首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reaction products of cis-PtCl2(NH)3)2 with several deoxyribonucleotides containing d(ApG) and/or d(GpA) have been studied. The various reaction products were separated by high-performance liquid chromatography and characterized by means of absorbance at 254 nm in combination with atomic absorption spectroscopy and 300-MHz 1H-NMR (pH dependence of the non-exchangeable base-protons, T1 relaxation time determinations). For the larger fragments the results from these techniques were confirmed by enzymatic degradation studies of the platinated fragments. The smallest of the investigated nucleotides, d(ApG) and d(GpA), both formed a variety of different platinum chelates. In the reaction with d(ApG) 15% cis-Pt(NH3)2-[d(ApG)N1(1),N7(2)] and 78% cis-Pt(NH3)2[d(ApG)N7(1),N7(2)] were found, 4% of the reacted material consisted of a 1 mol Pt/2 mol dinucleotide product, and 3% of an unidentified 1:1 product. From the main product two rotamers were found to occur: at room temperature, 81% anti,anti and 19% anti,syn product is present. With d(GpA) about equal amounts of N1,N7 and N7,N7 products were found; for both products the anti,anti and anti,syn conformations were found, respectively. Upon reaction of cis-PtCl2(NH3)2 with d(pApG) and d(pGpA) only the N7,N7 products were found; at room temperature and pH greater than 1.5 these products were present in anti,anti conformation. However, for the d(pApG)-platinum chelate at -20 degrees C a small amount (less than 5%) of a second product could be observed in NMR. For the d(pGpA)-platinum chelate a second N7,N7-coordinated product was observed when the pH of the NMR sample was lowered to 1.1 (at this pH the free 5'-phosphate group is protonated). With the larger fragments d(ApGpA), d(pApGpA) and d(TpApGpApT) the intra-molecular competition between the formation of the d(ApG) or the d(GpA) chelates could be studied. Using these nucleotides no N1-coordinated products or rotamers were observed. In the case of d(ApGpA) and d(TpApGpApT) the d(GpA) chelate (67% and 75% respectively) was favoured over the d(ApG) chelate, while with d(pApGpA) about equal amounts of both chelates were formed.  相似文献   

2.
 The structure of the second major adduct formed by the antitumor drug cisplatin with DNA, the intrastand cis–Pt(NH3)2{d(ApG)N7N7} chelate (A*G*), has been investigated using a double-stranded nonanucleotide, d(CTCA*G*CCTC)-d(GAGGCTGAG), by means of NMR and molecular modeling. The NMR data allow us to conclude that the oligonucleotide is kinked at the platinated site towards the major groove in a way similar to that observed elsewhere for the G*G*-crosslink in d(GCCG*G*ATCGC)-d(GCGATCCGGC). The main difference concerns the position of the thymine T(15) complementary to the platinated adenine A*(4). It remains stacked on its 5′-neighbor C(14), corresponding to the "model E" described previously, whereas in the G*G*-adduct, the cytosine facing the 5′-G* was found to oscillate between the 5′-branch ("model E") and the 3′-branch ("model C") of the complementary strand. Two "E-type" models are presented which account for the particular NOE connectivity and for two remarkable upfield NMR signals: those of the H2′ proton of the cytidine C(3) 5′ to the A*G* chelate, and of the H3 imino proton of T(15), the base complementary to A*(4). The former shift is attributed to shielding by the destacked A*(4) base, whereas the latter is accounted for by a swinging movement of the T(15) base between two positions where the imino Watson-Crick hydrogen bond with A*(4) remains intact and the amino hydrogen bond is disrupted, or vice versa. Possible implications of the structural difference between the AG and GG adducts of cisplatin in the mutagenic properties of the two adducts are discussed. Received: 19 August 1996 / Accepted: 4 November 1996  相似文献   

3.
Conformational preferences of the modified nucleosides N2-methylguanosine (m2G) and N2, N2-dimethylguanosine (m22G) have been studied theoretically by using quantum chemical perturbative configuration interaction with localized orbitals (PCILO) method. Automated complete geometry optimization using semiempirical quantum chemical RM1, along with ab initio molecular orbital Hartree–Fock (HF-SCF), and density functional theory (DFT) calculations has also been made to compare the salient features. Single-point energy calculation studies have been made on various models of m2G26:C/A/U44 and m22G26:C/A/U44. The glycosyl torsion angle prefers “syn” (χ = 286°) conformation for m2G and m22G molecules. These conformations are stabilized by N(3)–HC2′ and N(3)–HC3′ by replacing weak interaction between O5′–HC(8). The N2-methyl substituent of (m2G26) prefers “proximal” or s-trans conformation. It may also prefer “distal” or s-cis conformation that allows base pairing with A/U44 instead of C at the hinge region. Thus, N2-methyl group of m2G may have energetically two stable s-trans m2G:C/A/U or s-cis m2G:A/U rotamers. This could be because of free rotations around C–N bond. Similarly, N2, N2-dimethyl substituent of (m22G) prefers “distal” conformation that may allow base pairing with A/U instead of C at 44th position. Such orientations of m2G and m22G could play an important role in base-stacking interactions at the hinge region of tRNA during protein biosynthesis process.  相似文献   

