首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
2.
DNA sequencing using Taq polymerase.   总被引:3,自引:1,他引:2       下载免费PDF全文
  相似文献   

3.
A new 3'-esterified dTTP is incorporated into DNA by Taq DNA polymerase but does not act as a chain terminator. The esterase activity of the polymerase seems to be template dependent and occurs only if the next correct nucleotide is present.  相似文献   

4.
The polymerase chain reaction catalyzed by Taq DNA polymerase has been used for site-specific mutagenesis. The amplification was primed by two oligodeoxyribonucleotides complementary to insulin receptor cDNA. To direct the synthesis of mutant DNA, mismatches were introduced into one of the primers. Six different mutations were constructed by this technique. Of twelve clones whose sequences were determined, ten (83%) had the correct sequence. This technique, which does not require the use of single-stranded DNA templates, provides a simple and efficient approach to site-specific mutagenesis.  相似文献   

5.
The polymerase chain reaction (PCR) is a technique to amplify a specific DNA sequence millions of times. The thermostable enzyme Taq polymerase allows this procedure to take place under conditions of high specificity and automatization. By combining the techniques of PCR and dideoxy sequencing, it is possible to perform DNA sequencing independently of their structures. The cyclic sequencing reaction is carried out in the presence of an excess amount of sequencing primer and a radioactive nucleotide ([alpha-35S]dATP) using a DNA thermal cycler. Different reaction conditions were investigated and optimized including nucleotide ratios in each termination mix, primer/template ratios, amount of a radioactive nucleotide, and the program of the reaction. This method allows the detection of single base substitutions in heterozygous alleles, and the detection of homozygous deletions. A new RFLP of the human porphobilinogen deaminase (PBGD) gene was identified using this technique. This RFLP is created by one base difference (cytosine or adenine) that changes the restriction site for Apa LI. The alternative sequencing method described in this study is a simple and time-saving procedure that can also be used for large sequencing projects.  相似文献   

6.
J Voisey  G J Hafner  C P Morris  A van Daal  P M Giffard 《BioTechniques》2001,31(5):1122-4, 1126, 1128-9
Linear dsDNA composed of tandem repeats may be exponentially amplified by the strongly strand-displacing Bst DNA polymerase (large fragment) and two primers specific for opposite strands. When the repetitive DNA is derivedfrom rolling circle replication of a circular template, the reaction is termed cascade rolling circle amplification (CRCA). We have developed a variant of CRCA in which one primer is attached to the surface of a microwell and the other is labeled, thus enabling detection of amplified material using an ELISA-like protocol. The circular template is derived by annealing and ligation of a padlock on target DNA. It was found that there was good correlation between the synthesis of amplified material and signal. The specificity of the reaction with respect to single-nucleotide polymorphisms was investigated, and it was found that Bst DNA polymerase is prone to extension from primers with mismatched 3' ends. Reliable single nucleotide specificity was only obtained when pre-synthesized amplified material was interrogated by competitive primer extension.  相似文献   

7.
Inhibition of Taq DNA polymerase by catalpol.   总被引:2,自引:0,他引:2  
DNA polymerases have recently emerged as important cellular targets for chemical intervention in the development of anti-cancer agents. This report describes a PCR assay as a method to investigate the action mechanism of the inhibition of Taq DNA polymerase by catalpol. This inhibition was not primer or template specific, nor was it due to chelation of Mg2+ ions. In assays of hyperchromicity of double-stranded DNA, catalpol did not affect melting profile. The inhibitory effect of catalpol does not appear to depend on DNA concentration. In contrast, increasing dNTP concentration rescue the Taq DNA polymerase activity, suggestingthat catalpol acts in a competitive way with dNTPs at the binding site of the enzyme. Theoretical calculations reinforce the experimental data and the proposed mode of action of catalpol.  相似文献   

8.
The Tetrahymena ribozyme has been shown to catalyze an RNA polymerase-like reaction in which an RNA primer is extended by the sequential addition of pN nucleotides derived from GpN dinucleotides, where N = A, C, or U. Here, we show that this reaction is influenced by the presence of a template; bases that can form Watson-Crick base pairs with a template add as much as 25-fold more efficiently than mismatched bases. A mutant enzyme with an altered guanosine binding site can catalyze template-directed primer extension with all four bases when supplied with dinucleotides of the form 2-aminopurine-pN.  相似文献   

9.
Although different DNA polymerases have distinct functions and substrate affinities, their general mechanism of action is similar. Thus, they can all be studied using the same technical principle, the primer extension assay employing radioactive tags. Even though fluorescence has been used routinely for many years for DNA sequencing, it has not been used in the in vitro primer extension assay. The use of fluorescence labels has obvious advantages over radioactivity, including safety, speed and ease of manipulation. In the present study, we demonstrated the potential of non-radioactive in vitro primer extension for DNA polymerase studies. By using an M13 tag in the substrate, we can use the same fluorescent M13 primer to study different substrate sequences. This technique allows quantification of the DNA polymerase activity of the Klenow fragment using different templates and under different conditions with similar sensitivity to the radioactive assay.  相似文献   

