首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
An investigation of the diurnal variation in contributions toproduction of the autotrophic and heterotrophic components ofthe picoplankton community was carried out during August andSeptember in Llyn Padarn, a mesotrophic upland lake in NorthWales. The picoplankton was separated using 1 µm pore-sizedfilters into the smaller cell sized fraction (<1 µm),the majority of the bacteria and the larger cell sized picoalgae(<3>1 µm), together with some bacteria. The distributionof bacterial heterotrophic activity between these two fractionsof picoplankton was assessed by uptake of [14C]glucose and differentialfiltration. Thus, the absolute autotrophic production by picoalgaeand the heterotrophic contribution by bacteria to picoplanktoncommunity production via uptake of extracellular organic carbon(EOC) were determined. Rates of picoplankton community productionexhibited diurnal variation with maximum rates of 19.1 mg Cm–3 h–1 recorded at 18.00 h at 4 m depth in September.The bacterial contribution to picoplankton community productionincreased markedly between 15.00 and 18.00 h. Rates of absoluteautotrophic production varied less over 24 h than rates of accumulationin bacteria of 14C-labelled EOC released from the entire phytoplanktoncommunity. Bacteria contributed up to 86–98% of the neworganic carbon within the picoplankton community at the endof the day. The maximum rate of absolute autotrophic productionin the picoplankton was 1.6 mg C m–3 h–1 at 18.00h at 1 m in August, and the maximum rate of bacterial accumulationof new organic carbon was 18.5 mg C m–3 h–1 at 18.00h in September at 4 m depth. The diurnal pattern of picoplanktoncommunity production involved increasing rates during the daywith a maximum at 18.00 h. Autotrophic processes were dominantin the first 3–6 h of the light cycle and heterotrophicuptake of 14C-labelled EOC was the major component from 15.00h onwards. Bacterial uptake of newly released EOC by phytoplanktonwas rapid, comprised the majority of picoplankton production,particularly later in the day, and contributed a maximum of60% of the total pariculate primary production in plankton between15.00 and 18.00 h at 4 m in September with a mean contributionof between 6 and 26% over 24 h in these investigations. Theimportance of autotrophic processes in picoplankton communityproduction has been overestimated in previous investigations.Bacteria play a major role in transferring newly produced EOCrapidly from phytoplankton to the picoplankton community. Atthe end of the day, the majority of newly produced organic carbonis in bacterial cells and this production is significant inthe dynamics of carbon production within the entire planktoniccommunity.  相似文献   

2.
The flux of carbon and nutrients through aquatic systems is largely dependent upon interactions between autotrophic and heterotrophic processes. As a means of assessing the relative importance of autotrophy and heterotrophy in large rivers, we compared phytoplankton production, heterotrophic bacterial production and community respiration in three regulated rivers of the Midwestern USA. Samples were collected monthly (March to December 1999) from impoundments of the Ohio (McAlpine Pool), Cumberland (Lake Barkley), and Tennessee (Kentucky Lake) Rivers. Bacterial production was tightly coupled to phytoplankton production at each site (r 2 = 0.63–0.85). Ratios of phytoplankton production to bacterial production ranged from <1 to 15 in the Tennessee and Cumberland Rivers and 2 to 90 in the Ohio River. The ratio of primary production to community respiration (P:R) ranged from 0.03 to 2.76 across all sites, with average P:R values lower in the Ohio River (0.14) than the Tennessee River (0.39) and the Cumberland River (1.10). P:R values above unity (P > R) were observed only in the Tennessee and Cumberland Rivers during seasonal (April–July) spikes in primary production. We estimate that 3, 6, and 20% of annual bacterial carbon requirements were met by exudates from in situ phytoplankton in the Ohio River, Tennessee River, and Cumberland River, respectively. Our findings indicate that heterotrophic bacteria were largely dependant upon allochthonous carbon. Autochthonous sources provided supplemental organic matter (up to 40% of bacterial carbon demand) during summer low flow. Handling editor: J. Padisak  相似文献   

