首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Development of left/right handedness in the chick heart.   总被引:2,自引:0,他引:2  
The chick heart tube develops from the fusion of the right and left areas of precardiac mesoderm and in almost all cases loops to the embryo's right-hand side. We have investigated whether any intrinsic difference exists in the right and left areas of precardiac mesoderm, that influences the direction of looping of the heart tube. Chick embryos incubated to stages 4,5 and 6 were cultured by the New method. Areas of precardiac mesoderm were exchanged between donor and host embryos of the same stage and different stages to form control, double-right and double-left sided embryos. Overall, double-right sided embryos formed many more left-hand loops than double-left sided embryos. At stages 4 and 5 a small percentage of double-right embryos formed left-hand loops (13%) whereas at stage 6 almost 50% of hearts had left-hand loops. Control embryos formed right-hand loops in 97% of cases. The stability of right-hand heart looping by double-left sided embryos, may be related to the process of 'conversion', whereas the direction of looping by double-right sided embryos has become randomised. There is some indication that an intrinsic change occurred in the precardiac mesoderm between stages 5 and 6 that later influenced the direction of looping of the heart tube. The direction of body turning is suggested to be linked to the direction of heart looping.  相似文献   

2.
3.
Left/right (L/R) asymmetry is essential during embryonic development for organ positioning, looping and handed morphogenesis. A major goal in the field is to understand how embryos initially determine their left and right hand sides, a process known as symmetry breaking. A number of recent studies on several vertebrate and invertebrate model organisms have provided a more complex view on how L/R asymmetry is established, revealing an apparent partition between deuterostomes and protostomes. In deuterostomes, nodal cilia represent a conserved symmetry-breaking process; nevertheless, growing evidence shows the existence of pre-cilia L/R asymmetries involving active ion flows. In protostomes like snails and Drosophila, symmetry breaking relies on different mechanisms, involving, in particular, the actin cytoskeleton and associated molecular motors.  相似文献   

4.
Poole RJ  Hobert O 《Current biology : CB》2006,16(23):2279-2292
BACKGROUND: Nervous systems are largely bilaterally symmetric on a morphological level but often display striking degrees of functional left/right (L/R) asymmetry. How L/R asymmetric functional features are superimposed onto an essentially bilaterally symmetric structure and how nervous-system laterality relates to the L/R asymmetry of internal organs are poorly understood. We address these questions here by using the establishment of L/R asymmetry in the ASE chemosensory neurons of C. elegans as a paradigm. This bilaterally symmetric neuron pair is functionally lateralized in that it senses a distinct class of chemosensory cues and expresses a putative chemoreceptor family in a L/R asymmetric manner. RESULTS: We show that the directionality of the asymmetry of the two postmitotic ASE neurons ASE left (ASEL) and ASE right (ASER) in adults is dependent on a L-/R-symmetry-breaking event at a very early embryonic stage, the six-cell stage, which also establishes the L/R asymmetric placement of internal organs. However, the L/R asymmetry of the ASE neurons per se is dependent on an even earlier anterior-posterior (A/P) Notch signal that specifies embryonic ABa/ABp blastomere identities at the four-cell stage. This Notch signal, which functions through two T box genes, acts genetically upstream of a miRNA-controlled bistable feedback loop that regulates the L/R asymmetric gene-expression program in the postmitotic ASE cells. CONCLUSIONS: Our results link adult neuronal laterality to the generation of the A/P axis at the two-cell stage and raise the possibility that neural asymmetries observed across the animal kingdom are similarly established by very early embryonic interactions.  相似文献   

5.
The relationship between structural and functional asymmetries in the brain remains unclear. A recent report describes a zebrafish mutant that provides us with some enticing clues about this relationship.  相似文献   

