首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Li B  Ryder J  Su Y  Zhou Y  Liu F  Ni B 《FEBS letters》2003,553(3):347-350
Recently, LiCl has been shown to inhibit amyloid beta peptide secretion in association with diminished glycogen synthase kinase beta (GSK3beta) activity. However, it remains unclear if direct inhibition of GSK3beta activity will result in decreased Abeta production. Frequently rearranged in advanced T-cell lymphomas 1 (FRAT1) protein is a negative regulator of GSK3alpha/beta kinase activity. To examine whether direct inhibition of GSK3alpha/beta kinase activity can lower Abeta production, a FRAT1 peptide was expressed in swAPP(751) cells that produce high levels of Abeta. Our data demonstrate that cellular expression of FRAT1 peptide in swAPP(751) cells increases both GSK3alpha and beta phosphorylation on Ser21 and Ser9, respectively, while inhibiting kinase activity of both isoforms. Moreover, as a result of FRAT1 expression, the production of both total Abeta and Abeta(1-42) was significantly decreased. Thus, we provide evidence that direct regulation of GSK3alpha/beta by FRAT1 peptide significantly decreases Abeta production in swAPP(751) cells.  相似文献   

2.
Alzheimer's disease is characterized by beta-amyloid (Abeta) overproduction and tau hyperphosphorylation. Recent studies have shown that synthetic Abeta promotes tau phosphorylation in vitro. However, whether endogenously overproduced Abeta promotes tau phosphorylation and the underlying mechanisms remain unknown. Here, we used mouse neuroblastoma N2a stably expressing wild-type amyloid precursor protein (APPwt) or the Swedish mutant APP (APPswe) to determine the alterations of phosphorylated tau and the related protein kinases. We found that phosphorylation of tau at paired helical filament (PHF)-1, pSer396 and pThr231 epitopes was significantly increased in cells transfected with APPwt and APPswe, which produced higher levels of Abeta than cells transfected with vector or amyloid precursor-like protein 1. The activity of glycogen synthase kinase-3 (GSK-3) was up-regulated with a concomitant reduction in the inhibitory phosphorylation of GSK-3 at its N-terminal Ser9 residue. In contrast, the activity of cyclin-dependent kinase-5 (CDK-5) and protein kinase C (PKC) was down-regulated. Inhibition of GSK-3 by LiCl, but not inhibition of CDK-5 by roscovitine, arrested Abeta secretion and tau phosphorylation. Inhibition of PKC by GF-109203X activated GSK-3, whereas activation of PKC by phorbol-12,13-dibutyrate inhibited GSK-3. These results suggest that endogenously overproduced Abeta induces increased tau phosphorylation through activation of GSK-3, and that inactivation of PKC is at least one of the mechanisms involved in GSK-3 activation.  相似文献   