3.
Autumn picoplankton (Synechococcus, picoeukaryotes and heterotrophic bacteria) and environmental factors have been investigated in a series of reservoirs along the Wujiang River in Guizhou Province, SW China. The average abundances of Synechococcus, picoeukaryotes and heterotrophic bacteria was 104, 102 and 106 cells ml−1, respectively. In autumn meso-eutrophic reservoirs, thermal stratification was clear and abundances of different picoplankton groups in release water was low; whereas these phenomena were not obvious in autumn hypereutrophic reservoir. Picoplankton numbers decreased with increasing water depth and showed a positive correlation with water temperature, which reflected the importance of light and temperature on the picoplankton growth. Contribution of Synechococcus to total phytoplankton production and contribution of picoeukaryotes to total phytoplankton production asynchronous changed with varying trophic states. Synechococcus preferred meso-eutrophic reservoirs over hypereutrophic reservoir and picoeukaryotes showed no preference for the investigated reservoirs in autumn. Handling editor: L. Naselli-Flores  相似文献   

4.
1. Five oligotrophic clear‐water lakes on the Faroe Islands were studied during August 2000. Algal and bacterial production rates, community respiration, and CO2 saturation were determined. In addition, we examined the plankton community composition (phytoplankton and heterotrophic nanoflagellates) and measured the grazing pressure exerted by common mixotrophic species on bacteria. 2. High respiration to primary production (6.6–33.2) and supersaturation of CO2 (830–2140 μatm) implied that the lakes were net heterotrophic and that the pelagic heterotrophic plankton were subsidised by allochthonous organic carbon. However, in spite of the apparent high level of net heterotrophy, primary production exceeded bacterial production and the food base for higher trophic levels appeared to be mainly autotrophic. 3. We suggest that the observed net heterotrophy in these lakes was a result of the oligotrophic conditions and hence low primary production in combination with an input of allochthonous C with a relatively high availability. 4. Mixotrophic phytoplankton (Cryptomonas spp., Dinobryon spp. and flagellates cf. Ochromonas spp.) constituted a large percentage of the plankton community (17–83%), possibly as a result of their capacity to exploit bacteria as a means of acquiring nutrients in these nutrient poor systems.  相似文献   

5.
 Phytoplankton biomass, community structure and productivity of the Great Astrolabe lagoon and surrounding ocean were studied using measurements of chlorophyll concentration and carbon uptake. The contribution of picophytoplankton to biomass, productivity and community structure was estimated by size fractionation, 14C-incubation and flow cytometry analysis. Picoplankton red fluorescence was demonstrated to be a proxy for chlorophyll <3 μm. Consequently, the percentage contribution to chl a<3 μm from each picoplankton group could be calculated using regression estimated values of ψ i (fg chl a per unit of red fluorescence). In the lagoon, average chlorophyll concentration was 0.8 mg m-3 with 45% of phytoplankton <3 μm. Primary production reached 1.3 g C m-2 day-1 with 53% due to phytoplankton <3 μm. Synechococcus was the most abundant group at all stations, followed by Prochlorococcus and picoeukaryotes. At all stations, Prochlorococcus represented less than 4% of the chl a <3 μm, Synechococcus between 85 and 95%, and Picoeukaryotes between 5 and 10%. In the upper 40 m of surrounding oceanic waters, phytoplankton biomass was dominated by the >3 μm size fraction. In deeper water, the <1 μm size fraction dominated. Prochlorococcus was the most abundant picoplankton group and their contributions to the chlorophyll a<3 μm were close to that of the picoeukaryotes (50% each). Accepted: 27 May 1999  相似文献   

