首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A mutant (furA3) was isolated from the S1 wild-type strain of Nectria haematococca on the basis of its resistance to 5-fluorouracil (5FU). This mutant has greatly reduced activity of uracil phosphoribosyltransferase, a pyrimidine salvage enzyme catalyzing the synthesis of UMP from uracil. The metabolism of 5FU was examined in both strains by using 19F nuclear magnetic resonance spectroscopy. In the S1 strain, 5FU appears to be metabolized by two pathways operating simultaneously: (i) conversion to fluoronucleotides and (ii) degradation into alpha-fluoro-beta-alanine. The furA3 mutant shows metabolic changes consistent with a uracil phosphoribosyltransferase lesion, since it takes up 5FU and forms a small amount of alpha-fluoro-beta-alanine but does not synthesize fluoronucleotides. Since pigment synthesis is strongly enhanced by 5FU in the S1 wild-type strain but not in the furA3 mutant, these results support the hypothesis that 5FU stimulation of secondary metabolism in N. haematococca is not mediated by the drug itself but involves a phosphorylated anabolite.  相似文献   

2.
A mutant (furA3) was isolated from the S1 wild-type strain of Nectria haematococca on the basis of its resistance to 5-fluorouracil (5FU). This mutant has greatly reduced activity of uracil phosphoribosyltransferase, a pyrimidine salvage enzyme catalyzing the synthesis of UMP from uracil. The metabolism of 5FU was examined in both strains by using 19F nuclear magnetic resonance spectroscopy. In the S1 strain, 5FU appears to be metabolized by two pathways operating simultaneously: (i) conversion to fluoronucleotides and (ii) degradation into alpha-fluoro-beta-alanine. The furA3 mutant shows metabolic changes consistent with a uracil phosphoribosyltransferase lesion, since it takes up 5FU and forms a small amount of alpha-fluoro-beta-alanine but does not synthesize fluoronucleotides. Since pigment synthesis is strongly enhanced by 5FU in the S1 wild-type strain but not in the furA3 mutant, these results support the hypothesis that 5FU stimulation of secondary metabolism in N. haematococca is not mediated by the drug itself but involves a phosphorylated anabolite.  相似文献   

3.
Studies on the role of RNA synthesis in auxin induction of cell enlargement   总被引:4,自引:2,他引:2  
Nooden LD 《Plant physiology》1968,43(2):140-150
Selective inhibitors were used to study the connection between nucleic acid synthesis and indoleacetic acid (IAA) induction of cell enlargement. Actinomycin D (act D) and azaguanine (azaG) almost completely inhibit IAA-induced growth in aged artichoke tuber disks when they are added simultaneously with IAA. In contrast, when they are added 24 hours after the hormone, these inhibitors have little or no effect on the induced growth which continues for 48 hours or more with little or no inhibition. Inhibitors of protein synthesis still stop growth when applied 24 hours after the IAA, thus protein synthesis and presumably supporting metabolism are still essential.

In corn coleoptile sections auxin-induced growth did not show any pronounced tendency to become less sensitive to act D as the IAA treatment progressed. Act D did not completely inhibit the response to IAA unless the sections were pretreated with act D for 6 hours. In contrast to act D, cordycepin produced almost complete inhibition of IAA-induced growth when added with the IAA.

Although IAA has a very large and very rapid stimulatory effect (within 10 min) on incorporation of 32P-orthophosphate into RNA in disks, it did not cause a detectable change in the base composition of the RNA synthesized. Furthermore, the promotive effect could be accounted for through increased uptake of the 32P. That much of the RNA synthesis in these tissues is not necessary for auxin action is indicated by the results with fluorouracil (FU). FU strongly inhibits RNA synthesis, probably acting preferentially on ribosomal RNA synthesis, without inhibiting auxin-induced growth in the disks or coleoptile sections. FU also strongly inhibited respiration in auxin-treated disks indicating that the large promotion of respiration by auxin likewise may not be entirely necessary for growth.

At least in the artichoke disks, RNA synthesis is required for auxin induction of cell enlargement and not for cell enlargement itself.

The possible relationships of auxin induction of cell enlargement and RNA synthesis are discussed.