4.
A simple, two-step method is described for the synthesis of the 5'-pyro- and triphosphate derivatives of 3'-5' ApA, ApG, GpA and GpG. The readily accessible 2'(3')-5' ApA, ApG, GpA and GpG were converted in one step to the corresponding 5'-phosphoramidate derivatives which were then transformed to the 5'-pyro- and triphosphates. CD spectra of 3'-5' pn GpG (n = 0,1,2 or 3) derivatives, measured at pH 1, indicated stabilization of the (syn) G+p (anti)G conformation by the 5'-phosphate groups.  相似文献   

5.
The DNA interference pathways exhibited by cisplatin and related anticancer active metal complexes have been extensively studied. Much less is known to what extent RNA interaction pathways may operate in parallel, and perhaps contribute to both antineoplastic activity and toxicity. The present study was designed with the aim of comparing the reactivity of two model systems comprising RNA and DNA hairpins, r(CGCGUUGUUCGCG) and d(CGCGTTGTTCGCG), towards a series of platinum(II) complexes. Three platinum complexes were used as metallation reagents; cis-[PtCl(NH3)2(OH2)]+ (1), cis-[PtCl(NH3)(c-C6H11NH2)(OH2)]+ (2), and trans-[PtCl(NH3)(quinoline)(OH2)]+ (3). The reaction kinetics were studied at pH 6.0, 25 °C, and 1.0 mM ≤ I ≤ 500 mM. For both types of nucleic acid targets, compound 3 was found to react about 1 order of magnitude more rapidly than compounds 1 and 2. Further, all platinum compounds exhibited a more pronounced salt dependence for the interaction with r(CGCGUUGUUCGCG). Chemical and enzymatic cleavage studies revealed similar interaction patterns with r(CGCGUUGUUCGCG) after long exposure times to 1 and 2. A substantial decrease of cleavage intensity was found at residues G4 and G7, indicative of bifunctional adduct formation. Circular dichroism studies showed that platinum adduct formation leads to a structural change of the ribonucleic acid. Thermal denaturation studies revealed platination to cause a decrease of the RNA melting temperatures by 5–10 °C. Our observations therefore suggest that RNA is a kinetically competitive target to DNA. Furthermore, platination causes destabilization of RNA structural elements, which may lead to deleterious intracellular effects on biologically relevant RNA targets.Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

6.
 The present model study explores the chemistry of methionine complexes and ternary methionine-guanine adducts formed by trans-[PtCl2(NH3)2] (1) and antitumor trans-[PtCl2(NH3)quinoline] (2) using 1D (1H, 195Pt) and 2D NMR spectroscopy. Compound 2 was substitution inert in reactions with N-acetyl-lmethionine [AcMet(H)]. Reactions of trans-[PtCl(NO3)(NH3)quinoline] (5) ("monoactivated" 2) with AcMetH in water and acetone at various stoichiometries point to Pt(II)-S binding that requires prior activation of the Pt-Cl bond by labile oxygen donors. Trans-[PtCl{AcMet(H)-S}(NH3)quinoline](NO3) (6) and trans-[Pt{AcMet(H)-S}2(NH3)quinoline](NO3)2 (7) were isolated from these mixtures. At high [Cl], AcMet(H) is displaced from 7, giving 6. Frozen stereodynamics in 6 at the thioether-S and slow rotation about the Pt-Nquinoline bond result in four spectroscopically distinguishable diastereomers. 1H NMR spectra of 7 show faster exchange dynamics due to mutual trans-labilization of the sulfur donors. Substitution of chloride in trans-[PtCl(9-EtGua)(NH3)L]NO3 (L=NH3, 3; L=quinoline, 4; 9-EtGua=9-ethylguanine, which mimics the first DNA binding step of 1 and 2) by methionine-sulfur proceeded ca. 2.5 times slower for the quinoline compound. Both reactions, in turn, proved to be ca. 4 times faster than binding of a second nucleobase under analogous conditions. From the resulting mixtures the ternary adducts trans-[Pt(AcMet-S)(9-EtGua-N7)(NH3)L](NO3, Cl) (L=NH3, 8; L=quinoline, 9) were isolated. A species analogous to 9 formed in a rapid reaction between 6 and 5′-guanosine monophosphate (5′-GMP). From NMR data an AMBER-based solution structure of the resulting adduct, trans-[Pt(AcMet-S)(5′-GMP-N7)(NH3)quinoline] (10), was derived. The unusual reactivity along the N7-Pt-S axis in 8–10 resulted in partial release of both 9-EtGua and AcMet at high [Cl]. Possible consequences of the kinetic and structural effects (e.g., trans effect of sulfur, steric demand of quinoline) observed in these systems with respect to the (trans)formation of potential biological cross-links are discussed. Received: 25 May 1998 / Accepted: 6 August 1998  相似文献   