6.
The contribution of autotrophic picoplankton (APP) to phytoplanktonicprimary production, investigated during the phytoplankton growingseason (March–September) in a macrophyte-dominated backwatersystem near Vienna, showed that APP mainly consisted of rod-shapedand coccoid cyanobacteria. Two stations were examined, exhibitingsimilar seasonal patterns in the development of picocyanobacteria,although the two sites differed in picocyanobacterial cell numbersand biomass by a factor of 1.5. Cell numbers determined by epifluorescencemicroscopy varied between 0.29 x 104 and 34.5 x 104 cells ml–1at Station 1, and between 0.23 x 104 and 19.1 x 104 cells ml–1at Station 2. At both sites, the mean cell volume of picocyanobacteriawas 0.5 µm3. Carbon fixation in the planktonic communityof the Kühwörter Wasser was dominated primarily bylarger phytoplankton, although the picoplankton community sometimessupplied up to 74% (mean: 35%) of total primary production.Distinct differences in chlorophyll a concentrations and primaryproduction between the two sites refer to a greater competitionbetween phytoplankton and macrophytes at Station 2. Communityrespiration deviated greatly in time and in level at the twostations, showing a higher dynamic in community metabolism atStation 1. At this site, community respiration losses rangedbetween 12 and 100% of gross production. Hence, community metabolismcomprised net autotrophic, balanced, and net heterotrophic situationsover the investigation period, whereas at Station 2, only netautotrophic situations could be determined.  相似文献   

7.
The abundance and relative importance of autotrophic picoplankton were investigated in two lakes of different trophic status. In the eutrophic lake, measurements of primary production were performed on water samples in situ and in a light incubator three times during the day whereas for the oligotrophic lake, only one measurement of primary production was performed on water samples in the incubator. Dark-carbon losses of phytoplankton from Lake Loosdrecht were investigated in time series. Cell numbers of autotrophic picoplankton in eutrophic Lake Loosdrecht (3.2 × 104 cells ml–1) were lower than in meso-oligotrophic Lake Maarsseveen (9.8 and 11.4 × 104 cells ml–1 at the surface and bottom respectively). In the phytoplankton of both lakes the ratio of picoplankton production increased with decreasing light intensity. In Lake Loosdrecht depth-integrated contribution of picoplankton to total photosynthesis was less than 4%. The P-I-relationship showed diurnal variations in light saturated photosynthesis, while light limited carbon uptake remained constant during the day. Dark carbon losses from short-term labelled phytoplankton during the first 12 hours of the night period accounted for 10–25% of material fixed during the preceeding light period.  相似文献   

8.
Phytoplankton production and accumulation of extracellular organic carbon (EOC) was tracked during diel intervals in microcosms by inhibiting bacterioplankton assimilation of EOC with streptomycin and kanamycin. Bacterioplankton production (3H-thymidine incorporation) and metabolism (14C-glucose incorporation) were monitored in samples collected from the Potomac River estuary to determine the effect of the antibiotics. Particulate (i.e., raw water) primary production and EOC (i.e., water passing through 1.0 μm glass fiber filter) production rates were monitored to determine the impact of antibiotics on phytoplankton. In preliminary experiments, neither streptomycin nor kanamycin alone significantly inhibited bacterioplankton activity compared to controls, but when both were present secondary production and metabolism were reduced up to 90%, and remained as such for 45 h. During field evaluations using a streptomycin and kanamycin mixture (50 μM each) particulate primary production and EOC production were not statistically different in control and antibiotic treated samples indicating that the antibiotics did not negatively influence phytoplankton production rates. In the presence of antibiotics dissolved free amino acids (DFAA) and, to a lesser extent, monosaccharides were significantly elevated compared to controls. This study demonstrates that streptomycin and kanamycin are capable of inhibiting bacterioplankton metabolism and uptake of dissolved organic carbon (DOC) in the samples tested so that the contribution of EOC to the DOC pool and to bacterioplankton metabolism could be measured and assessed.  相似文献   