  相似文献   

4.
D P Nagle  Jr  R Teal    A Eisenbraun 《Journal of bacteriology》1987,169(9):4119-4123
Growth of Methanobacterium thermoautotrophicum Marburg is inhibited by the pyrimidine, 5-fluorouracil (FU). It was shown previously that methanogenesis is not inhibited to the same extent as growth. A spontaneously occurring FU-resistant strain (RTAE-1) was isolated from a culture of strain Marburg. The growth of both strains was inhibited by 5-fluorodeoxyuridine but not 5-fluorocytosine, and the wild type was more susceptible to inhibition by 5-azauracil and 6-azauracil than was strain RTAE-1. The cellular targets for the pyrimidine analogs are not known. When the accumulation of 14C-labeled uracil or FU by the two strains was compared, the wild type took up 15-fold more radiolabel per cell than did the FU-resistant strain. In the wild type, radiolabel from uracil was incorporated into the soluble pool, RNA, and DNA. The metabolism of uracil appeared to involve a uracil phosphoribosyltransferase activity. Strain Marburg extracts contained this enzyme, whereas FU-resistant strain RTAE-1 extracts had less than 1/10 as much activity. Although it is possible that a change in permeability to the compounds plays a role in the stable resistance of strain RTAE-1, the fact that it lacks the ability to metabolize pyrimidines to nucleotides is sufficient to account for its phenotype.  相似文献   

5.
Comparative effects of 5-fluorouracil on strains of Bacillus megaterium   总被引:4,自引:3,他引:1  
Wachsman, J. T. (University of Illinois, Urbana), S. Kemp, and L. Hogg. Comparative effects of 5-fluorouracil on strains of Bacillus megaterium. J. Bacteriol. 87:1011-1018. 1964.-Growth of Bacillus megaterium strain KM is severely inhibited by 5-fluorouracil (FU). Both thymidine and uridine are required to overcome this inhibition. The addition of uridine alone to a FU-inhibited culture permits good ribonucleic acid (RNA) and protein synthesis for the first 2 hr, but rather poor deoxyribonucleic acid synthesis. Uridine enhances the bactericidal effect of FU, promoting a decrease in the viable count of from 4 to 5 decades in 5 hr. Death begins after a 1-hr lag and is accompanied by hydrolysis of RNA and cell lysis, commencing during the 2- to 5-hr interval. The combination of FU and uridine is not bactericidal, when a methionine auxotroph is deprived of its required amino acid. Substrains of KM, partially resistant to FU, were isolated. Strain T(2) requires only thymidine to overcome the inhibitory effects of FU, whereas strain FU/2 requires only uridine. With a uridine auxotroph of strain KM, FU partially replaces uridine by permitting a small, but reproducible, increase in the amount of protein.  相似文献   

6.
《FEBS letters》1986,207(2):262-265
As with Methanococcus voltae [(1986) FEBS Lett. 200, 177–180], ATP synthesis in Methanobacterium thermoautotrophicum (ΔH) can be driven by the imposition of a sodium gradient, but only in the presence of a counterion. Monensin (but not SF6847) inhibits this synthesis. Methanogenic electron transfer-driven ATP synthesis, however, is insensitive to the combination of these two ionophores. In M. voltae, 117 μM diethylstilbestrol effectively inhibits both membrane potential- and sodium gradient-driven ATP synthesis, but has no effect on ATP production coupled to methanogenesis. In Mb. thermoautotrophicum (ΔH), a similar pattern of inhibition is exhibited by harmaline, an inhibitor of sodium-linked membrane transport systems. We conclude that ATP-driven sodium translocation and electron transfer-driven ATP synthesis are accomplished by separate entities, at least for these two only distantly related species of methanogen.  相似文献   