7.
The location of reactive cysteine residues on the ryanodine receptor (RyR) calcium release channel was assessed from the changes in channel activity when oxidizing or reducing reagents were added to the luminal or cytoplasmic solution. Single sheep cardiac RyRs were incorporated into lipid bilayers with 10−7 m cytoplasmic Ca2+. The thiol specific-lipophilic-4,4′-dithiodipyridine (4,4′-DTDP, 1 mm), as well as the hydrophilic thimerosal (1 mm), activated and then inhibited RyRs from either the cis (cytoplasmic) or trans (luminal) solutions. Activation was associated with an increase in the (a) mean channel open time and (b) number of exponential components in the open time distribution from one (∼2 msec) to three (∼1 msec; ∼7 msec; ∼15 msec) in channels activated by trans 4,4′-DTDP or cis or trans thimerosal. A longer component (∼75 msec) appeared with cis 4,4′-DTDP. Activation by either oxidant was reversed by the thiol reducing agent, dithiothreitol. The results suggest that three classes of cysteines are available to 4,4′-DTDP or thimerosal, SHa or SHa* activating the channel and SHi closing the channel. SHa is either distributed over luminal and cytoplasmic RyR domains, or is located within the channel pore. SHi is also located within the transmembrane domain. SHa* is located on the cytoplasmic domain of the protein. Received: 17 March 1998/Revised: 26 October 1998  相似文献   

8.
9.
Differences in the relative abundance of dinucleotides, if any may provide important clues on host-driven evolution of viruses. We studied dinucleotide frequencies of large DNA viruses infecting vertebrates (n = 105; viruses infecting mammals = 99; viruses infecting aves = 6; viruses infecting reptiles = 1) and invertebrates (n = 88; viruses infecting insects = 84; viruses infecting crustaceans = 4). We have identified systematic depletion of CpT(ApG) dinucleotides and over-representation of CpG dinucleotides as the unique genomic signature of large DNA viruses infecting invertebrates. Detailed investigation of this unique genomic signature suggests the existence of invertebrate host-induced pressures specifically targeting CpT(ApG) and CpG dinucleotides. The depletion of CpT dinucleotides among large DNA viruses infecting invertebrates is at least in part, explained by non-canonical DNA methylation by the infected host. Our findings highlight the role of invertebrate host-related factors in shaping virus evolution and they also provide the necessary framework for future studies on evolution, epigenetics and molecular biology of viruses infecting this group of hosts.  相似文献   

10.
 d(TpG) reacts with cis-[Pt(NH3)2(H2O)2]2+ in two steps to yield the platinum chelate cis-[Pt(NH3)2{d(TpG)-N3(1),N7(2)}]. In the latter, hindered rotation of the bases leads to an equilibrium between two rotamers interconverting slowly on the NMR time scale. The structure of the two rotameric chelates was studied by means of 1H NMR and molecular modeling techniques. The major and minor rotamers could be assigned unambiguously to the two head-to-head conformational domains which are characterized by syn/anti and anti/anti sugar-base orientations, respectively. Molecular models derived for both rotamers show that the orientations of the bases are mutually quasi-enantiomeric. The interconversion between the two rotamers (k ≈ 1 s–1 at 293 K) is approximately 104 times faster than the analogous rotamer interconversion observed in cis-[Pt(NH3)2{r(CpG)-N3(1),N7(2)}]+ [Girault J-P, Chottard G, Lallemand J-Y, Huguenin F, Chottard J-C (1984) J Am Chem Soc 106 : 7227–7232], suggesting that the steric clash of the exocyclic amino group of the platinum-bound cytosine with the ligands in cis position is more severe than that of the two thymine oxo groups. Received: 23 June 1997 / Accepted: 30 September 1997  相似文献   