9.
An investigation of the diurnal variation in productivity andcontribution to production of populations of autotrophic picoplankton(0.2–2.0 µm), nanoplankton (>2 <20 µm)and microplankton (>20 µm) was carried out at monthlyintervals, from May to October 1989, in Llyn Padarn a mesotrophicupland lake in North Wales. Maximum rates and contributionsto production of the lake by autotrophic picoplankton occurredduring mid-late summer, with the highest average daily contributionfrom picoplankton (64%) recorded in September at 4 m depth.Diurnal variation in contributions from picoplankton was pronounced,with greatest input, recorded at the end of the day, duringthe period of picoplankton dominance in mid-late summer. Maximumcontribution from picoplantkon (86% of total, 9.2 mg C m–3h–1) was recorded in September. Nanoplankton primary productionwas of greatest significance in June and July, although levelswere lower than for picoplankton in subsequent months. Contributionsvia nanoplankton increased with depth in the lake at this time,reaching a maximum of 78% of the total at the end of the dayat 9 m depth in early July. At this time, diurnal variationin contributions via nanoplankton was considerable, with maximumphotosynthesis generally at the end of the photoperiod at depthsof 4 and 9 m. Microplankton made the greatest impact on primaryproduction during the mixed water conditions of spring and autumn,and at these times did variation in production was less thanthose of both pico and nanoplankton during summer thermal stratification.Photosynthetic capacity was lower for picoplankton than fornanoplankton and microplankton; the highest values were 5, 33and 51 mg C (mg chl a)–1) h–1) for pico-, nano-and microplankton, respectively. The photosynthetic efficiencyof all three size categories of phytoplankton increased withdepth. Maximum values were similar for all phytoplankton groups,between 75 and 131 mg C (mg chl a)–1) E–1) m2 butmean levels of photosynthetic efficiency for the 6 months werelower for picoplankton than for nano- or microplankton. Ratesof carbon fixation per cell for picoplankton spanned three ordersof magnitude, varied considerably diurnally and reached maximumvalues of 484 fg C(cell)–1) h–1) in the afternoonin near-surface waters in the early stages of exponential populationgrowth in July. During the population maximum of picoplanktonin August and September, maximum daily values of carbon fixationper cell, assimilation number and photosynthetic efficiencywere all recorded at the end of the day. The seasonal and diurnalpatterns of production of the three size categories of planktonicalgae in Llyn Padarn were distinct. During spring, microplankton(mainly diatoms) were the dominant primary producers. As thermalstratification developed, nanoplankton were the major contributorsto phytoplanktonic production, particularly in the deeper regionsof the euphotic zone. Picoplankton made the greatest contributionto production in August and September, exhibiting maximum inputtowards the end of the light cycle. Diatoms became the majorphotosynthetic plankton in the mixed water conditions prevalentin Uyn Padarn in October.  相似文献   

10.
Autotrophic picoplankton were highly abundant during the thermalstratification period in late July in the pelagic area (waterdepth 500–1300 m) of southern Lake Baikal; maximum numberswere 2 x 106 cells ml–1 in the euphotic zone ({small tilde}15m). Unicellular cyanobacteria generally dominated the picoplanktoncommunity, although unidentified picoplankton that fluorescedred under blue excitation were also abundant (maximum numbers4 x 105 cells ml–1) and contributed up to {small tilde}40%of the total autotrophic picoplankton on occasions. Carbon andnitrogen biomasses of autotrophic picoplankton estimated byconversion from biovolumes were 14–84 µg C l–1and 3.6–21 µg N l–1. These were comparableto or exceeded the biomass of heterotrophic bacteria. Autotropicpicoplankton and bacteria accounted for as much as 33% of paniculateorganic carbon and 81% of nitrogen in the euphotic zone. Measurementsof the photosynthetic uptake of [l4C]bicarbonate and the growthof picoplankton in diluted or size-fractionated waters revealedthat 80% of total primary production was due to picoplankton,and that much of this production was consumed by grazers inthe <20 µ.m cell-size category. These results suggestthat picoplankton-protozoan trophic coupling is important inthe pelagic food web and biogeochemical cycling of Lake Baikalduring summer.  相似文献   