7.
The membrane potential (delta psi) of whole cells of Methanobacterium thermoautotrophicum strain delta H was estimated under different external conditions using a TPP(+)-sensitive electrode. The results show that the delta psi values of M. thermoautotrophicum at alkaline pHout (8.5) are comparable with delta psi values under slightly acidic conditions (pH 6.8; 230 and 205 mV, respectively). On the other hand, the size of colonies on Petri dishes was remarkably smaller at pH 8.5 than at 6.8. The delta psi was insensitive to relevant ATPase inhibitors. At pH 6.8, the protonophore 3,3',4',5-tetrachlorosalicylanilide (TCS) strongly inhibited delta psi formation and ATP synthesis driven by methanogenic electron transport. On the other hand, at pH 8.5 the CH4 formation and ATP synthesis were insensitive to TCS and a protonophore-resistant delta psi of approximately 150 mV was determined. The finding of a protonophore-resistant delta psi at pH 8.5 indicates that at alkaline pHout these cells can switch from H(+)-energetics to Na(+)-energetics, when the delta [symbol: see text] H+ becomes limited. The results strongly support the hypothesis that at alkaline pHout Na+ ions might fully substitute for H+ in these cells as the coupling ions.  相似文献   

8.
Recently it was found that the specific activity of H2-forming methylenetetrahydromethanopterin dehydrogenase (Hmd) in Methanothermobacter marburgensis (formerly Methanobacterium thermoautotrophicum strain Marburg) increased six-fold when the hydrogenotrophic archaeon was grown in chemostat culture under nickel-limited conditions. We report here that the increase is due, at least in part, to increased expression of the hmd gene. This was demonstrated by Northern and Western blot analysis. These techniques were also used to show that hmd expression in growing M. marburgensis is not under the control of the H2 concentration. Studies with monoclonal antibodies on the effect of growth conditions on the expression of hmdII and hmdIII, which have been proposed to encode Hmd isoenzymes, were also carried out. The results indicate that the expression of these two genes is regulated by H2 rather than by nickel, and that HmdIII and HmdIII most probably do not exhibit Hmd activity.  相似文献   

9.
We describe here the isolation and characterization of a B-type DNA polymerase (PolB) from the archaeon Methanobacterium thermoautotrophicum DeltaH. Uniquely, the catalytic domains of M. thermoautotrophicum PolB are encoded from two different genes, a feature that has not been observed as yet in other polymerases. The two genes were cloned, and the proteins were overexpressed in Escherichia coli and purified individually and as a complex. We demonstrate that both polypeptides are needed to form the active polymerase. Similar to other polymerases constituting the B-type family, PolB possesses both polymerase and 3'-5' exonuclease activities. We found that a homolog of replication protein A from M. thermoautotrophicum inhibits the PolB activity. The inhibition of DNA synthesis by replication protein A from M. thermoautotrophicum can be relieved by the addition of M. thermoautotrophicum homologs of replication factor C and proliferating cell nuclear antigen. The possible roles of PolB in M. thermoautotrophicum replication are discussed.  相似文献   

10.
Growth of a strain of Bacillus subtilis that requires uracil, thymine, adenine, and tryptophan in the presence of 5-fluorouracil (FU) results in the synthesis of ribonucleic acid (RNA) and ribosomes in which 55 to 65% of the RNA uracil has been replaced by the fluorine derivative. Examination of analogue-containing ribosomes by sucrose density gradient centrifugation and thermal denaturation studies suggests that, as far as the size, shape, and packing structure are concerned, extensive FU substitution has little or no effect. FU appears to replace uracil in RNA without selectivity for one RNA class over another, as determined by methylated albumin-kieselguhr column chromatography and sucrose density gradient centrifugation. The total amino acid content of the cells is markedly affected by growth in the presence of FU. The possibility of an FU effect on genetic translation is discussed.  相似文献   

11.
12.
Dissociation of cellular functions in Bacillus cereus by 5-fluorouracil   总被引:2,自引:1,他引:1  
Reich, Melvin (The George Washington University School of Medicine, Washington, D.C.), and H. George Mandel. Dissociation of cellular functions in Bacillus cereus by 5-fluorouracil. J. Bacteriol. 91:517-523. 1966.-5-Fluorouracil (FU) produced a marked inhibition of growth and deoxyribonucleic acid (DNA) synthesis in Bacillus cereus 569H. Protein and ribonucleic acid (RNA) synthesis were not specifically inhibited, and proceeded at the rate of turbidometric increase of the cells. Cell-wall synthesis, respiration, and penicillinase production continued in the presence of FU at essentially the control rate. The addition of equimolar concentrations of uracil and FU prevented growth inhibition but did not restore DNA synthesis. The addition of thymidine with FU did not relieve growth inhibition but did restore the DNA content to normal. Thymidine supplementation also increased the quantity of FU, but not uracil, incorporated into RNA and the acid-soluble fraction. The data indicate that inhibition of growth can be dissociated from inhibition of DNA synthesis and that more DNA is present in normal cells than is needed for growth and reproduction.  相似文献   