6.
7.
Vitamin A-deficient (VAD) quail embryos have severe abnormalities, including a high incidence of reversed cardiac situs. Using this model we examined in vivo the physiological function of vitamin A in the left/right (L/R) cardiac asymmetry pathway. Molecular analysis reveals the expression of early asymmetry genes activin receptor IIa, sonic hedgehog, Caronte, Lefty-1, and Fgf8 to be unaffected by the lack of retinoids, while expression of the downstream genes nodal-related, snail-related (cSnR), and Pitx2 is altered. In VAD embryos nodal expression in left lateral plate mesoderm (LPM) is severely downregulated and the expression domain altered during neurulation. Similarly, the expression of cSnR in the right LPM and of Pitx2 in the left side posterior heart-forming region (HFR) is downregulated in the VAD embryos. The lack of retinoids does not cause randomization or ectopic expression of nodal, cSnR, or Pitx2. At the six- to eight-somite stage nodal is expressed transiently in the left posterior HFR of normal quail embryos; this expression is missing in VAD embryos and may be linked to the loss of Pitx2 expression in this region of VAD quail embryos. Administration of retinoids to VAD embryos prior to the six-somite stage rescues the expression of nodal, cSnR, and Pitx2 as well as the randomized VAD cardiac phenotype. There is an absolute requirement for retinoids at the four- to five-somite developmental window for cardiogenesis and cardiac L/R specification to proceed normally. We conclude that retinoids do not regulate the left/right-specific sidedness assignments for expression of genes on the vertebrate cardiac asymmetry pathway, but are required during neurulation for the maintenance of adequate levels of their expression and for the development of the posterior heart tube and a loopable heart. Cardiac asymmetry may be but one of several critical events regulated by retinoid signaling in the retinoid-sensitive developmental window.  相似文献   

8.
While left-right (LR) asymmetric morphogenesis is common to various animal species, there have been no systematic studies of the LR asymmetry of body structures of Drosophila melanogaster. In the present paper the LR asymmetric development of the Drosophila gut is described, in which three major parts, the foregut, midgut and hindgut, show almost invariant LR asymmetry. The asymmetry is generated by a twist of each part in particular orientations, resulting in a left-handed (sinistral) convolution as a whole. The frequency of spontaneous reversal of LR orientations is very low (< 0.6%) and reversal of each part of the gut occurs independently. The bicoid mutation causes duplication of the posterior half of the gut, essentially keeping the left-handed twist, suggesting that the LR asymmetry may depend on some intrinsic nature of the cells or tissues rather than a graded distribution of morphogens in the egg. The handedness of particular gut parts was randomized or became symmetric in mutants of brachyenteron, huckebein and patched, suggesting that different gene pathways can interfere in determining LR asymmetry of the gut. It is noteworthy that all of these genes are expressed LR symmetrically.  相似文献   

9.
10.
11.
12.
A recent meeting at the Juan March Foundation in Madrid, Spain, covered current understanding of the pathways and mechanisms involved in generating left-right asymmetry.  相似文献   

13.
In the human brain, distinct functions tend to be localized in the left or right hemispheres, with language ability usually localized predominantly in the left and spatial recognition in the right. Furthermore, humans are perhaps the only mammals who have preferential handedness, with more than 90% of the population more skillful at using the right hand, which is controlled by the left hemisphere. How is a distinct function consistently localized in one side of the human brain? Because of the convergence of molecular and neurological analysis, we are beginning to consider the puzzle of brain asymmetry and handedness at a molecular level.  相似文献   

14.
15.
Family selection for directional asymmetry in the expression of the Drosophila melanogaster mutant scute had no result. Fluctuating asymmetry did not show a selection differential correlated with directional asymmetry. The unfolding of bilateral symmetry in embryogenesis can be used to explain the lack of genetic variation for directional asymmetry. Directional asymmetry provides a well-understood example of a developmental constraint in evolution. It is proposed that as no evidence is available for an independent left-right gradient in the embryo, quantitative traits can only be expressed variably along an existing gradient of positional information or a morphogen.  相似文献   

16.
During vertebrate cardiac development, the heart tube formed by fusion of right and left presumptive cardiac mesoderms (PCMs) undergoes looping toward the right, resulting in an asymmetrical heart. Here, we examined the right and left PCMs with regard to heart-tube looping using right- and left-half newt embryos (Cynops pyrrhogaster ). In the half embryos, the rightward (normal) loop of the heart tube was formed from the left PCM, irrespective of the timing of its separation, while the leftward (reversed) loop of the heart tube was formed from the right PCM, separated by stage 18. In addition, the direction of the leftward loop was inverted to the rightward direction in right-half embryos bisected after stage 18. Incision or resection of the embryonic caudal region implicated interactions between the right and left sides of this region as crucial for inverting the direction of the heart-tube loop from leftward to rightward in the right-half embryos. In situ hybridization of CyNodal (Cynops nodal-related gene) suggested that the inversion of heart looping in the right-half embryos has no association with the CyNodal expression pattern. Based on these findings, we propose a mechanism for the rightward looping underlying normal amphibian cardiac development.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号