11.
12.
We investigated the effects of bottle enclosure on autotrophic and heterotrophic picoplankton in North and South subtropical Atlantic oligotrophic waters, where the biomass and metabolism of the microbial community are dominated by the picoplankton size class. We measured changes in both autotrophic (Prochlorococcus, Synechococcus, and picoeukaryotes) and heterotrophic picoplankton biomass during three time series experiments and in 16 endpoint experiments over 24 h in light and dark treatments. Our results showed a divergent effect of bottle incubation on the autotrophic and heterotrophic components of the picoplankton community. The biomass of picophytoplankton showed, on average, a >50% decrease, mostly affecting the picoeukaryotes and, to a lesser extent, Prochlorococcus. In contrast, the biomass of heterotrophic bacteria remained constant or increased during the incubations. We also sampled 10 stations during a Lagrangian study in the North Atlantic subtropical gyre, which enabled us to compare the observed changes in the auto- to heterotrophic picoplankton biomass ratio (AB:HB ratio) inside the incubation bottles with those taking place in situ. While the AB:HB ratio in situ remained fairly constant during the Lagrangian study, it decreased significantly during the 24 h of incubation experiments. Thus, the rapid biomass changes observed in the incubations are artifacts resulting from bottle confinement and do not take place in natural conditions. Our results suggest that short (<1 day) bottle incubations in oligotrophic waters may lead to biased estimates of the microbial metabolic balance by underestimating primary production and/or overestimating bacterial respiration.  相似文献   

13.
SUMMARY.
  • 1 Production of periphyton, nitrogen fixation and processing of leaf litter were examined in an oligotrophic Sierra Nevada stream and the responses of these processes to copper (2.5, 5 and 10μg 1-1 CuT [total filtrable copper]; approximately 12, 25 and 50 ng 1-1 Cu2+) were determined.
  • 2 Autotrophic and total production were estimated from 3-week accumulations of biomass on artificial substrates. Mean autotrophic production in the control ranged from 0.22 to 0.58 mg C m-2 h-1 in summer-autumn 1979, but declined to 0.08–0.28 mg C m 2 h-1 after peak discharge in summer 1980, apparently due to phosphorus-limited growth. Total production in the control ranged from 0.30 to 0.82 mg C m-2 h -1 in summer-autumn 1979 and from 0.16 to 0,68 mg C m -2 h -1 in 1980. Mean autotrophic productivity, estimated by l4C-bicarbonate uptake in daylight, ranged from 0.30 to 2.8 mg C m-2 h-1.
  • 3 Autotrophic productivity was reduced by 57–81% at 2.5μg 1-1 CuT, 55–96% at 5μg 1-1 CuT, and 81–100% at 10μg 1-1 CUT, Heterotrophic productivity (based on dark 35S-sulphate uptake) was inhibited to a lesser extent (28–63% at 2.5μg 1-1 CuT, 24–84% at 5μg 1-1 CuT, and 67–92% at 10μg 1-1 CuT), The inhibition of autotrophic and heterotrophic productivity persisted through the year of exposure. Production in stream sections previously exposed to 2.5 and 5μg 1-1CuT increased to control levels within 4 weeks after dosing, but remained depressed for more than 7 weeks after exposure to 10μg 1-1 CuT.
  • 4 The specific rate of photosynthesis (mg C mg chlorophyll a-1 h-1) of mature periphyton communities declined at all test concentrations of copper, but the rate for periphyton on newly-colonized surfaces did not change. The species composition of benthic algae shifted during exposure to an assemblage more tolerant of copper. Achrtanthes minutissima and Fragilaria crotonensis were the primary replacement species on newly-colonized surfaces.
  • 5 The nitrogenase activity of blue-green algae was low. with controls ranging from 2.4 to 12 nmol C2H2 m-2 h-1. Nitrogenase activity was inhibited during the initial weeks of exposure by 5 and 10μg 1-1 CuT. However, after 9 months of exposure, control and copper-treated sections did not differ.
  • 6 The rate of processing of leaf litter, estimated by microbial respiration and nutrient quality of litter of resident riparian woodland taxa, was inhibited at all test concentrations of copper.
  相似文献   