13.
Methanogenesis-driven ATP synthesis in a neomycin-resistant mutant of Methanothermobacter thermautotrophicus (formerly Methanobacterium thermoautotrophicum strain DeltaH) was strongly inhibited at both pH 6.8 and pH 8.5 by the uncoupler 3,3',4',5 -tetrachlorosalicylanilide (TCS) in the presence of either 1 or 10 mM NaCl. The generation of a membrane potential in the mutant cells at pH 6.8 was also strongly inhibited by TCS in the presence of 1 or 10 mM NaCl. On the other hand, at pH 8.5 in the presence of 10mM NaCl, a protonophore-resistant membrane potential of approximately 150 mV was found. These results indicate that in the mutant cells the process of energy transduction between methanogenesis and membrane potential generation is not impaired. In contrast to the wild-type strain, ATP synthesis in the mutant cells was driven by an electrochemical gradient of H(+) under alkaline conditions. Unlike wild-type cells, the mutant lacks the capacity to transduce an uncoupler-resistant membrane potential energy at pH 8.5 into ATP synthesis. Na(+)/H(+) exchange was comparable in the wild type and the mutant cells. Western blots of sub-cellular fractions with polyclonal antiserum reactive to the B-subunit of the halobacterial A-type H(+)-translocating ATPase confirmed the presence of A-type ATP synthase in the mutant cells. Furthermore, in the mutant cells a protein band of molecular mass about 45 kDa is absent but there was an abundant protein band at about 67 kDa. Based on the observed bioenergetic features of the mutant cells, neither the A(1)A(o) ATP synthase alone nor together with the Na(+)/H(+) antiporter seems to be responsible for ATP synthesis driven by sodium motive force. Rather, some other links between neomycin-resistance and failure of sodium motive force-dependent ATP synthesis in the neomycin resistant mutant are discussed.  相似文献   

14.
Methanogenic bacteria are considered to couple methane formation with the synthesis of ATP by a chemiosmotic mechanism. This hypothesis was tested with Methanobacterium thermoautotrophicum. Methane formation from H2 and CO2 (2.5 - 3 mumol X min-1 X mg cells-1) by cell suspensions of this organism resulted in the formation of an electrochemical proton potential (delta mu H +) across the cytoplasmic membrane of 230 mV (inside negative) and in the synthesis of ATP up to an intracellular concentration of 5 - 7 nmol/mg. The addition of ionophores at concentrations which completely dissipated delta mu H + without inhibiting methane formation did not result in an inhibition of ATP synthesis. It thus appears that delta mu H + across the cytoplasmic membrane is not the driving force for the synthesis of ATP in M. thermoautotrophicum.  相似文献   

15.
16.
Methanobacterium thermoautotrophicum delta H and Marburg were adapted to grow in medium containing up to 0.65 M NaCl. From 0.01 to 0.5 M NaCl, there was a lag before cell growth which increased with increasing external NaCl. The effect of NaCl on methane production was not significant once the cells began to grow. Intracellular solutes were monitored by nuclear magnetic resonance (NMR) spectroscopy as a function of osmotic stress. In the delta H strain, the major intracellular small organic solutes, cyclic-2,3-diphosphoglycerate and glutamate, increased at most twofold between 0.01 and 0.4 M NaCl and decreased when the external NaCl was 0.5 M. M. thermoautotrophicum Marburg similarly showed a decrease in solute (cyclic-2,3-diphosphoglycerate, 1,3,4,6-tetracarboxyhexane, and L-alpha-glutamate) concentrations for cells grown in medium containing > 0.5 M NaCl. At 0.65 M NaCl, a new organic solute, which was visible in only trace amounts at the lower NaCl concentrations, became the dominant solute. Intracellular potassium in the delta H strain, detected by atomic absorption and 39K NMR, was roughly constant between 0.01 and 0.4 M and then decreased as the external NaCl increased further. The high intracellular K+ was balanced by the negative charges of the organic osmolytes. At the higher external salt concentrations, it is suggested that Na+ and possibly Cl- ions are internalized to provide osmotic balance. A striking difference of strain Marburg from strain delta H was that yeast extract facilitated growth in high-NaCl-containing medium. The yeast extract supplied only trace NMR-detectable solutes (e.g., betaine) but had a large effect on endogenous glutamate levels, which were significantly decreased. Exogenous choline and glycine, instead of yeast extract, also aided growth in NaCl-containing media. Both solutes were internalized with the choline converted to betaine; the contribution to osmotic balance of these species was 20 to 25% of the total small-molecule pool. These results indicate that M. thermoautotrophicum shows little changes in its internal solutes over a wide range of external NaCl. Furthermore, they illustrate the considerable differences in physiology in the delta H and Marburg strains of this organism.  相似文献   

