首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
The cyclin-dependent kinase-activating kinase (CAK) catalyzes the phosphorylation of the cyclin-dependent protein kinases (CDKs) on a threonine residue (Thr160 in human CDK2). The reaction is an obligatory step in the activation of the CDKs. In higher eukaryotes, the CAK complex has been characterized in two forms. The first consists of three subunits, namely CDK7, cyclin H, and an assembly factor called MAT1, while the second consists of phospho-CDK7 and cyclin H. Phosphorylation of CDK7 is essential for cyclin association and kinase activity in the absence of the assembly factor MAT1. The Xenopus laevis CDK7 phosphorylation sites are located on the activation segment of the kinase at residues Ser170 and at Thr176 (the latter residue corresponding to Thr160 in human CDK2). We report the expression and purification of X. laevis CDK7/cyclin H binary complex in insect cells through coinfection with the recombinant viruses, AcCDK7 and Accyclin H. Quantities suitable for crystallization trials have been obtained. The purified CDK7/cyclin H binary complex phosphorylated CDK2 and CDK2/cyclin A but did not phosphorylate histone H1 or peptide substrates based on the activation segments of CDK7 and CDK2. Analysis by mass spectrometry showed that coexpression of CDK7 with cyclin H in baculoviral-infected insect cells results in phosphorylation of residues Ser170 and Thr176 in CDK7. It is assumed that phosphorylation is promoted by kinase(s) in the insect cells that results in the correct, physiologically significant posttranslational modification. We discuss the occurrence of in vivo phosphorylation of proteins expressed in baculoviral-infected insect cells.  相似文献   

5.
6.
Cyclin-dependent kinases (CDKs) that control cell cycle progression are regulated in many ways, including activating phosphorylation of a conserved threonine residue. This essential phosphorylation is carried out by the CDK-activating kinase (CAK). Here we examine the effects of replacing this threonine residue in human CDK2 by serine. We found that cyclin A bound equally well to wild-type CDK2 (CDK2(Thr-160)) or to the mutant CDK2 (CDK2(Ser-160)). In the absence of activating phosphorylation, CDK2(Ser-160)-cyclin A complexes were more active than wild-type CDK2(Thr-160)-cyclin A complexes. In contrast, following activating phosphorylation, CDK2(Ser-160)-cyclin A complexes were less active than phosphorylated CDK2(Thr-160)-cyclin A complexes, reflecting a much smaller effect of activating phosphorylation on CDK2(Ser-160). The kinetic parameters for phosphorylating histone H1 were similar for mutant and wild-type CDK2, ruling out a general defect in catalytic activity. Interestingly, the CDK2(Ser-160) mutant was selectively defective in phosphorylating a peptide derived from the C-terminal domain of RNA polymerase II. CDK2(Ser-160) was efficiently phosphorylated by CAKs, both human p40(MO15)(CDK7)-cyclin H and budding yeast Cak1p. In fact, the k(cat) values for phosphorylation of CDK2(Ser-160) were significantly higher than for phosphorylation of CDK2(Thr-160), indicating that CDK2(Ser-160) is actually phosphorylated more efficiently than wild-type CDK2. In contrast, dephosphorylation proceeded more slowly with CDK2(Ser-160) than with wild-type CDK2, either in HeLa cell extract or by purified PP2Cbeta. Combined with the more efficient phosphorylation of CDK2(Ser-160) by CAK, we suggest that one reason for the conservation of threonine as the site of activating phosphorylation may be to favor unphosphorylated CDKs following the degradation of cyclins.  相似文献   

7.
8.
Cyclin dependent kinases (CDKs) are key regulators of the cell cycle progression and therefore constitute excellent targets for the design of anticancer agents. Most of the inhibitors identified to date inhibit kinase activity by interfering with the ATP-binding site of CDKs. We recently proposed that the protein/protein interface and conformational changes required in the molecular mechanism of CDK2-cyclin A activation were potential targets for the design of specific inhibitors of cell cycle progression. To this aim, we have designed and characterized a small peptide, termed C4, derived from amino acids 285-306 in the alpha5 helix of cyclin A. We demonstrate that this peptide does not interfere with complex formation but forms stable complexes with CDK2-cyclin A. The C4 peptide significantly inhibits kinase activity of complexes harboring CDK2 in a competitive fashion with respect to substrates but does not behave as an ATP antagonist. Moreover, when coupled with the protein transduction domain of Tat, the C4 peptide blocks the proliferation of tumor cell lines, thereby constituting a potent lead for the development of specific CDK-cyclin inhibitors.  相似文献   