3.
BACKGROUND: Mutations in the presenilin (PSEN) genes are responsible for the majority of early-onset Alzheimer disease (AD) cases. PSEN1 is a component of a high molecular weight, endoplasmic reticulum, membrane-bound protein complex, including beta-catenin. Pathogenic PSEN1 mutations were demonstrated to have an effect on beta-catenin and glycogen synthase kinase-3beta(GSK-3beta), two members of the wingless Wnt pathway. The nuclear translocation and the stability of beta-catenin, and the interaction between GSK3beta and PSEN1 were influenced. MATERIALS AND METHODS: Stably transfected human embryonic kidney (HEK) 293 cells overexpressing wild-type (wt) and mutant (mt) PSEN1, treated with and without LiCl, were used to isolate cytoplasmic and nuclear fractions. By Western blot analysis, endogenous beta-catenin levels were examined. By analyzing cytosolic fractions of PSEN1, transfected and nontransfected HEK 293 cells, and total brain extracts of AD patients and controls, we evaluated the effect of PSEN1 overexpression on beta-catenin stability. Finally, we analyzed the effect of pathogenic PSEN1 mutations on the interaction between PSEN1 and GSK3beta by co-immunoprecipitation experiments. RESULTS: We report reduced nuclear translocation of beta-catenin in cells stably expressing I143T, G384A, and T113-114ins PSEN1. The G384A PSEN1 mutation showed a similar pronounced effect on nuclear translocation of beta-catenin, as reported for processing of amyloid precursor protein (APP) into amyloid beta(Abeta). Overexpression of PSEN1 and the presence of pathogenic mutations in PSEN1 had no significant effect on the stability of beta-catenin. Nonspecific binding of overexpressed PSEN1 to endogenous GSK3beta was observed when GSK3beta was immunoprecipitated. Immunoprecipitation of PSEN1 in cells overexpressing PSEN1 and in native cells, however, did not result in co-immunoprecipitation of endogenous GSK3beta. CONCLUSION: Our results further establish the nuclear translocation assay of beta-catenin as an adequate alternative for traditional Abeta measurement to evaluate the effect of PSEN1 mutations on biochemical processes. We detected no significant effect of overexpressed wt or mt PSEN1 on the stability of beta-catenin. Finally, co-immunoprecipitation between PSEN1 and GSK3beta was not observed in our experimental setup.  相似文献   

4.
Amyloid precursor protein (APP) mis-processing and aberrant tau hyperphosphorylation are causally related to the pathogenesis and neurodegenerative processes that characterize Alzheimer's disease (AD). Abnormal APP metabolism leads to the generation of neurotoxic amyloid beta (Abeta), whereas tau hyperphosphorylation culminates in cytoskeletal disturbances, neuronal dysfunction and death. Many AD patients hypersecrete glucocorticoids (GC) while neuronal structure, function and survival are adversely influenced by elevated GC levels. We report here that a rat neuronal cell line (PC12) engineered to express the human ortholog of the tau protein (PC12-htau) becomes more vulnerable to the toxic effects of either Abeta or GC treatment. Importantly, APP metabolism in GC-treated PC12-htau cells is selectively shifted towards increased production of the pro-amyloidogenic peptide C99. Further, GC treatment results in hyperphosphorylation of human tau at AD-relevant sites, through the cyclin-dependent kinase 5 (E.C. 2.7.11.26) and GSK3 (E.C. 2.7.11.22) protein kinases. Pulse-chase experiments revealed that GC treatment increased the stability of tau protein rather than its de novo synthesis. GC treatment also induced accumulation of transiently expressed EGFP-tau in the neuronal perikarya. Together with previous evidence showing that Abeta can activate cyclin-dependent kinase 5 and GSK3, these results uncover a potential mechanism through which GC may contribute to AD neuropathology.  相似文献   

5.
Intraneuronal accumulation of hyperphosphorylated protein tau in paired helical filaments together with amyloid-beta peptide (Abeta) deposits confirm the clinical diagnosis of Alzheimer disease. A common cellular mechanism leading to the production of these potent toxins remains elusive. Here we show that, in cultured neurons, membrane depolarization induced a calcium-mediated transient phosphorylation of both microtubule-associated protein tau and amyloid precursor protein (APP), followed by a dephosphorylation of these proteins. Phosphorylation was mediated by glycogen synthase kinase 3 and cyclin-dependent kinase 5 protein kinases, while calcineurin was responsible for dephosphorylation. Following the transient phosphorylation of APP, intraneuronal Abeta accumulated and induced neurotoxicity. Phosphorylation of APP on Thr-668 was indispensable for intraneuronal accumulation of Abeta. Our data demonstrate that an increase in cytosolic calcium concentration induces modifications of neuronal metabolism of APP and tau, similar to those found in Alzheimer disease.  相似文献   