11.
The reactive disulfide 4,4′-dithiodipyridine (4,4′DTDP) was added to single cardiac ryanodine receptors (RyRs) in lipid bilayers. The activity of native RyRs, with cytoplasmic (cis) [Ca2+] of 10−7 m (in the absence of Mg2+ and ATP), increased within ∼1 min of addition of 1 mm 4,4′-DTDP, and then irreversibly ceased 5 to 6 min after the addition. Channels, inhibited by either 1 mm cis Mg2+ (10−7 m cis Ca2+) or by 10 mm cis Mg2+ (10−3 m cis Ca2+), or activated by 4 mm ATP (10−7 m cis Ca2+), also responded to 1 mm cis 4,4′-DTDP with activation and then loss of activity. P o and mean open time (T o ) of the maximally activated channels were lower in the presence of Mg2+ than in its absence, and the number of openings within the long time constant components of the open time distribution was reduced. In contrast to the reduced activation by 1 mm 4,4′-DTDP in channels inhibited by Mg2+, and the previously reported enhanced activation by 4,4′-DTDP in channels activated by Ca2+ or caffeine (Eager et al., 1997), the activation produced by 1 mm cis 4,4′-DTDP was the same in the presence and absence of ATP. These results suggest that there is a physical interaction between the ATP binding domain of the cardiac RyR and the SH groups whose oxidation leads to channel activation. Received: 8 September 1997/Revised: 20 January 1998  相似文献   

12.
The tandem use of simple mono- or disaccharides and vitamin C as organic reducers allows the synthesis of the widely used starting material cis-Ru(bpy)2Cl2 (where bpy = 2,2′-bipyridine) from commercial ruthenium (III) chloride in less than half an hour. Notably, the reaction can be run in organic aqueous solvent or in only water, hence it can be adapted to substituted 2,2′-bipyridines.  相似文献   

13.
Polarized Raman spectra have been obtained from single microcrystals of the duplex of the decamer d(A5T5)2 using a Raman microscope. This is the first report of Raman spectra from a crystal of a deoxyoligomer that contains only long, nonalternating sequences of adenine and thymine. Sequences containing d(A)n and d(T)n are of interest in view of recent suggestions that they induce bends in DNA and that they might exist in a nonstandard B-conformation. Polarized Raman spectra of a crystal of d(pTpT) have also been obtained. Both crystals display Raman bands whose intensities are very sensitive to the orientation of the crystal with respect to the direction of polarization of the incident laser beam. These spectra indicate that the helical axes of the oligonucleotides are parallel to the long axes of the crystals and that the d(A5T5)2 is not appreciably bent in the crystal. The Raman spectrum from the d(pTpT) crystal indicates that all of the furanose ring puckers are in a C2′-endo configuration since only the C2′-endo marker band at 835 ± 5 cm?1 is present. Crystals of d(A5T5)2 show measurable Raman intensities in both the 838- and 816-cm?1 bands. This indicates the presence of both the C2′-endo and C3′-endo, or possibly other non-C2′-endo, furanose conformations. The 816-cm?1 band is weak so that only a small fraction of the residues are estimated to be in the non-C2′-endo conformation. In both the d(pTpT) and d(A5T5)2 crystals the intensity of the bands due to vibrations of the backbone show only a small dependence on orientation of the crystals. This result is explained by the low symmetry of the puckered sugar rings. It is concluded that Raman spectra obtained from oligonucleotide crystals in which the orientation of the crystal axes to the laser polarization is not carefully controlled may contain intensity artifacts that are due to polarization effects.  相似文献   

14.
The nonamer 5'd(CTCAGCCTC) 3' 1 has been reacted with cis-diamminediaquaplatinum(II) in water at pH 4.2. The major reaction product was shown by enzymatic digestion and 1H NMR to be the d(ApG)cis-Pt(NH3)2 chelate [cis-Pt(NH3)2[d(CTCAGCCTC)-N7(4),N7(5)]] 1-Pt. When mixed with its complementary strand 2, 1-Pt forms a B DNA type duplex 3-Pt with a Tm of 35 degrees C (versus 58 degrees C for the unplatinated duplex). The NMR study of the exchangeable protons of 3-Pt revealed that the helix distortion is localized on the CA*G*-CTG moiety (the asterisks indicating the platinum chelation sites) with a strong perturbation of the A*(4)T(15) base pair related to a large tilt of A*(4).  相似文献   