17.
Summary The fluorinated pyrimidines 5-fluorouracil (5FU) and 5-fluorocytosine (5FC) induce the cytoplasmic petite mutation in the yeastSaccharomyces cerevisiae with high efficiency. It was found that in order to induce the mutation, 5FC must first be deaminated to 5FU. However, mutagenesis does not depend on the further conversion of 5FU to its deoxyriboside (5FUDR) and subsequent blockade of intracellular thymidine synthesis, since 5FUDR itself was found not to be mutagenic, and 5FU-induced mutagenesis was not antagonised by supplying thymidine monophosphate (dTMP) to a dTMP permeable strain. In any case, observations of the molecular changes accompanying petite induction in log phase cells ruled out the possibility that mutagenesis resulted simply from the dilution out of replication-blocked mitDNA molecules, since the appearance of mutants coincided with the synthesis of altered mitDNA molecules. In different strains, the resulting defective molecules were either maintained, giving rise to suppressive petites, or completely degraded, to give pure clones of neutral 0 mutants. It is suggested that this degradative process was a consequence of the incorporation of 5FU into RNA.  相似文献   

18.
Mutant strains sensitive and resistant to the drug 5-fluorouracil (FU) have been isolated from the wild-type Pac strain of Drosophila melanogaster. The resistant strain, termed flur, is resistant to at least 0.0035%FU (2.7 × 10–4 m) in the food media and exhibits cross-resistance to 5-fluorodeoxyuridine (FUdR) but not to 5-fluorouridine (FUR). The sensitive strain termed flu S , exhibits over 90% mortality on 0.0008% FU (6 × 10–5 m). Genetic analysis indicates that the flu gene is located on the third chromosome, which agrees with results of previous workers. An analysis of the enzyme thymidylate synthetase from the selected sensitive and resistant strains indicates that the resistant strain enzyme possesses an elevated specific activity. Levels 4 times that of the sensitive strain were observed when the enzymes were assayed at 20 C. This increase is apparently not due to induction by FU in the food media. It is suggested that the enzyme thymidylate synthetase may be involved in the resistance process.  相似文献   

19.
DNA reassociation was used to determine levels of relatedness among four thermophilic Methanobacterium strains that are able to use formate and between these organisms and two representative strains of Methanobacterium thermoautotrophicum, strain delta HT (= DSM 1053T = ATCC 29096T) (T = type strain) and strain Marburg (= DSM 2133). Three homology groups were delineated, and these groups coincided with the clusters identified by antigenic fingerprinting. The first group, which had levels of cross hybridization that ranged from 73 to 99%, included M. thermoautotrophicum delta HT, Methanobacterium thermoformicicum Z-245, Methanobacterium sp. strain THF, and Methanobacterium sp. strain FTF. The second and third groups were each represented by only one strain, Methanobacterium sp. strain CB-12 and M. thermoautotrophicum Marburg, respectively (cross-hybridization levels, 13 to 30 and 29 to 33%, respectively). Our results indicate that the name M. thermoformicicum should be rejected as it is a synonym of M. thermoautotrophicum. The taxonomic positions of strains Marburg and CB-12 need further investigation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号