6.
Estrogen-induced cell signalling in a cellular model of Alzheimer's disease   总被引:6,自引:0,他引:6  
Alzheimer's disease (AD) is characterised by deposition of a 4 kDa amyloid-beta peptide (Abeta) into senile plaques of the affected brain. Abeta is a proteolytic product of the membrane protein, amyloid precursor protein (APP). An alternative cleavage pathway involves alpha-secretase activity and results in secretion of a 100 kDa non-amyloidogenic APP (sAPPalpha) and therefore a potential reduction in Abeta secretion. We have shown that estrogen induces alpha-cleavage and therefore results in the secretion of sAPPalpha. This secretion is signalled via MAP-kinase and PI-3 kinase signal-transduction pathways. These pathways also have the potential to inhibit the activation of glycogen synthase kinase 3beta (GSK), a protein involved in cell death. Therefore, the aim of this work was to further elucidate the estrogen-mediated signaling pathways involved in APP processing, with particular emphasis on GSK activity. By stimulating rat hypothalamic neuronal GT1-7 cells with estradiol, we found that estrogen decreases the activation state of GSK via the MAP kinase pathway. Moreover, the inhibition of GSK activity by LiCl causes enhanced sAPPalpha secretion in a pattern similar to that seen in response to estrogen, suggesting a pivotal role for this deactivation in APP processing. Further, inactivation of GSK by estrogen can be confirmed in an in vivo model. Elucidation of the signaling pathways involved in APP processing may help to understand the pathology of AD and may also prove beneficial in developing therapeutic strategies to combat AD.  相似文献   

7.
Generation and deposition of the amyloid beta (Abeta) peptide following proteolytic processing of the amyloid precursor protein (APP) by BACE-1 and gamma-secretase is central to the aetiology of Alzheimer's disease. Consequently, inhibition of BACE-1, a rate-limiting enzyme in the production of Abeta, is an attractive therapeutic approach for the treatment of Alzheimer's disease. We have designed a selective non-peptidic BACE-1 inhibitor, GSK188909, that potently inhibits beta-cleavage of APP and reduces levels of secreted and intracellular Abeta in SHSY5Y cells expressing APP. In addition, we demonstrate that this compound can effectively lower brain Abeta in vivo. In APP transgenic mice, acute oral administration of GSK188909 in the presence of a p-glycoprotein inhibitor to markedly enhance the exposure of GSK188909 in the brain decreases beta-cleavage of APP and results in a significant reduction in the level of Abeta40 and Abeta42 in the brain. Encouragingly, subchronic dosing of GSK188909 in the absence of a p-glycoprotein inhibitor also lowers brain Abeta. This pivotal first report of central Abeta lowering, following oral administration of a BACE-1 inhibitor, supports the development of BACE-1 inhibitors for the treatment of Alzheimer's disease.  相似文献   

8.
Divergent roles of GSK3 and CDK5 in APP processing   总被引:8,自引:0,他引:8  
Glycogen synthase kinase-3 (GSK3) and cyclin-dependent kinase 5 (CDK5) are related serine/threonine kinases that have been well studied for their role in tau hyperphosphorylation, however, little is known about their significance in APP processing. Here we report that GSK3 and CDK5 are involved in APP processing in a divergent manner. Specific inhibition of cellular GSK3 by lithium or GSK3beta antisense elicits a reduction in Abeta. Conversely, negative modulation of cellular CDK5 activity by CDK5 inhibitor, roscovitine, or CDK5 antisense stimulates Abeta production. Neither GSK3 nor CDK5 inhibition by these means significantly affected cellular APP levels or APP maturation. Moreover, oral administration of lithium significantly reduces Abeta production whereas direct ICV administration of roscovitine augmented Abeta production in the brains of PDAPP (APP(V717F)) mice. Our data support a function for both GSK3 and CDK5 in APP processing, further implicating these two kinases in the pathogenesis of Alzheimer's disease.  相似文献   