14.
The seasonal distribution of autotrophic picoplankton in Lake Constance was investigated over four consecutive years. Cell numbers varied seasonally and vertically over four orders of magnitude (102 to 106 cells ml−1). A horizontal variation by a factor of 3 in abundance and biomass across the different parts of the lake was found during summer stratification. Picoplankton peaks occurred during the phytoplankton spring bloom and in late summer. Low values were characteristic for the clear-water phase in early summer and for autumn-winter. This seasonal pattern differed from that of larger phytoplankton in Lake Constance and from the seasonal distribution of picoplankton known from other lakes and marine environments. Picoplankton was predominated by chroococcoid cyanobacteria of about 0.6 μ3 biovolume. The average cell size increased from winter until early summer. Using HPLC pigment analysis, we identified zeaxanthin and β-carotene as typical picoplankton pigments. Results of the pigment analyses suggest that algae others than picocyano-bacteria may be more prominent in the picoplankton size class than derived from routine epifluorescence counting.  相似文献   

15.
This paper addresses the dynamics of the prokaryotic picoplankton community in the coastal and open sea areas of the central Adriatic and in the coastal area of the southern Adriatic. This involved the study, from January to December 2005, of bacteria (total number of non-pigmented bacteria; high nucleic acid content (HNA) bacteria; low nucleic acid content (LNA) bacteria), cyanobacteria (Synechococcus and Prochlorococcus) and heterotrophic nanoflagellates. During the warmer seasons, in the mainly oligotrophic area under investigation into the Adriatic Sea, bacterial densities and bacterial production have shown an increase in values and domination of the LNA group of the bacterial population. In contrast, in those areas influenced by karstic rivers, the domination of HNA bacteria in total abundance of non-pigmented bacteria and high values of bacterial production was estimated throughout the investigated period. Our results show the importance of both HNA and LNA bacterial groups in the total bacterial activity throughout the investigated area. The biomass of bacteria was mostly predominant in the prokaryotic community, while within the autotrophic community Synechococcus biomass mostly predominated. During the warmer seasons, an increase in autotrophic biomass was observed in relation to non-pigmented biomass. The importance of predation in controlling bacteria by heterotrophic nanoflagellates was pronounced during the warmer period and in the coastal areas.  相似文献   

16.
Picoplankton BIOMASS in the Ross Sea (Antarctica)   总被引:1,自引:1,他引:0  
Summary Spatial distribution of picoplankton in the Ross Sea was studied. The authors discuss the biomasses of various picoplanktonic-sized fractions and of bacterial cells between 0.2 and 2.0 m capable of growing on Marine Agar 2216 (Difco). Picoplankton having a cellular diameter cf between 1.0 and 2.0 m (PP1) generally predominate, accounting for 73% of the whole picoplankton biomass. However, smaller cells (PP2) can represent 28% of the picoplankton biomass at depths corresponding to 1% of surface light. These results are in good agreement with those found in the coastal regions of McMurdo Sound (Fuhrman and Azam 1980) and in other areas of the Antarctic seas where total bacterioplankton was studied (Hanson et al. 1983b; El-Sayed 1987; Lancelot et al. 1989). Biomasses of total picoplankton (TPP) are not correlated with any of the environmental parameters studied. The PP1 is correlated with O2 and silicates and PP2 is correlated with O2, phosphates temperature and nitrates. Aerobic heterotrophic biomasses are correlated with O2 and salinity.  相似文献   