15.
Pyochelin, its analog 3′′-nor-NH-pyochelin, and the related methyl hydroxamate, 2-(2′-hydroxyphenyl)-4,5-dihydrothiazol-4-carboxylic acid methoxymethyl amide, have been prepared together with their Fe(III) complexes. The solution stoichiometry and the coordination of the three Fe(III) complexes in methanol or buffered (pH∼2) 50:50 (v/v) methanol–water mixtures were determined using various spectroscopic methods: UV–vis absorption, X-ray absorption, extended X-ray absorption fine structure and electron paramagnetic resonance. All three systems showed both a 1:1 and 2:1 ligand–Fe(III) stoichiometry, but presented different coordination properties. Conditional formation constants (pH∼2) were determined for both the 1:1 and 2:1 complexes in all three systems. Computation of the coordination-conformational energies by semiempirical methods indicated that the coordination in the case of the 2:1 complexes of pyochelin–Fe(III) and 3′′-nor-NH-pyochelin–Fe(III) was asymmetrical, with one molecule of pyochelin (or 3′′-nor-NH-pyochelin) tetradentately coordinated (O1, N1, N2 and O3) to the Fe(III), and the second molecule bound bidentately (O1, N1 or N2, O3), to complete the octahedral geometry. In contrast, two molecules of the methyl hydroxamate each provided a set of tridentate ligand atoms in the formation of the 2:1 ligand–Fe(III) complex. These results are consistent with the role of pyochelin in the uptake of iron by the FptA receptor in the outer membrane of Pseudomonas aeruginosa and in several gram-negative bacteria.  相似文献   

16.
 An approach is presented which probes the possible use of trans-[(NH3)2PtCl]+-modified deoxyoligonucleotides in the antisense strategy. It consists of (1) the selective platination of an oligonucleotide containing 11 pyrimidine (T, C) bases as well as a single guanine (G) as a Pt-anchoring group at the 5′-end to give trans-[(NH3)2Pt{5′-d(GN7T2C2T2C2T2C}Cl]10– 1 ("antisense strand") and (2) subsequent hybridization with the purine 12-mer 5′-d(GA2G2A2G2A2G)11– ("sense strand"). According to HPLC, three major species 24 are formed during reaction (2), all of which are cross-linking adducts between 1 and the sense strand, as confirmed by ESI MS and melting temperature measurements. Only for the major product 3 can a structure be proposed on the basis of 1D and 2D NMR spectra. According to these, G1 of the antisense strand is cross-linked with G20 via trans-(NH3)2PtII. The complementary overhangs of the duplex represent "sticky ends" and are, in principle, capable of associating into multimers of the duplex. Received: 29 March 1999 / Accepted: 26 July 1999  相似文献   

17.
Both the trans and cis isomers of [Ru(acac)2{P(OMe)3}2] were isolated in the form of single crystals and characterized by single crystal X-ray diffraction, UV-Vis, MS, 1H, 13C and 31P NMR spectroscopy. The compounds of ruthenium(II), both mononuclear complexes, crystallize in triclinic space group. The metal ion in both compounds has similar, slightly distorted octahedral coordination geometry. Both complexes were tested as catalyst in hydrogen generation from the hydrolysis of sodium borohydride. When used alone, none of the trans- and cis-[Ru(acac)2{P(OMe)3}2] complexes shows significant catalytic activity. However, the catalytic activity of cis-[Ru(acac)2{P(OMe)3}2] in the hydrolysis of sodium borohydride is significantly enhanced by the addition of two equivalents of trimethylphosphite per ruthenium into the medium.  相似文献   

18.
cis-Diamminedichloroplatinum(II) (cis-Pt) was reacted with four homodinucleotides (GpG, ApA, CpC, and UpU) and six heterodinucleotides (GpC, CpG, GpU, UpG, GpA, and ApG) at pH 6, and the reaction products were purified by HPLC. The most important products were characterized by 1H-NMR spectra. In all the heterodinucleotides except the ones containing uridine the main Pt-adduct was an intramolecular cross-link, but monofunctional adducts and intermolecular cross-links were also detected. Intramolecular cross-links were also formed with GpU and UpG but the amounts of them were about the same as the amounts of intermolecular cross-links. In the case of homodinucleotides GpG gave almost entirely intramolecular cross-links, in which cis-Pt was chelated between the N-7 atoms of two guanines. cis-Pt reacted also with ApA forming both monofunctional and bifunctional Pt-adducts. The main adducts were intramolecular cross-links. cis-Pt reacted equally well with all guanosine-containing dinucleotides, while the reaction with ApA was much slower. With CpC and UpU no reaction products were formed.  相似文献   