9.
Su Y  Ryder J  Li B  Wu X  Fox N  Solenberg P  Brune K  Paul S  Zhou Y  Liu F  Ni B 《Biochemistry》2004,43(22):6899-6908
Lithium is one of the most widely used mood-stabilizing agents for the treatment of bipolar disorder. Although the underlying mechanism(s) of this mood stabilizer remains controversial, recent evidence linking lithium to neurotrophic/neuroprotective effects (Choi and Sung (2000) 1475, 225-230; Davies et al. (2000) 351, 95-105) suggests novel benefits of this drug in addition to mood stabilization. Here, we report that both lithium as well as valproic acid (VPA) inhibit beta-amyloid peptide (Abeta) production in HEK293 cells stably transfected with Swedish amyloid precursor protein (APP)(751) and in the brains of the PDAPP (APP(V717F)) Alzheimer's disease transgenic mouse model at clinically relevant plasma concentrations. Both lithium and VPA are known to be glycogen synthase kinase-3 (GSK3) inhibitors. Our studies reveal that GSK3beta is a potential downstream kinase, which modulates APP processing because inhibition of GSK3 activity by either a dominant negative GSK3beta kinase-deficient construct or GSK3beta antisense oligonucleotide mimics lithium and VPA effects. Moreover, lithium treatment abolished GSK3beta-mediated Abeta increase in the brains of GSK3beta transgenics and reduced plaque burden in the brains of the PDAPP (APP(V717F)) transgenic mice.  相似文献   

10.
11.
We report here that aggregated beta-amyloid (Abeta) 1-42 promotes tau aggregation in vitro in a dose-dependent manner. When Abeta-mediated aggregated tau was used as a substrate for tau protein kinase II (TPK II), an 8-fold increase in the rate of TPK II-mediated tau phosphorylation was observed. The extent of TPK II-dependent tau phosphorylation increased as a function of time and Abeta 1-42 concentration, and hyperphosphorylated tau was found to be decorated with an Alzheimer's disease-related phosphoepitope (P-Thr-231). In HEK 293 cells co-expressing CT-100 amyloid precursor protein and tau, the release of Abeta 1-42 from these cells was impaired. Taken together, these in vitro results suggest that Abeta 1-42 promotes both tau aggregation and hyperphosphorylation.  相似文献   

12.
The major molecular risk factor for Alzheimer disease so far identified is the amyloidogenic peptide Abeta(42). In addition, growing evidence suggests a role of cholesterol in Alzheimer disease pathology and Abeta generation. However, the cellular mechanism of lipid-dependent Abeta production remains unclear. Here we describe that the two enzymatic activities responsible for Abeta production, beta-secretase and gamma-secretase, are inhibited in parallel by cholesterol reduction. Importantly, our data indicate that cholesterol depletion within the cellular context inhibits both secretases additively and independently from each other. This is unexpected because the beta-secretase beta-site amyloid precursor protein cleaving enzyme and the presenilin-containing gamma-secretase complex are structurally different from each other, and these enzymes are apparently located in different subcellular compartments. The parallel and additive inhibition has obvious consequences for therapeutic research and may indicate an intrinsic cross-talk between Alzheimer disease-related amyloid precursor protein processing, amyloid precursor protein function, and lipid biology.  相似文献   