17.
In previous experiments, rates of picoplankton uptake into coral communities were controlled by sponge and ascidian biomass. Those experimental communities, however, had relatively few sponges and ascidians. In contrast, turbulent transport of particles into the momentum boundary layers can limit particle removal by layered, dense bivalve populations. In this study, the role of water velocity in controlling particulate nutrient-uptake by rubble communities was evaluated, in which the rubble was more completely covered by sponges and ascidians. Picoplankton uptake was proportional to concentration over a range of cell concentrations from 3.0 × 105 to 9.5 × 105 heterotrophic bacteria ml−1, 4.1 × 104 to 1.2 × 105 Synechococcus sp. ml−1 and 6.3 × 103 to 1.8 × 104 picoeukaryotes ml−1. The first-order uptake rate constants, normalized to sponge and ascidian biomass, were similar to previous experimental communities. Picoplankton uptake increased 1.6-fold over a 7-fold change in water velocity, 0.05–0.35 m s−1. This increase has been interpreted as a result of higher turbulent transport within the rough coral community (canopy), as indicated by a 1.6-fold increase in the bottom friction with increasing water velocity.  相似文献   

18.
The dynamics of phytoplankton biomass were studied in an Eastern Mediterranean semi-enclosed coastal system (Maliakos Gulf, Aegean Sea), over 1 year. In particular, chlorophyll a (chl a) was fractionated into four size classes: picoplankton (0.2–2 μm), nanoplankton (2–20 μm), microplankton (20–180 μm) and net phytoplankton (>180 μm). The spatial and temporal variation in dissolved inorganic nutrients and particulate organic carbon (POC) were also investigated. The water column was well mixed throughout the year, resulting in no differences between depths for all the measured parameters. Total chl a was highest in the inner part of the gulf and peaked in winter (2.65 μg l–1). During the phytoplankton bloom, microplankton and net phytoplankton together dominated the autotrophic biomass (67.2–95.0% of total chl a), while in the warmer months the contribution of pico- and nanoplankton was the most significant (77.5–93.4% of total chl a). The small fractions, although showing low chl a concentrations, were important contributors to the POC pool, especially in the outer gulf. No statistically significant correlations were found between any chl a size fraction and inorganic nutrients. For most of the year, phytoplankton was not limited by inorganic nitrogen concentrations. Electronic Publication  相似文献   

19.
14C-labeled extracellular organic carbon (EOC) released by the phytoplankton in a Danish Estuary was shown immediately to form particles (>0.2m) when the products were added to a natural water sample. About 14%–20% of the added activity could be recovered as particles. Any bacterial assimilation of the extracellular products was thus masked. The abiotic origin of the particulate EOC was verified, and it was shown that the particle formation was due to some factors present in the estuarine water with a nominal diameter >0.2m. Precaution must be taken to avoid misinterpretations in studies concerning carbon flow from algae to bacteria.  相似文献   

20.
Bacterial metabolism of algal extracellular carbon   总被引:3,自引:3,他引:0  
Measurements of microbial utilization of extracellular organic carbon (EOC) released by phytoplankton commonly consider only EOC fractions subject to rapid uptake. Questions remain whether other EOC fractions are metabolized, what portion is labile, and with what assimilation efficiency this carbon substrate is utilized. 14C-EOC was prepared by incubation of the natural mixed planktonic community from an oligotrophic lake with H14CO3 in the light. 14C-EOC which was not rapidly removed by heterotrophs remained in solution and was isolated by filtration. This residual EOC was inoculated with lake microheterotrophs in laboratory microcosms, and utilization kinetics were determined through long-term assays of cumulative 14CO2 production. Time-courses for 14CO2 production were consistent for all assays and were well described by a deterministic mixed-order degradation model. On twelve sampling occasions, from 29% to 76% of residual 14C-EOC was labile to further metabolism by lake heterotrophs. First-order rate constants for EOC utilization showed a mode of 0.05 to 0.15 per day. From 33% to 78% of gross 14C-EOC uptake was respired (mean 50%), indicating appreciable return of algal EOC to the pelagic food web as microbial biomass.Contribution No. 596, W. K. Kellogg Biological Station, Michigan State University.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号