizing newly cloned Rana keratin cDNAs as probes. Rana larval keratin (RLK) cDNA (rlk) was cloned using highly specific antisera against Xenopus larval keratin (XLK). Tail skin proteins of bullfrog tadpoles were separated by 2-dimensional gel electrophoresis and subjected to Western blot analysis with anti-XLK antisera. The Rana antigen detected by this method was sequenced and identified as a type II keratin. We cloned rlk from tadpole skin by PCR utilizing primers designed from these peptide sequences of RLK. RLK predicted by nucleotide sequences of rlk was a 549 amino acid -long type II keratin. Subtractive cloning between the body and the tail skin of bullfrog tadpole yielded a cDNA (rak) of Rana adult keratin (RAK). RAK was a 433 amino acid-long type I keratin. We also cloned a Rana keratin 8 (RK8) cDNA (rk8) from bullfrog tadpole epidermis. RK8 was 502 amino acid-long and homologous to cytokeratin 8. Northern blot analyses and in situ hybridization experiments showed that rlk was actively expressed through prometamorphosis in larva-specific epidermal cells called skein cells and became completely inactive at the climax stage of metamorphosis and in the adult skin. RAK mRNA was expressed in basal cells of the tadpole epidermis and germinative cells in the adult epidermis. The expression of rlk and rak was down- and up-regulated by thyroid hormone (TH), respectively. In contrast, there was no change in the expression of RK8 during spontaneous and TH-induced metamorphosis. RK8 mRNA was exclusively expressed in apical cells of the larval epidermis. These patterns of keratin gene expression indicated that the expression of keratin genes is differently regulated by TH depending on the type of larval epidermal cells. The present study demonstrated the usefulness of these genes for the study of molecular mechanism of postembryonic epidermal development and differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号