19.
The monofunctional and bifunctional bindings of the potential anticancer drug trans-isopropylaminedimethylaminedichloroplatinum (trans-IPADMADP) and its cis isomer to purine base in DNA are explored by using density functional theory and IEF-PCM solvation models. The computed lowest free energy barrier in the aqueous solution is 14.0/11.6 kcal/mol (from trans-Pt-chloroaqua complex to trans-/cis-monoadduct) for guanine(G), and 11.7/13.3 kcal/mol (from trans-Pt-chloroaqua complex to trans-/cis-monoadduct) for adenine(A). Our calculations demonstrate that the trans reactant complexes (or isolated reactants) can generate trans- or cis-monoadducts via similar trigonal bipyramidal transition state structures, suggesting that the monoadducts can subsequently close to form the bifunctional intrastrand Pt-DNA adducts and simultaneously distort DNA in the similar way as cisplatin. Our calculations show that Pt(isopropylamine)(dimethylamine)G22+ head-to-head path has the lowest free energy of activation at 17.6 kcal/mol, closely followed by the Pt(isopropylamine)(dimethylamine)GA2+ head-to-head path at 19.6 kcal/mol when the monofunctional cis-Pt-G complex serves as the reactant; while the Pt(isopropylamine)(dimethylamine)G22+ head-to-tail adduct has the lowest barrier of 20.5 kcal/mol, closely followed by the Pt(isopropylamine)(dimethylamine)GA2+ head-to-tail adduct at 23.0 kcal/mol if the monofunctional trans-Pt-G complex is the reactant.The calculated relatively lower activation energy barrier than that of cisplatin theoretically confirm that trans-[PtCl2(isopropylamine)(dimethylamine)] is a potential anticancer drug as described by experiment.  相似文献   

20.
Data obtained with the lipid bilayer technique indicate that cis (cytoplasmic) concentration of 4.4–22 mm hydrogen peroxide (H2O2), is a water-soluble oxidant. [H2O2] cis (n= 26) reversibly inhibits the multisubconductance SCl channel of the sarcoplasmic reticulum vesicles from rabbit skeletal muscle. At −40 mV, the mean values of the current amplitude (I) and the probability of the SCl channel being open (P o ) were reduced significantly (n= 8) from −6.14 ± 0.42 pA and 0.69 ± 0.06 (for all conductance levels) in control 0.0 mm [H2O2] cis to −1.10 ± 0.51 pA and 0.13 ± 0.04 (for the intermediate subconductance states) in 8.8 mm [H2O2] cis , respectively. The [H2O2] cis -induced decrease in P o is mainly due to a decrease in the mean open time T o . The mechanism of [H2O2] cis effects on the multiconductance SCl channel is characterized by a mode shift in the channel state from the main conductance state to the low subconductance states. The estimated concentration of the [H2O2] cis for the half inhibitory constant, K i , was 11.78 mm, higher than the estimated 8.0 and 8.1 mm for the parameters P o and T o , respectively, indicating that the conductance of the SCl channel is less sensitive than the gating kinetics of the channel. After a lag period of between 30 to 60 sec, the lipophilic SH-oxidizing agent 4,4′-dithiodipyridine (4,4′-DTDP) added to the cis side at 1.0 mm removed the inhibitory effects of 8.8 mm [H2O2] cis . The 4,4′-DTDP-enhanced SCl channel activity was blocked after the addition of 0.5 mm ATP to the cis side of the channel. The addition of 1.0 mm 4,4′-DTDP to the cis or trans solutions facing an SCl channel already subjected to 0.5 mm [ATP] cis or [ATP] trans failed to activate the ATP-inhibited SCl channel. These findings suggest that 4,4′-DTDP is not preventing the binding of ATP to its binding site on the channel protein. The interaction of H2O2 with the SCl channel proteins is consistent with a thiol-disulfide redox state model for regulating ion transport, where SH groups can directly modify the function of the channel and/or the availability of regulatory sites on the channel proteins. The H2O2 effects on the Ca2+ countercurrent through the SCl channel are also consistent with H2O2-modification of the mechanisms involved in the Ca2+ regulation, which underlies excitation-contraction coupling in skeletal muscle. Received: 27 April 1999/Revised: 1 July 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号