10.
A simple method is described for generating nested deletions from any fixed point in a cloned inset. Starting with a single-stranded phagemid template, T4 DNA polymerase is used to extend an annealed primer. This leads to a fully double-stranded circular molecule with a nick or small gap just 5' to the primer. Exonuclease III initiates progressive digestion from the resulting 3' end. Removal of timed aliquots and digestion with a single-strand specific endonuclease leads to a series of linear nested fragments having a common end corresponding to the 5' end of the primer. These molecules are circularized and used to transform cells, providing large numbers of deletion clones with targeted breakpoints. The 6-step procedure involves successive additions to tubes, beginning with a single-stranded template and ending with transformation; no extractions, precipitations or centrifugations are needed. Results are comparable to those obtained with standard Exonuclease III-generated deletion protocols, but there is no requirement for restriction endonuclease digestion or for highly purified double-stranded DNA starting material. This procedure provides a strategy for obtaining nested deletions in either direction both for DNA sequencing and for functional analysis.  相似文献   

11.
12.
13.
In its basic concept, in vitro DNA amplification by the polymerase chain reaction (PCR) is restricted to those instances in which segments of known sequence flank the fragment to be amplified. Recently, techniques have been developed for amplification of unknown DNA sequences. These techniques, however, are dependent on the presence of suitable restriction endonuclease sites. Here, we describe a strategy for PCR amplification of DNA that lies outside the boundaries of known sequence. It is based on the use of one specific primer, homologous to the known sequence, and one semi-random primer. Restriction sites in the 5' proximal regions of both primers allow for cloning of the amplified DNA in a suitable sequencing vector or any other vector. It was shown by sequence analysis that the cloned DNA fragments represent contiguous DNA fragments that are flanked at one side by the sequence of the specific primer. When omitting the semi-random primer, a single clone was obtained, which originated from PCR amplification of target DNA by the specific primer in both directions.  相似文献   

14.
15.
DNA replication normally occurs with high fidelity, but certain "slippery" regions of DNA with tracts of mono-, di-, and trinucleotide repeats are frequently mutation hot spots. We have developed an in vitro assay to study the mechanism of dinucleotide repeat expansion. The primer-template resembles a base excision repair substrate with a single nucleotide gap centered opposite a tract of nine CA repeats; nonrepeat sequences flank the dinucleotide repeats. DNA polymerases are expected to repair the gap, but further extension is possible if the DNA polymerase can displace the downstream oligonucleotide. We report here that the wild type bacteriophage T4 DNA polymerase carries out gap and strand displacement replication and also catalyzes a dinucleotide expansion reaction. Repeat expansion was not detected for an exonuclease-deficient T4 DNA polymerase or for Escherichia coli DNA polymerase I. The dinucleotide repeat expansion reaction catalyzed by wild type T4 DNA polymerase required a downstream oligonucleotide to "stall" replication and 3' --> 5' exonuclease activity to remove the 3'-nonrepeat sequence adjacent to the repeat tract in the template strand. These results suggest that dinucleotide repeat expansion may be stimulated in vivo during DNA repair or during processing of Okazaki fragments.  相似文献   

16.
We have developed a novel, isothermal DNA amplification strategy that employs phi29 DNA polymerase and rolling circle amplification to generate high-quality templates for DNA sequencing reactions. The TempliPhi DNA amplification kits take advantage of the fact that cloned DNA is typically obtained in circular vectors, which are readily replicated in vitro using phi29 DNA polymerase by a rolling circle mechanism. This single subunit, proofreading DNA polymerase has excellent processivity and strand displacement properties for generation of multiple, tandem double-stranded copies of the circular DNA, generating as much as 10(7)-fold amplification. Large amounts of product (1-3 microg) can be obtained in as little as 4 hours. Input DNA can be as little as 0.01 ng of purified plasmid DNA, a single bacterial colony, or a 1 microL of a saturated overnight culture. Additionally, the presence of an associated proof reading function within the phi29 DNA polymerase ensures high-fidelity amplification. Once completed, the product DNA can be used directly in sequencing reactions. Additionally, the properties of phi29 DNA polymerase and its use in applications such as amplification ofhuman genomic DNA for genotyping studies is discussed.  相似文献   

17.
18.
19.
The possibility of increasing the affinity of a Taq DNA polymerase specific binding protein (affibody) was investigated by an alpha-helix shuffling strategy. The primary affibody was from a naive combinatorial library of the three-helix bundle Z domain derived from staphylococcal protein A. A hierarchical library was constructed through selective re-randomization of six amino acid positions in one of the two alpha-helices of the domain, making up the Taq DNA polymerase binding surface. After selections using monovalent phage display technology, second generation variants were identified having affinities (K(D)) for Taq DNA polymerase in the range of 30-50 nM as determined by biosensor technology. Analysis of binding data indicated that the increases in affinity were predominantly due to decreased dissociation rate kinetics. Interestingly, the affinities observed for the second generation Taq DNA polymerase specific affibodies are of similar strength as the affinity between the original protein A domain and the Fc domain of human immunoglobulin G. Further, the possibilities of increasing the apparent affinity through multimerization of affibodies was demonstrated for a dimeric version of one of the second generation affibodies, constructed by head-to-tail gene fusion. As compared with its monomeric counterpart, the binding to sensor chip immobilized Taq DNA polymerase was characterized by a threefold higher apparent affinity, due to slower off-rate kinetics. The results show that the binding specificity of the protein A domain can be re-directed to an entirely different target, without loss of binding strength.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号