9.
10.
Dysregulation of cyclin-dependent kinases (CDKs) can promote unchecked cell proliferation and cancer progression. Although focal adhesion kinase (FAK) contributes to regulating cell cycle progression, the exact molecular mechanism remains unclear. Here, we found that FAK plays a key role in cell cycle progression potentially through regulation of CDK4/6 protein expression. We show that FAK inhibition increased its nuclear localization and induced G1 arrest in B16F10 melanoma cells. Mechanistically, we demonstrate nuclear FAK associated with CDK4/6 and promoted their ubiquitination and proteasomal degradation through recruitment of CDC homolog 1 (CDH1), an activator and substrate recognition subunit of the anaphase-promoting complex/cyclosome E3 ligase complex. We found the FAK N-terminal FERM domain acts as a scaffold to bring CDK4/6 and CDH1 within close proximity. However, overexpression of nonnuclear-localizing mutant FAK FERM failed to function as a scaffold for CDK4/6 and CDH1. Furthermore, shRNA knockdown of CDH1 increased CDK4/6 protein expression and blocked FAK inhibitor–induced reduction of CDK4/6 in B16F10 cells. In vivo, we show that pharmacological FAK inhibition reduced B16F10 tumor size, correlating with increased FAK nuclear localization and decreased CDK4/6 expression compared with vehicle controls. In patient-matched healthy skin and melanoma biopsies, we found FAK was mostly inactive and nuclear localized in healthy skin, whereas melanoma lesions showed increased active cytoplasmic FAK and elevated CDK4 expression. Taken together, our data demonstrate that FAK inhibition blocks tumor proliferation by inducing G1 arrest, in part through decreased CDK4/6 protein stability by nuclear FAK.  相似文献   

11.
12.
13.
The cyclin-dependent kinase 4 (CDK4)-cyclin D1 complex plays a crucial role in the transition from the G1 phase to S phase of the cell cycle. Among the CDKs, CDK4 is one of the genes most frequently affected by somatic genetic variations that are associated with various forms of cancer. Thus, because the abnormal function of the CDK4-cyclin D1 protein complex might play a vital role in causing cancer, CDK4 can be considered a genetically validated therapeutic target. In this study, we used a systematic, integrated computational approach to identify deleterious nsSNPs and predict their effects on protein-protein (CDK4-cyclin D1) and protein-ligand (CDK4-flavopiridol) interactions. This analysis resulted in the identification of possible inhibitors of mutant CDK4 proteins that bind the conformations induced by deleterious nsSNPs. Using computational prediction methods, we identified five nsSNPs as highly deleterious: R24C, Y180H, A205T, R210P, and R246C. From molecular docking and molecular dynamic studies, we observed that these deleterious nsSNPs affected CDK4-cyclin D1 and CDK4-flavopiridol interactions. Furthermore, in a virtual screening approach, the drug 5_7_DIHYDROXY_ 2_ (3_4_5_TRI HYDROXYPHENYL) _4H_CHROMEN_ 4_ONE displayed good binding affinity for proteins with the mutations R24C or R246C, the drug diosmin displayed good binding affinity for the protein with the mutation Y180H, and the drug rutin displayed good binding affinity for proteins with the mutations A205T and R210P. Overall, this computational investigation of the CDK4 gene highlights the link between genetic variation and biological phenomena in human cancer and aids in the discovery of molecularly targeted therapies for personalized treatment.  相似文献   

14.
The kinase responsible for Thr161-Thr160 phosphorylation and activation of cdc2/cdk2 (CAK:cdk-activating kinase) has been shown previously to comprise at least two subunits, cdk7 and cyclin H. An additional protein co-purified with CAK in starfish oocytes, but its sequencing did not reveal any similarity with any known protein. In the present work, a cDNA encoding this protein is cloned and sequenced in both starfish and Xenopus oocytes. It is shown to encode a new member of the RING finger family of proteins with a characteristic C3HC4 motif located in the N-terminal domain. We demonstrate that the RING finger protein (MAT1: 'menage à trois') is a new subunit of CAK in both vertebrate and invertebrates. However, CAK may also exist in oocytes as heterodimeric complexes between cyclin H and cdk7 only. Stable heterotrimeric CAK complexes were generated in reticulocyte lysates programmed with mRNAs encoding Xenopus cdk7, cyclin H and MAT1. In contrast, no heterodimeric cyclin H-cdk7 complex could be immunoprecipitated from reticulocyte lysates programmed with cdk7 and cyclin H mRNAs only. Stabilization of CAK complexes by MAT1 does not involve phosphorylation of Thr176, as the Thr176-->Ala mutant of Xenopus cdk7 could engage as efficiently as wild-type cdk7 in ternary complexes. Even though starfish MAT1 is almost identical to Xenopus MAT1 in the RING finger domain, the starfish subunit could not replace the Xenopus subunit and stabilize cyclin H-cdk7 in reticulocyte lysate, suggesting that the MAT1 subunit does not (or not only) interact with cyclin H-cdk7 through the RING finger domain.  相似文献   