13.
14.
Muscle fiber degeneration in sporadic inclusion‐body myositis (s‐IBM) is characterized by accumulation of multiprotein aggregates, including aggregated amyloid‐β (Aβ)‐precursor protein 751 (AβPP751), Aβ, phosphorylated tau, and other ‘Alzheimer‐characteristic’ proteins. Proteasome inhibition is an important component of the s‐IBM pathogenesis. In brains of Alzheimer’s disease (AD) patients and AD transgenic‐mouse models, phosphorylation of neuronal AβPP695 (p‐AβPP) on Thr668 (equivalent to T724 of AβPP751) is considered detrimental because it increases generation of cytotoxic Aβ and induces tau phosphorylation. Activated glycogen synthase kinase3β (GSK3β) is involved in phosphorylation of both AβPP and tau. Lithium, an inhibitor of GSK3β, was reported to reduce levels of both the total AβPP and p‐AβPP in AD animal models. In relation to s‐IBM, we now show for the first time that (1) In AβPP‐overexpressing cultured human muscle fibers (human muscle culture IBM model: (a) proteasome inhibition significantly increases GSK3β activity and AβPP phosphorylation, (b) treatment with lithium decreases (i) phosphorylated‐AβPP, (ii) total amount of AβPP, (iii) Aβ oligomers, and (iv) GSK3β activity; and (c) lithium improves proteasome function. (2) In biopsied s‐IBM muscle fibers, GSK3β is significantly activated and AβPP is phosphorylated on Thr724. Accordingly, treatment with lithium, or other GSK3β inhibitors, might benefit s‐IBM patients.  相似文献   

15.
Accumulation of cerebral amyloid beta-protein (Abeta) is believed to be part of the pathogenic process in Alzheimer's disease. Abeta is derived by proteolytic cleavage from a precursor protein, the amyloid precursor protein (APP). APP is a type-1 membrane-spanning protein, and its carboxyl-terminal intracellular domain binds to X11beta, a neuronal adaptor protein. X11beta has been shown to inhibit the production of Abeta in transfected non-neuronal cells in culture. However, whether this is also the case in vivo in the brain and whether X11beta can also inhibit the deposition of Abeta as amyloid plaques is not known. Here we show that transgenic overexpression of X11beta in neurons leads to a decrease in cerebral Abeta levels in transgenic APPswe Tg2576 mice that are a model of the amyloid pathology of Alzheimer's disease. Moreover, overexpression of X11beta retards amyloid plaque formation in these APPswe mice. Our findings suggest that modulation of X11beta function may represent a novel therapeutic approach for preventing the amyloid pathology of Alzheimer's disease.  相似文献   

16.
Lau LF  Ahlijanian MK 《Neuro-Signals》2003,12(4-5):209-214
Alzheimer's disease (AD) is characterized by two pathological hallmarks, namely, senile plaques and neurofibrillary tangles (NFTs). The former are mainly composed of amyloid-beta peptides (Abeta) while the latter consists mainly of filaments of hyperphosphorylated tau. Cyclin-dependent kinase 5 (cdk5) has been implicated not only in the tangle pathology, but recent data also implicate cdk5 in the generation of Abeta peptides. Since both Abeta peptides and NFTs are believed to play a role in neurodegeneration in AD, this proline-directed serine/threonine protein kinase is likely to contribute to the pathogenesis of AD. In vitro and in vivo animal data demonstrate the ability of cdk5 to induce phosphorylation and aggregation of tau, and NFT deposition and neurodegeneration. Findings from AD brain samples also show an elevated cdk5 activity and conditions that support the activation of cdk5. Evidence for the role of cdk5 in regulating Abeta production is just emerging. The mechanisms for this potentially damaging activity of cdk5 are largely unknown although amyloid precursor protein and presenilin-1 are both cdk5 substrates.  相似文献   