15.
Proteasome-dependent degradation of human CDC25B phosphatase   总被引:2,自引:0,他引:2  
The CDC25 dual specificity phosphatase is a universal cell cycle regulator. The evolutionary conservation of this enzyme from yeast to man bears witness to its major role in the control of cyclin-dependent kinases (CDK) activity that are central regulators of the cell cycle machinery. CDC25 phosphatase both dephosphorylates and activates CDKs. Three human CDC25s have been identified. CDC25A is involved in the control of G1/S, and CDC25C at G2/M throught the activation of CDK1-cyclin B. The exact function of CDC25B however remains elusive. We have found that CDC25B is degraded by the proteasome pathway in vitro and in vivo. This degradation is dependent upon phosphorylation by the CDK1-cyclin A complex, but not by CDK1-cyclin B. Together with the observations of others made in yeast and mammals, our results suggest that CDC25B might act as a mitotic starter triggering the activation of an auto-amplification loop before being degraded.  相似文献   

16.
17.
The activity of cyclin-dependent kinase 2 is required for G(1)-S-phase progression of the eukaryotic cell cycle. In this study, we examine the activation of CDK2-cyclin E by constructing a CDK2 that is constitutively targeted to the nucleus. Activation of CDK2 requires the removal of two inhibitory phosphates (Thr-14 and Tyr-15) and the addition of one activating phosphate (Thr-160) by a nuclear localized CDK-activating kinase, which is thought to be constitutively active. Surprisingly, nuclear localized CDK2-NLS and CDK2-NLS(A14,F15), which lacks the inhibitory phosphorylation sites, require serum to become active, despite complexing with expressed cyclin E. We show that inhibition of mitogen-mediated ERK activation by treatment with U0126, a selective MEK inhibitor, or expression of dominant-negative ERK markedly reduces the phosphorylation of Thr-160 and enzymatic activity of both CDK2-NLS constructs. Consistent with a role for ERK in Thr-160 phosphorylation, expression of constitutively active Raf-1 induces Thr-160 phosphorylation of CDK2-NLS in serum-arrested cells, an effect that is blocked by treatment with U0126. Taken together, these data show a new role for ERK in G1 cell cycle progression: In addition to its role in stimulating cyclin D1 expression and nuclear translocation of CDK2, ERK regulates Thr-160 phosphorylation of CDK2-cyclin E.  相似文献   

18.
The baculovirus expression vector system is recognized as a powerful and versatile tool for producing large quantities of recombinant proteins that cannot be obtained in Escherichia coli. Here we report (i) the purification of the recombinant cyclin-dependent kinase (CDK)-activating kinase (CAK) complex, which includes CDK7, cyclin H, and MAT1 proteins, and (ii) the functional characterization of CAK together with a detailed analysis and mapping of the phosphorylation states and sites using mass spectrometry (MS). In vitro kinase assay showed that recombinant CAK is able to phosphorylate the cyclin-dependent kinase CDK2 implicated in cell cycle progression and the carboxy-terminal domain (CTD) of the eukaryotic RNA polymerase II. An original combination of MS techniques was used for the determination of the phosphorylation sites of each constitutive subunit at both protein and peptide levels. Liquid chromatography (LC)-MS analysis of intact proteins demonstrated that none of the CAK subunits was fully modified and that the phosphorylation pattern of recombinant CAK is extremely heterogeneous. Finally, matrix-assisted laser desorption/ionization (MALDI)-MS and nanoLC-tandem mass spectrometry (MS/MS) techniques were used for the analysis of the major phosphorylation sites of each subunit, showing that all correspond to Ser/Thr phosphorylation sites. Phosphorylations occurred on Ser164 and Thr170 residues of CDK7, Thr315 residue of cyclin H, and Ser279 residue of MAT1.  相似文献   

19.
20.
Cyclin D3 regulates the G1/S transition and is frequently overexpressed in several cancer types including breast cancer, where it promotes tumor progression. Here we show that a cytoskeletal protein keratin 19 (K19) physically interacts with a serine/threonine kinase GSK3β and prevents GSK3β-dependent degradation of cyclin D3. The absence of K19 allowed active GSK3β to accumulate in the nucleus and degrade cyclin D3. Specifically, the head (H) domain of K19 was required to sustain inhibitory phosphorylation of GSK3β Ser9, prevent nuclear accumulation of GSK3β, and maintain cyclin D3 levels and cell proliferation. K19 was found to interact with GSK3β and K19–GSK3β interaction was mapped out to require Ser10 and Ser35 residues on the H domain of K19. Unlike wildtype K19, S10A and S35A mutants failed to maintain total and nuclear cyclin D3 levels and induce cell proliferation. Finally, we show that the K19–GSK3β-cyclin D3 pathway affected sensitivity of cells toward inhibitors to cyclin-dependent kinase 4 and 6 (CDK4/6). Overall, these findings establish a role for K19 in the regulation of GSK3β-cyclin D3 pathway and demonstrate a potential strategy for overcoming resistance to CDK4/6 inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号