17.
The carboxy-terminal ends of the 40- and 42-amino acids amyloid beta-protein (Abeta) may be generated by the action of at least two different proteases termed gamma(40)- and gamma(42)-secretase, respectively. To examine the cleavage specificity of the two proteases, we treated amyloid precursor protein (APP)-transfected cell cultures with several dipeptidyl aldehydes including N-benzyloxycarbonyl-Leu-leucinal (Z-LL-CHO) and the newly synthesized N-benzyloxycarbonyl-Val-leucinal (Z-VL-CHO). All dipeptidyl aldehydes tested inhibited production of both Abeta1-40 and Abeta1-42. Changes in the P1 and P2 residues of these aldehydes, however, indicated that the amino acids occupying these positions are important for the efficient inhibition of gamma-secretases. Peptidyl aldehydes inhibit both cysteine and serine proteases, suggesting that the two gamma-secretases belong to one of these mechanistic classes. To differentiate between the two classes of proteases, we treated our cultures with the specific cysteine protease inhibitor E-64d. This agent inhibited production of secreted Abeta1-40, with a concomitant accumulation of its cellular precursor indicating that gamma(40)-secretase is a cysteine protease. In contrast, this treatment increased production of secreted Abeta1-42. No inhibition of Abeta production was observed with the potent calpain inhibitor I (acetyl-Leu-Leu-norleucinal), suggesting that calpain is not involved. Together, these results indicate that gamma(40)-secretase is a cysteine protease distinct from calpain, whereas gamma(42)-secretase may be a serine protease. In addition, the two secretases may compete for the same substrate. Dipeptidyl aldehyde treatment of cultures transfected with APP carrying the Swedish mutation resulted in the accumulation of the beta-secretase C-terminal APP fragment and a decrease of the alpha-secretase C-terminal APP fragment, indicating that this mutation shifts APP cleavage from the alpha-secretase site to the beta-secretase site.  相似文献   

18.
Prior work has shown that iron interacts with hyperphosphorylated tau, which contributes to the formation of neurofibrillary tangles (NFTs) in Alzheimer’s disease (AD), whereas iron chelator desferrioxamine (DFO) slows down the clinical progression of the cognitive decline associated with this disease. However, the effects of DFO on tau phosphorylation in the presence or absence of iron have yet to be determined. Using amyloid precursor protein (APP) and presenilin 1 (PS1) double transgenic mouse brain as a model system, we investigated the effects and potential mechanisms of intranasal administration of DFO on iron induced abnormal tau phosphorylation. High-dose iron treatment markedly increased the levels of tau phosphorylation at the sites of Thr205, Thr231 and Ser396, whereas highly induced tau phosphorylation was abolished by intranasal administration of DFO in APP/PS1 transgenic mice. Moreover, DFO intranasal administration also decreases Fe-induced the activities of cyclin-dependent kinase 5 (CDK5) and glycogen synthase kinase 3β (GSK3β), which in turn suppressing tau phosphorylation. Cumulatively, our data show that intranasal DFO treatment exerts its suppressive effects on iron induced tau phosphorylation via CDK5 and GSK3β pathways. More importantly, elucidation of DFO mechanism in suppressing tau phosphorylation may provide insights for developing therapeutic strategies to combat AD.  相似文献   

19.
The principal component of Alzheimer's amyloid plaques, Abeta, derives from proteolytic processing of the Alzheimer's amyloid protein precursor (APP). FE65 is a brain-enriched protein that binds to APP. Although several laboratories have characterized the APP-FE65 interaction in vitro, the possible relevance of this interaction to Alzheimer's disease has remained unclear. We demonstrate here that APP and FE65 co-localize in the endoplasmic reticulum/Golgi and possibly in endosomes. Moreover, FE65 increases translocation of APP to the cell surface, as well as both alphaAPPs and Abeta secretion. The dramatic (4-fold) FE65-dependent increase in Abeta secretion suggests that agents which inhibit the interaction of FE65 with APP might reduce Abeta secretion in the brain and therefore be useful for preventing or slowing amyloid plaque formation.  相似文献   

20.
Insoluble deposits of tau and amyloid precursor protein (APP) peptides Abeta characterize Alzheimer's disease. We studied the role of tau in the metabolism of APP in cells stably expressing APP Swedish mutation (CHOsw). Transient expression of tau in CHOsw cells caused morphological changes, bundling of microtubules and perinuclear aggregation of Golgi-derived vesicles. It also reduced the secretion of Abeta(1-40) and Abeta(1-42) without altering the APP steady state levels. This was accompanied by a reduction in the gamma-secretase and an increase in the insulin degrading enzyme activities. Our results suggest that tau may play an inhibitory role in the amyloidogenic activity of APP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号